
1

Component Based Software Development:
Processes and Problems

Wes J. Lloyd

Computer Science, Colorado State University
Fort Collins, Colorado, USA 80521

wlloyd@acm.org

Abstract: Component-based software development (CBSD) is emerging as a new
software development paradigm that promises to revolutionize how to approach reuse in
software development. CBSD promises to allow developers to develop entire software
systems by simply integrating together commercial off-the-shelf software components or
internal components from company repositories. This paper presents an introduction and
overview to CBSD. In this paper the general view of what it means to be developing
software using the CBSD paradigm is discussed including several challenges impeding
the realization of maximum benefit from using component based development
techniques. Development processes tailored to the unique needs of component-based
development can help address many of these challenges. A summary and comparison of
several existing component based software development processes is presented. This
paper concludes by summarizing the capability of existing processes and by suggesting
how future process enhancements may better address the challenges of component based
software development.

Key Words: CBSD, CBSE, CBD, components

1. Introduction

Components are objects in object-oriented software that emphasize encapsulation, abstraction and
reusability. Developers have been developing software-using components for several years now.
For example an application developer may wish to present data in a spreadsheet like display in a
graphical user interface. This developer instead of spending time designing and developing a
customized spreadsheet like display uses a commercial component that easily plugs into the
application and provides the required functionality. The cost of the component is small, generally
a few hundred dollars, where the development time, and hence the cost to create custom code to
implement the spreadsheet functionality is high. Development managers know about the
timesavings of developing software-using components and frequently ask the question “is there a
tool out there that will do this for us?” Finding commercial components to provide functionality
similar to that in this example is much faster than “reinventing the wheel”, rewriting the same
code that was previously written. In this case, writing custom code to implement a spreadsheet
display could take several weeks or even months to complete depending on the extent of the
requirements. Using a component to realize the functionality will be somewhat faster with
development activities for the functionality piece limited to integration and testing.

Component based software development is the development of software through the integration
of preexisting components. The definition of exactly what is a software component, is often as
varied as the scope of the software in which they are used in, but in general a component is
considered to be a separable piece of executable software that stands alone as a unit, can inter-

2

operate with other components, and is accessible only through a published interface. Today many
software components are developed using a technology specific component model. A component
model (CM) defines the building blocks and methods by which components interoperate.
Components require a component model just as algorithms require a computer language in order
to realize their implementation. Without a component model components cannot work or
interoperate together. [3] Popular component models include:

1. Microsoft Windows based CM: Microsoft Transaction Server (MTS), Component
Object Model (COM), .NET

2. Java based CM: Javabeans and Enterprise Javabeans (EJB)
3. Cross-Platform CM: Common Object Request Broker Architecture (CORBA)

The MTS/COM/.Net component model allows for the development and deployment of
components for operation with Microsoft operating systems and development languages. EJB
and Javabeans are component models for component based software development in the popular
cross-platform programming language Java. CORBA is the leading component model that
supports the development and deployment of cross-platform language independent components.
[20]

Components can vary greatly in functionality, purpose, and scope. Some components are
concerned only with presentation and are considered graphical user interface components, while
others are data related and provide content and information for various server applications. Still
other components exist as middleware, software that enforces and implements business rules and
logic that separate the presentation and user interaction from the application’s data model.

Component Based Software Development (CBSD) has two commonly realized variants. [19]
Some view CBSD as the practice of selecting commercial off-the-shelf software components and
integrating them together in a similar process as described in the example above. [5] The
development of such systems that relies heavily on using external, of the shelf components relies
on selection decisions in the design process. Designers focus attention on selecting the best
component available to meet the system requirements. Even small companies without internal
component development group can benefit from CBSD in this way.

The other popular view of CBSD is for each company to have a component software group. This
group is responsible for the internal development of custom components. Instead of developing
custom software only to meet specific project requirements, commonalities across projects are
identified and used to drive the development of components within an organization. These
components are then deployed and reused across many projects at a company. It seems sensible
for a company developing a family of products with similar user interfaces to use this approach.
In [14] Kang suggests that companies form a central support group to identify cross-cutting
requirements among related systems to develop and promote component use. One challenge is
justifying the cost of component software groups within a company. Proving the cost
effectiveness of component development groups is likely to be as difficult as measuring the
return-on-investment of any new software practice.

