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Abstract—We present the design of a novel performance-
oriented serverless computing platform implemented in .NET,
deployed in Microsoft Azure, and utilizing Windows containers
as function execution environments. Implementation challenges
such as function scaling and container discovery, lifecycle, and
reuse are discussed in detail. We propose metrics to evaluate the
execution performance of serverless platforms and conduct tests
on our prototype as well as AWS Lambda, Azure Functions,
Google Cloud Functions, and IBM’s deployment of Apache
OpenWhisk. Our measurements show the prototype achieving
greater throughput than other platforms at most concurrency
levels, and we examine the scaling and instance expiration trends
in the implementations. Additionally, we discuss the gaps and
limitations in our current design, propose possible solutions, and
highlight future research.

I. INTRODUCTION

Following the lead of AWS Lambda [1], services such as

Apache OpenWhisk [2], Azure Functions [3], Google Cloud

Functions [4], Iron.io IronFunctions [5], and OpenLambda [6]

have emerged and introduced serverless computing, a cloud

offering where application logic is split into functions and

executed in response to events. These events can be triggered

from sources external to the cloud platform but also com-

monly occur internally between the cloud platform’s service

offerings, allowing developers to easily compose applications

distributed across many services within a cloud.

Serverless computing is a partial realization of an event-

driven ideal, in which applications are defined by actions and

the events that trigger them. This language is reminiscent of

active database systems, and the event-driven literature has

theorized for some time about general computing systems

in which actions are processed reactively to event streams

[7]. Serverless function platforms fully embrace these ideas,

defining actions through simple function abstractions and

building out event processing logic across their clouds. IBM

strongly echoes these concepts in their OpenWhisk platform

(now Apache OpenWhisk), in which functions are explicitly

defined in terms of event, trigger, and action [8].

Beyond the event-driven foundation, design discussions

shift toward container management and software development

strategies used to leverage function centric infrastructure.

Iron.io uses Docker to store function containers in private

registries, pulling and running the containers when execution

is required [9]. Peer work on the OpenLambda platform

presents an analysis of the scaling advantages of serverless

computing, as well as a performance analysis of various

container transitions [10]. Other performance analyses have

studied the effect of language runtime and VPC impact on

AWS Lambda start times [11], and measured the potential of

AWS Lambda for embarrassingly parallel high performance

scientific computing [12].

Serverless computing has proved a good fit for IoT applica-

tions, intersecting with the edge/fog computing infrastructure

conversation. There are ongoing efforts to integrate serverless

computing into a ”hierarchy of datacenters” to empower the

foreseen proliferation of IoT devices [13]. AWS has recently

joined this field with their Lambda@Edge [14] product, which

allows application developers to place limited Lambda func-

tions in edge nodes. AWS has been pursuing other expansions

of serverless computing as well, including Greengrass [15],

which provides a single programming model across IoT and

Lambda functions. Serverless computing allows application

developers to decompose large applications into small func-

tions, allowing application components to scale individually,

but this presents a new problem in the coherent management

of a large array of functions. AWS recently introduced Step

Functions [16], which allows for easier organization and

visualization of function interaction.

The application of serverless computing is an active area

of development. Our previous work on serverless computing

studied serverless programming paradigms such as function

cascades, and experimented with deploying monolithic appli-

cations on serverless platforms [17]. Other work has studied

the architecture of scalable chatbots in serverless platforms

[18]. There are multiple projects aimed at extending the

functionality of existing serverless platforms. Lambdash [19]

is a shim allowing the easy execution of shell commands

in AWS Lambda containers, enabling developers to explore

the Lambda runtime environment. Other efforts such as Apex

[20] and Sparta [21] allow users to deploy functions to AWS

Lambda in languages not supported natively, such as Go.

Serverless computing is often championed as a cost-saving

tool, and there are multiple works which report cost saving op-
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portunities in deploying microservices to serverless platforms

rather than building out traditional applications [22] [23].

Others have tried to calculate the points at which serverless or

virtual machine deployments become more cost effective [24].

Serverless computing is becoming increasingly relevant,

with Gartner reporting that ”the value of [serverless com-

puting] has been clearly demonstrated, maps naturally to

microservice software architecture, and is on a trajectory of

increased growth and adoption” [25]. Forrester argues that ”to-

day’s PaaS investments lead to serverless computing,” viewing

serverless computing as the next-generation of cloud service

abstractions [26]. Serverless computing is quickly proliferating

across many cloud providers, and is powering an increasing

number of mobile and IoT applications. As its scope and

popularity expands, it is important to ensure the fundamental

performance characteristics of serverless platforms are sound.

In this work we hope to aid in this effort by detailing

the implementation of a new performance-focused serverless

platform, and comparing its performance to existing offerings.

II. PROTOTYPE DESIGN

We have developed a performance-oriented serverless com-

puting platform1 to study serverless implementation considera-

tions and provide a baseline for existing platform comparison.

The platform is implemented in .NET, deployed to Microsoft

Azure, and has a small feature-set and simple design. The

prototype depends upon Azure Storage for data persistence

and its messaging layer. Besides Azure Storage services, our

implementation consists of two components: a web service

which exposes the platform’s public REST API, and a worker

service which manages and executes function containers. The

web service discovers available workers through a messaging

layer consisting of various Azure Storage queues. Function

metadata is stored in Azure Storage tables, and function code

is stored in Azure Storage blobs.

Figure 1 shows an overview of the platform’s components.

Azure Storage was chosen because it provides highly scalable

and low-latency storage primitives through a simple API,

aligning well with the goals of this implementation [27]. For

the sake of brevity these storage entities will be referred to as

queues, tables, and blobs, with the understanding that in the

context of this paper these terms apply to the respective Azure

Storage services.

A. Function Metadata

A function is associated with a number of entities across

the platform, including its metadata, code, running containers,

and ”warm queue”. Function metadata is the source of truth

for function existence and is defined by four fields:

1) Function Identifier - Function identifiers are randomly

generated GUIDs assigned during function creation and

used to uniquely identify and locate function resources.

2) Language Runtime - A function’s language runtime

specifies the language of the function’s code. Only

1Available: https://github.com/mgarrettm/serverless-prototype

Node.js functions are currently supported, which is our

chosen language because of its availability on all major

serverless computing platforms.

3) Memory Size - A function’s memory size determines the

maximum memory a function’s container can consume.

The maximum function memory size is currently set at

1 GB. The CPU cores assigned to a function’s container

is set proportionally to its memory size.

4) Code Blob URI - A zip archive containing a function’s

code is provided during function creation. This code is

copied to a blob inside the platform’s storage account,

and the URI of that blob is placed in the function’s

metadata.

Function containers will be discussed in detail below, as will

warm queues, which are queues indexed by function identifier

which hold the available running containers of each function.

B. Function Execution

Our implementation provides a very basic function pro-

gramming model and only supports manual invocations. While

the processing of event sources and quality of programming

constructs are important considerations in serverless offerings,

our work focuses on the execution processing of such systems,

for which manual execution support is sufficient.

Functions are executed by calling an ”/invoke” route off

of function resources on the REST API. The invocation call

request bodies are provided to the functions as inputs, and

the response bodies contains the function outputs. Execution

begins in the web service which receives the invocation

calls and subsequently retrieves function metadata from table

storage. An execution request object is created containing

the function metadata and inputs, and then the web service

attempts to locate an available container in the worker service

to process the execution request.

Interaction between the web and worker services is con-

trolled through a shared messaging layer. Specifically, there is

a global ”cold queue”, as well as a ”warm queue” for each

function in the platform. These queues hold available container

messages, which simply consist of a URI containing the

address of the worker instance and the name of the available

container. Messages in the cold queue indicate a worker has

unallocated memory in which it could start a container, and

visible messages in a function’s warm queue indicate existing

function containers not currently handling execution requests.

The web service first tries to dequeue a message from a

function’s warm queue. If no messages are found, the web

service dequeues a message from the cold queue, which will

assign a new container to the function when sent to the

worker service. If all workers are fully allocated with running

containers, the cold queue will be empty. Therefore, if the

web service is unable to find an available container in both

the warm queue and cold queue, it will return HTTP 503

Service Unavailable because there are no resources to fulfill

the execution request. For this reason, the cold queue is an

excellent target for auto-scaling, as it reflects the available

space across the platform.
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Fig. 1. Overview of prototype components, showing the organization of the web and worker services, as well as code,
metadata, and messaging entities in Azure Storage.

Once a container allocation message is found in a queue,

the web service sends an HTTP request to a worker service

using the URI contained in the message. The worker then

executes the function and returns the function outputs to the

web service, which in turn responds to the invocation call.

C. Container Allocation

Each worker manages a pool of unallocated memory which

it can assign to function containers. When memory is reserved,

a container name is generated, which uniquely identifies a

container and its memory reservation, and is embedded in

the URI sent in container allocation messages. Therefore,

each message in the queues is uniquely identifiable and can

be associated with a specific memory reservation within a

worker service instance. Memory is allocated conservatively,

and worker services assume all functions will consume their

allocated memory size.