3

2. Overview of CBSD Processes

In order to define, design, and implement software products it is generally accepted that higher
quality systems result when the software development organization applies a well understood
software process. Component based software development is a significant new paradigm for
software development. Several activities unique to component based software development must
be performed in addition to traditional activities. These new activities include but are not limited
to: identification of common cross-project requirements, component specification, component
selection, component optimization, and component integration. It is impractical to define a single
all inclusive software process for CBSD. There are many possible process variants for CBSD and
any good CBSD software process should be customized for the organization in which it is to be
used.

Traditional software development processes do not address the unique needs and requirements of
CBSD. [16] This has encouraged the development of several component based software
processes which intend to focus on the unique aspects of CBSD during software development.
Some challenges unique to component based software development which new processes should
attempt to address include:

- Component Specification Documentation is informal and lacks detail – Commercial
components and components developed within an organization often lack consistent
formal specifications. Specifications are limited to natural language descriptions
describing basic functionality. It is difficult to understand the performance characteristics
and testing implications with limited access to the internal implementation details of the
components. Presently there are no formal methods for specifying non-functional
requirements such as performance and reliability. [7] [10] [5]

- Components are volatile – Components, especially commercial ones are subject to
frequent changes, updates, bug fixes, etc. Components can also grow in size and
complexity over time as features are added, and bugs are fixed. The ever-changing
nature of components can create challenges in component integration and the
maintenance of component based software systems. [13] [5] It is desirable to perform
system-wide regression testing when individual components are upgraded to newer
versions. Dependencies and interoperabilities between components may change as
components are upgraded to newer versions.

- CBSD currently favors building new components – Presently, CBSD efforts seem biased
towards building components from scratch to meet the requirements for the projects they
are to be used in. Components are commonly viewed as a product of software
development efforts rather than an integral part of software specification and design. [1]
In order realize the time and money saving benefits promised by CBSD more focus needs
to be placed on component searching, discovery, and selection activities in component
based software processes. [19]

- Lack of commonality between component models – Presently there exists numerous
component models in which components can be developed. There is a general lack of
inoperability between these standards that restricts the reuse of components cross-models.
In order for component-based software development to prosper a unified standard is
desired. [5] [16] [20]

- Difficult to test and retest integrated components – The lack of design and specification
details for black-box components can lead to difficulties in writing tests that fully

4

exercise the component’s code. Unless hooks are available to access private attributes
and component details, testing is restricted to running tests via public interfaces.
Component testing is also difficult because it is hard to inspect internal component
variables. Only the resultant variables returned through the component’s interface are
easily available for verification against a test oracle. [7] [9]

This paper presents a summary of some existing processes described in the literature, and tries to
point out their advantages, disadvantages as well as commonalities among them.

3. Component Based Software Development Processes

Many of the prevailing component based software processes recognize two distinct and separate
activities in software development: [9] [14] [19] [21]

• Design and Development of components
• Design and Development of application software using components

A recognized problem with CBSD is that present component models and development
methodologies are typically focused on the implementation and deployment of components.
Components are often the result of software development rather than an integral part of the
process. [1] In order to realize maximum benefit from CBSD, component processes should
consider the design and development of components apart from the design and development of
the immediate application software in which they are to be deployed. The focus of component
development within organizations should move from the immediate needs for a specific project’s
requirements to the cross cutting needs for many projects’ requirements.

3.1. Cheesman and Daniels Component-Based Software Development Process

Cheesman and Daniels define a component-based software process centered on these activities
[3]:

Requirements Identification: Projects requirements are first identified using a business concept
model and a use-case model.
System Specification: From the requirements specification, potential software components are
identified, then the component interactions are specified, and finally a complete specification of
the required components is made.
Provisioning: Provisioning is the phase which involves acquiring the components. Components
meeting the requirements can be implemented from scratch, found in an existing archive, or
purchased from the open market. Preexisting components will require integration with varying
degrees of adaptation. Adaptation may involve alteration of the component or various ad hoc
activities to allow the component to comply with requirements.
Assembly: Once all components are implemented or found, the system development involves
integration of components, application logic, and user interface aspects to form a working
application

Cheesman and Daniels’ process does not center on the need to identify commonalities of
applications within a domain or organization. They justify this by stating that the organizational

5

and process discipline needed to adopt a common CBSD practice is difficult. Cheesman further
says that consequently their process has placed emphasis on specification because without the
ability to describe the specifications of components they won’t ever be reused. We can conclude
that common standards for defining and describing components and for sharing them are required
before large-scale component reuse will occur.

Chessman and Daniels’ process provides a methodology for the modeling and specification of
component based software systems with the UML. [3] [4] They describe techniques for using the
UML integrally to conduct requirements analysis, build a business type model, and specify
component interfaces and interactions. The product of the design and modeling process is
complete component specifications in the UML that describe pre and post conditions (using
OCL), offered and used interfaces, and component interactions. Their methodology does not
provide a method for specification of performance and non-functional requirements, an aspect
that is lacking by most component specification methods. [7] [10] [5]

3.2. Kang’s Component Based Software Development Process

Kang proposes a two-tier process for component based software development. [14] The Domain
Engineering tier focuses on domain analysis to discover commonalities among requirements that
can result in the development of common architectures, and reusable components. Kang’s
Domain Engineering process includes: Domain Analysis, Reference Architecture Development,
and Reuasable Code Component Development. Application Engineering is the other tier of
Kang’s model. The Application Engineering tier is similar to a traditional software lifecycle but
integrates reuse of existing architectures and components. Kang’s Application Engineering
process includes: user requirements analysis, application architecture selection, application
design, and application software integration phases.

Domain engineering, the process of discovering commonalities of systems within application
domains involves the identification and development of a family of applications based on similar
architectures and components. Once a family of applications exists developing new applications
within the family can benefit significantly through the reuse of the associated preexisting
architecture and component libraries. A significant problem with domain engineering is the large
cost involved in developing reusable components. Kang states that the cost could be five times as
much to develop reusable software components. The additional cost can be attributed to the
additional development time required to discover common domain requirements and provide
better interfaces and documentation.

3.3. Componentware Process

Componentware is a software process that provides a method for describing, structuring and
developing component-based systems. [2] Componentware resembles a traditional software
development process except that the design phase separates business-oriented design from
technical design. Business design concerns the business-relevant aspects of the application
including interactions and algorithms with respect to the business aspects, or “work” of the
system. The technical design addresses the specification of technical aspects such as database
components, persistence, distribution, and communication. Componentware includes an analysis

6

phase (Interaction, Responsibility, Risk Analysis, and Market Study), a split business and
technical design phase (Architectural design, component design, evaluation, and search), a
specification phase (Architecture specification, Component Specification, Component Test, and
Component Assignment) and an implementation phase (Code and System Test).

By separating business logic from technology, the Componentware process encourages reuse
since components will not couple the work of the system with technology specific details. By
encouraging the development of decoupled components, components will be independent of each
other. Kang points out that components should only implement a unique singular function. To
improve maintainability the implementation of a single functional requirement should be
implemented centrally and not across a whole set of components.

3.4. PECOS Process

The PECOS Software Process seeks to enable component-based development for embedded
systems. [21] Many aspects of the PECOS process can also be used as a general component-
based software development process. Similar to Kang’s process, PECOS splits software
development into two distinctive processes: a component development process, and an
application development process. The component development process includes: requirements
elicitation and analysis, interface design, component implementation, testing, profiling which is
the benchmarking of performance and non-functional requirements, and documentation/release.
The application development process is referred to as application composition, which entails the
assembly of components to form an application. The application development process includes:
requirements elicitation, architecture specification, component identification, query/searching for
components, selection of components, composition of components, application testing, and
application documentation and deployment.

It is interesting to note that the PECOS process places documentation in the final phase of each
process. For the component development process it is arguable that the documentation of the
interfaces and non-functional requirements could be done integrally during earlier phases of
development. The precise results of component profiling may not be available but much of the
interface specification information should be available. Documentation should also be
continually updated as changes to requirements occur.