When container allocations are sent to the cold queue, they

have not yet been assigned to a function. To ensure workers

do not over-provision their memory pool, it is assumed the

assigned function will have the maximum function memory

size. Then, when a worker service receives an execution

request for an unassigned allocation, it reclaims memory if

the assigned function requires less than the maximum size.

After the container is created and its function executed for the

first time, the container allocation message is placed in that

function’s warm queue.

D. Container Removal

There are two ways a container can be removed. Firstly,

when a function is deleted, the web service deletes the

function’s warm queue, which is periodically monitored for

existence by the worker service instances holding containers

of that function. If a worker service detects that a deleted

function queue, it removes that function’s running containers

and reclaims their memory reservations. Secondly, in our

implementation a container can be removed if it is idle for an

arbitrarily set period of 15 minutes, after which it is removed

and its memory reclaimed. Whenever memory is reclaimed,

worker services send new container allocations to the cold

queue if their unused memory exceeds the maximum function

memory size.

Container expiration has implications for the web service

because it is possible to dequeue an expired container from

a function’s warm queue. In this case, when the web service

sends the execution request, the worker service will return

HTTP 404 Not Found. The web service will then delete the

expired message from the queue and retry.

E. Container Image

The platform uses Docker to run Windows Nano Server

containers and communicates with the Docker service through

the Docker Engine API. The container image is built to

include the function runtime (currently only Node.js v6.9.5)

and an execution handler. Notably absent from the image is

any function code. Custom containers are not built for each

function in the platform, instead we attach a read-only volume

containing function code when starting the container. A single-

image design was chosen for multiple reasons: it is simpler

to only manage a single image, attaching volumes is a fast

operation, and Windows Nano Server container images are

significantly larger than lightweight Linux images such as

Alpine Linux, affecting both storage costs and start-up times.

In addition to the read-only volume, the memory size and CPU

percentage of the container are proportionally set based upon

the function’s memory size.

The container’s execution handler is a simple Node.js server

which receives function inputs from the worker service. The

worker service sends function inputs to the handler in the

request body of an HTTP request, the handler calls the

function with the specified inputs, and responds to the worker

service with the function outputs. The container is addressable

on the worker service’s LAN because containers are added to
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the default ”nat” network, which is the Windows equivalent

of the Linux container ”bridge” network.

III. PERFORMANCE RESULTS

We designed two tests to measure the execution perfor-

mance of our implementation, AWS Lambda, Azure Func-

tions, Google Cloud Functions, and Apache OpenWhisk. We

developed a performance tool2 to conduct these experiments,

which deploys a Node.js test function to the different services

using the Serverless Framework [28]. We also built a Server-

less Plugin3 to enable Serverless Framework support for our

platform.

This tool is deigned to measure the overhead introduced by

the platforms using a simple test function which immediately

completes execution and returns. This function is invoked

synchronously with HTTP events/triggers as supported by the

various platforms, and through the function’s invocation route

on our platform. Manual invocation calls were not used on

the other services as they are typically viewed as development

and testing routes, and we believed a popular production

event/trigger such as an HTTP endpoint would better reflect

existing platform performance. A 512MB function memory

size was used in all platforms except Microsoft Azure, which

dynamically discovers the memory requirements of functions.

The prototype was deployed in Microsoft Azure, where the

web service was an API App in Azure App Service, and

the worker service was two DS2 v2 virtual machines running

Windows Server 2016. All platform tables, queues, and blobs

resided in a single Azure storage account.

Network latencies were not accounted for in our tests, but to

reduce their effects we performed our experiments from virtual

machines inside the same region as our target function, except

in the case of OpenWhisk, which we measured from Azure’s

South Central US region, and from which we observed single-

digit millisecond network latencies to our function endpoint in

IBM’s US South region.

A. Concurrency Test

Figure 2 shows the results of the concurrency test, which

is designed to measure the ability of serverless platforms to

performantly invoke a function at scale. Our tool maintains

invocation calls to the test function by reissuing each request

immediately after receiving the response from the previous

call. The test begins by maintaining a single invocation call in

this way, and every 10 seconds adds an additional concurrent

call, up to a maximum of 15 concurrent requests to the

test function. The tool measures the number of responses

received per second, which should increase with the level of

concurrency. This test was repeated 10 times on each of the

platforms.