3.5. Catalysis Process

The Catalysis Process does not provide a strictly specified set of steps for CBSD. [6] Instead
Catalysis acknowledges that no single process can fit every project, so rather than define a
process, Catalysis provides a number of process patterns, good practices which should be
considered in the formulation of the software process that an organization will adopt. D’ Souza
identifies process patterns many of which are derived from real world experience in CBSD. The
process patterns of Catalysis are categorized in figure 1. Note that two patterns from [7] have
been classified as both requirements analysis and design/specification process patterns.

7

Development Phase Number of Patterns
Requirements Analysis 10
Design/Specification Patterns 15
Testing 1
Software Process Development/Improvement 2
Organization Process Development/Improvement 1
Modeling 6
Implementation 1
Component Design/Specification 8

Figure 1 - Categorization of D'Souza’s Process Patterns

D’ Souza identifies that component based development should be separated into three areas
instead of the two suggested by Kang and the PECOS process. The three areas sited are:
architecture definition: the design of common interconnection standards and frameworks,
component development: specification and design of components with enhancement through
evolution, and product assembly: the rapid development of end user products from assembled
components. Catalysis stresses the importance of having a common architecture from which
families of products can be developed.

Catalysis suggests that a CBSD process be an evolutionary life cycle with frequent deliverables
and milestones. Rapid application development (RAD) should be used to deliver as much as
possible early in development to acquire early feedback. A CBSD process should be nonlinear,
iterative and parallel. Catalysis suggests that many activities should occur concurrently
throughout software development including but not limited to testing, quality assurance, and
documentation. Farias notes that Catalysis is a flexible, scalable process supporting component-
based development. However it is somewhat limited at specifically addressing the challenges of
CBSD because of its broad scope and flexible nature. [8]

In [6] an example for a CBSD process for a typical business system is presented. The suggested
steps are: Requirements (Understand problem, system context, architecture, and non-functional
requirements), System Specification (Describe external behavior of target system using domain
model), Architectural Design (Partition technical and application architecture components and
their connectors to meet design goals), and Component Internal Design (Design interfaces and
classes for each component; build and test). A complete process would also include steps for
implementation and testing.

3.6. Herzum and Sims’ Component Development Process

In [11] Herzum and Sims identify three basic processes important for component based software
development: a rapid component development process, a system architecture and assembly
process, and a architecture and assembly process for creating a “federation”, or library of
components that can be shared by a family of applications. Organizations begin by developing
components, move into developing common system architectures supporting component use, and
finally build “federations” of system level components. Herzum like others has recognized the
need to separate the design and development of components from the application assembly

8

process. A significant aspect of Herzum’s process is the presentation of “golden” CBSD process
characteristics. These characteristics are summarized in figure 2.

Ten Golden Component Process Characterisitics
Component Centric Approach to Development
Architecture Centric Approach to Development
Components should be autonomous
Approach to Collaborations
Iterative evolutionary process
Concurrent activities throughout process
Continuous Integration
Support risk management-driven development
Focus on reuse
Focus on development of quality components

Figure 2 - Ten Golden Component Based Development Process Characteristics

Herzum and Sims present an example of a rapid component development process. This process
focuses on the development of the business-level components to implement the business logic
and work of a system. The process describes how to go about gathering system requirements,
build models, design business components from the models, and then implement the system. The
following process steps are repeated in an iterative manner: Requirements Analysis (Feature
Lists, Use Cases), System Analysis (Modeling), Design (External Specification, Dependency
Specification, Internal Specification), Implementation, and Validation and Verification (Reviews,
Testing). The process does not concern itself with user interfaces or non-work related aspects of
the system. Using existing off-the-shelf components (COTS), or components from an internal
company component archive to maximize reuse, is not addressed by the process.

3.7. COTS-Based Development Process

Kotonya, Onyino, Hutchinson, Sawyer, and Canal present a COTS-Based Development Process
in [16]. They present a four-phase process based on these activities: negotiation, planning,
development and verification. Their process is unique in that the traditional process activities of
requirements gathering, design, and implementation appear under the larger phase known as the
development phase. Testing is the separated from development into its own phase known as
verification. Interesting is that all phases proceed in tandem so that while development is
underway, continuous negotiation, planning, and verification are done as well. The COTS-Based
development process has as its centric goal the use of existing components for application
development. The traditional process activities of requirements gathering, design and
composition are biased towards using available COTS rather than developing new components.

To optimize the use of existing components the COTS-Based development process suggests that
the capabilities of available components could drive the requirements specification. Various
reasons including: budgetary restrictions, schedule limitations, and project quality requirements
may force specific components to be used, thus constraining the requirements and system design.

9

Scoping and ranking of requirements may be required to better understand possible tradeoffs and
make compromises in order to maximize the use of preexisting components versus developing
new components from scratch. Requirements negotiation with customers and end users may be
necessary to scope the requirements to best reuse existing components. Through negotiation
customers may perceive weaknesses in component based software design and even the software
developers themselves if they sense that project requirements and features are being eliminated or
changed in order to accommodate the restrictions imposed on the developers by the COTS.

System design using the COTS-Based development process involves partitioning system
requirements into logical components taking into account business concerns, architectural
concerns and the availability of pre-existing components. Next follows the process of component
selection. Components are evaluated and the component that is most “fit for use” is selected.
The most fit component best operates in the context in which the component will be used.

Following design, system composition proceeds by integrating together components.
Components can be used directly off the shelf, or adapted for use. Components are glued
together using script languages or with code from high-level languages. Verification and testing
is done concurrently throughout the process. Thorough testing of existing components is
suggested prior to and after they are integrated into the system. Regression testing should be
conducted when components are upgraded or the system is enhanced by additional new
components.

3.8. The Rational Unified Process

The Rational Unified Process (RUP) is a generalized software process, not specifically for
component based software development in the sense that we have discussed thus far. The RUP
states explicitly that it is “component-based”. In the case the process itself is component-based,
but RUP is not only for the development of component-based software. The RUP is a generic
process framework that can be specialized for many specific classes of software systems,
including component-based systems. [12] The RUP has several process attributes common to
many of the component based processes we’ve presented. The RUP is architecture-centric.
Several CBSD processes presented here have noted the importance of having standard
architectures and common frameworks for promoting component reuse. The RUP is iterative and
incremental. Iterative evolutionary based lifecycles are generally recognized as the preferred way
to produce component-based software as the majority of the processes reviewed here are iterative.
RUP supports modeling and specification of component-based systems with the UML. RUP also
provides a workflow of activities for CBSD. [17]

The RUP presents traditional software life cycle activities organized into four phases similar to
Kotonya’s COTS process discussed earlier. The phases include: Inception, Elaboration,
Construction, and Transition. Each phase includes a complete iteration of the five core workflow
activities: Requirements, Analysis, Design, Implementation and Testing. Each phase should
allocate different resources to each of the activities as shown in figure 3.

10

Activities: Inception Elaboration Construction Transition
Requirements Maximum Maximum Minimum Minimum
Analysis Moderate Maximum Minimum Minimum
Design Moderate Maximum Moderate Moderate
Implementation Minimum Minimum Maximum Moderate
Testing Minimum Minimum Maximum Moderate

Figure 3 - RUP's Activity Resource Allocation per Phase

RUP’s implementation activities include the development of an implementation model,
components, and their interfaces. From the implementation model, model elements are combined
into components for implementation. Components encapsulate a series of design classes and
provide an interface to their functionality. Components can be more than just traditional source
code components in RUP. Components can also be: an executable program, file, database table,
or document. Components that we are familiar in RUP are considered to be static/dynamic
source code libraries. Components encapsulate the classes they are composed of forming black
box like entities in the architecture. Dependencies can exist between the components and can be
shown in the design model. The Rational Unified Process benefits from process automation by
the existence of many commercially available tools. One of the reasons why the automation of
RUP has been so successful is that the process has been standardized to simplify the creation of
tools.

According to Farias [8], the RUP is not really a component-based process. As we mentioned
previously the process itself is component-based, but it is not customized for the development of
component based software. Farias states that components are an after thought in the RUP. The
RUP exclusively relies on UML for modeling purposes. The originial RUP relies on the
modeling constructs for component specification in the UML. It is generally agreed that the
component specification capabilities in the UML prior to version 2.0 are limited. [15] With
future upgrades of the UML, the RUP will likely become a more amenable component based
software development process. [18]

4. Discussion

By analyzing key attributes the table in figure 4 can be presented showing common attributes
among the CBSD processes presented in this paper.

Several processes (Kang, PECOS, Herzum) divide the component and application development,
into separate life cycles. By dividing the development of components and applications, a
software process can recognize that components are not merely the product of application
development. By applying domain engineering organizations can identify cross cutting
requirements in families of applications that can help to identify cases of component reuse.

Many component development processes (Cheesman and Daniels, Kang, PECOS, Catalysis,
Herzum, COTS, Rational Unified Process) stress the need for iterative evolutionary lifecycles.
Short development life cycles emphasizing frequent deliverables allow for frequent user
evaluation and feedback. Use of off-the-shelf components can reduce development time and
allow more iterative release cycles. Frequent user feedback can help assure that the correct

11

software is built to meet user needs to help reduce development time incurred from
misunderstandings of software requirements.

Process

Component
Based

Software
Development

ONLY

Separate
Component

and
Application
Lifecycles

Defines
Modeling
Methods

Iterative /
Evolutionary
Life Cycle

Parallel /
Concurrent
Activities

Cheesman &
Daniels

√√√√ √√√√ √√√√

Kang √√√√ √√√√ √√√√
Componentware √√√√ Weak √√√√
PECOS √√√√ √√√√ √√√√ Weak
Catalysis √√√√ √√√√ √√√√
Herzum √√√√ √√√√ √√√√
COTS √√√√ √√√√ √√√√
Rational
Unified Process

 √√√√ √√√√ √√√√

Figure 4 - Comparison of Component Based Software Processes

Software processes should be malleable and adaptable to the individual attributes of the software
project and organization. Several CBSD processes (Componentware, Catalysis, COTS, Rational
Unified Process) recognize the concurrent nature of CBSD activities. Process activities are not
strictly sequential in nature, but can occur concurrently throughout iterative lifecycles. Testing,
documentation, requirements identification, and specification activities can occur dynamically
through an iterative process.

5. Conclusions

Several challenges remain in component based software development and further enhancements
to component-based software processes may help bring to fruition the many promises of using
component-based development practices. Component-based design and development processes
used by organizations will most likely be influenced by specific business needs and requirements
of end users. Once a development process is adopted, it should be customized and improved after
successive process iterations. Component based development requires the use of either off-the-
shelf commercial components, or internally built custom components. By applying domain
engineering, organizations begin to identify common software requirements between projects to
allow for the development of cross-project reusable components.

Traditional development activities within the software process should be refocused to best enable
and enhance software development using components. Processes such as the COTS process take
an aggressive stance by going as far as influencing software requirements based on available
components. Additional process evolution may help CBSD live up to its expectations. Current
CBSD processes have already identified activities such as: requirements partitioning (for easy

12

mapping to components), repository searching, evaluation of components (ranking), component
assembly, and component testing. The eventual goal should be to balance the cost benefits of
CBSD so that productivity gains are realized and project delivery times shrink. Merely proposing
software development processes will not improve the state of the art. Component based
processes must be used in real projects in conjunction with case studies and empirical
investigations. This research can help us to understand how processes and their related
development activities need to change in order to help CBSD become the leading software
development paradigm in the future.

6. Acknowledgements

I would like to recognize and acknowledge the guidance and support from Dr. Robert France, Dr.
Suditpo Ghosh and Dae-Kyoo Kim.

7. References

[1] Atkinson, C., Bayer, J., Laitenberger, O., Zettel, J., Component-Based Software
Engineering: The KobrA Approach, in Proceedings of the 2000 International
Workshop on Component Based Software Engineering held in conjunction with
ICSE2000, Limerick, Ireland, 2000.

[2] Bergner, K., Rausch, A., Sihling, M., Vilbig, A., Componentware – Methodology and

Process, in Proceedings of 1999 International Workshop on Component Based
Software Engineering held in conjunction with ICSE99, Los Angeles, CA, USA, pp.
194-203, 1999.

[3] Cheesman, J., Daniels, J., UML Components: A Simple Process for Specifying

Component-Based Software, Addison Wesley, 2001.

[4] Clemente, P. J., Sánchez, F., Pérez, M. A. Modelling with UML Component-based
and Aspect Oriented Programming Systems, in Proceedings of the Seventh
International Workshop on Component-Oriented Programming, Malga, Spain, June
2002.

[5] Crnkovic, I., Hnich, B., Jonsson, T., Kiziltan, Z., Specification, Implementation, and

Deployment of COMPONENTS. Communications of the ACM, 45(10):pp. 35-40,
2002.

[6] D. D’Souza and A.C. Wills, Catalysis: Objects, Frameworks, and Components in

UML, Addison-Wesley, 1998.

[7] Edwards, S., Toward Reflective Metadata Wrappers for Formally Specified Software
Components, in Proceedings of the Specification and Verification of Component-
Based Systems, OOPSLA Workshop, October 2001.

13

[8] Farias, C.R.G., Pires, L. F., Sinderen, M., Quartel, D., A Combined Component-
Based Approach for the Design of Distributed Software Systems, in Proceedings of
the Eigth IEEE Workshop on Future Trends of Distributed Computing Systems
(FTDCS’01), Bologna, Italy, 2001.

[9] Ghosh, Sudipto, Improving Current Component Development Techniques for

Successful Component-Based Software Development, ICSR7 2002 Workshop on
Component-Based Software Development Processes, Austin, Texas, 2002.

[10] Han, Jun, An Approach to Software Component Specification, 1999 International

Workshop on Component Based Software Engineering held in conjunction with
ICSE99, Los Angeles, CA, USA, 1999.

[11] Herzum, P., Sims, O., Business Component Factory: A Comprehensive Overview of

Component-Based Development for the Enterprise, John Wiley & Sons, Inc, 2000.

[12] Jacobson, I., Booch, G., Rumbaugh, J., The Unified Software Development Process,
Addison Wesley, 1999.

[13] Jarzabek, S., Knauver, P., Synergy between Component-Based and Generative

Approaches, Proceedings of the 7th European software engineering conference held
jointly with the 7th ACM SIGSOFT international symposium on Foundations of
software engineering, Toulouse, France, pp. 429-445, 1999.

[14] Kang, K., Issues in Component-Based Software Engineering, in Proceedings of 1999

International Workshop on Component Based Software Engineering held in
conjunction with ICSE99, Los Angeles, CA, USA, pp. 209-214, 1999.

[15] Kobryn, C., Modeling Components and Frameworks with UML. Communications of

the ACM, 43(10): pp. 31-38, 2000.

[16] Kotonya, G., Onyino, W., Hutchinson, J., Sawyer, P., Canal, J., COTS Component-
Based System Development: Processes and Problems, appears in Business
Component-Based Software Engineering, Kluwer Academic Publishers, pp. 228-245,
2003.

[17] Kruchten, P., Modeling Component Systems with the Unified Modeling Lanugage, in

Proeceedings of the 1998 International Workshop on Component Based Software
Engineering held in conjunction with ICSE 1998, Kyoto, Japan, 1998.

[18] UML Revision Task Force, OMG Unified Modeling Language Specification, v 2.0,

document ad/02-??-??. Object Management Group, Fall 2002.

[19] Wallnau, K., Hissam, S., Seacord, R., Half Day Tutorial in Methods of Componen-
Based Software Engineering: Essentials Concepts and Classroom Experience,
Proceedings of the 8th European software engineering conference held jointly with
9th ACM SIGSOFT international symposium on Foundations of software
engineering, Vienna, Austria, pp. 314-315, 2001.

14

[20] Wanapan, N., and Kerethom S., A Method for Developing Component-Based

Applications: Role Based Coordination Component Model (RBCCM) Approach,
ICSR7 2002 Workshop on Component-Based Software Development Processes,
Austin, Texas, 2002.

[21] Winter, M., Zeidler, C., Stich, C., The PECOS Software Process, ICSR7 2002

Workshop on Component-Based Software Development Processes, Austin, Texas,
2002.