The prototype demonstrates near-linear scaling between

concurrency levels 1 and 14, but sees a significant performance

drop at 15 concurrent requests. This drop is due to increased

latencies observed from the warm queue, indicating that the

2Available: https://github.com/mgarrettm/serverless-performance
3Available: https://github.com/mgarrettm/serverless-prototype-plugin

Fig. 2. Concurrency test results, plotting the average number of executions
completed per second versus the number of concurrent execution requests to
the function.

load is approaching the scalability targets of a single Azure

Storage queue [29]. AWS Lambda appears to scale linearly and

exhibits the highest throughput of the commercial platforms

at 15 concurrent requests. Google Cloud Functions exhibits

sub-linear scaling and appears to taper off as the number

of concurrent requests approaches 15. The performance of

Azure Functions is extremely variable, although the through-

put reported is quite high in places, outperforming the other

platforms at lower concurrency levels. This variability is

intriguing, especially because it persists across test iterations.

OpenWhisk’s performance is curious, and shows low through-

put until eight concurrent requests, at which point the function

begins to sub-linearly scale. This behavior may be caused

by OpenWhisk’s container pool starting multiple containers

before beginning reuse, but this behavior is dependent on the

configuration of IBM’s deployment.

B. Backoff Test

Figure 3 shows the results of the backoff test, which is

designed to study the cold start times and expiration behaviors

of function instances in the various platforms. The backoff

test sends single execution requests to the test function at

increasing intervals, ranging from one to thirty minutes.

As described in the prototype design, function containers

expire after 15 minutes of unuse. Figure 3 shows this behavior,

and the execution latencies after 15 minutes show the cold start

performance of our prototype. It appears Azure Functions also

expires function resources after a few minutes, and exhibits

similar cold start times as our prototype. It is important to note

that although both our prototype and Azure Functions are Win-

dows implementations, their function execution environments

are very different, as our prototype uses Windows containers

and Azure Functions runs in Azure App Service. OpenWhisk

also appears to deallocate containers after about 10 minutes

and has much lower cold start times than Azure Functions

or our prototype. Most notably, AWS Lambda and Google
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Fig. 3. Backoff test results, plotting the average execution latency of the
function versus the time since the function’s previous execution.

Cloud Functions appear largely unaffected by function idling.

Possible explanations for this behavior could be extremely

fast container start times or preallocation of containers as

considered below in the discussion of Windows containers.

IV. LIMITATIONS AND FUTURE WORK

A. Warm Queues

The warm queue is a FIFO queue, which is problematic

for container expiration. Imagine a function under heavy load

has 10 containers allocated for execution, and then load drops

such that a single container could handle all of the function’s

executions. Ideally, the extra 9 containers would expire after

a short time, but because of the FIFO queue, so long as there

are 10 executions of the function per container expiration

period, all containers will remain allocated to the function.

Of course, the solution is to use ”warm stacks” instead of

”warm queues”, but Azure Storage does not currently support

LIFO queues. This is perhaps the largest issue with our

current implementation; however, other warm stack storage

options such as a Redis cache [30] or a consistent hashing

[31] implementation are promising, and may offer improved

performance as well.

B. Asynchronous Executions

Currently the prototype only supports synchronous invoca-

tions. In other words, a request to execute a function will

return the result of that function execution, it will not simply

start the function and return. Asynchronous executions by

themselves are simple to support, the web service can simply

respond to the invocation call and then process the execution

request normally. The difficulty in asynchronous execution is

in guaranteeing at-least-once execution rather than best effort

execution. It is important to understand that synchronous or

asynchronous execution is only guaranteed once an invocation

request returns with a successful status code. Therefore, no

further work is needed for synchronous execution requests

(as in our implementation), because a successful status code

is only returned once execution has completed. However,

asynchronous executions respond to clients before function

execution, so it is necessary to have additional logic to ensure

these executions complete successfully.

We believe the prototype can support this requirement by

storing active executions in a set of queues and introducing

a third service responsible for monitoring the status of these

queue messages. Worker services would continually update

message visibility delays during function execution, and the

monitoring service would detect failures by looking for visible

messages. Failed messages could then be re-executed. Note

that this is about handling platform execution failures and not

exceptions thrown by the function during execution, for which

retry may also be desired.

C. Worker Utilization

A large area for improvement in our implementation is

worker utilization. Realistic designs would require an over-

allocation of worker resources, with the observation that not

all functions on a worker are constantly executing, or using all

of their memory reservation. Utilization in a serverless context

presents competing tradeoffs between execution performance

and operating costs; however, the evaluation of utilization

strategies is difficult without representative datasets of exe-

cution loads on serverless platforms. Future research would

benefit from increased transparency from existing platforms,

and from methods of synthesizing serverless computing loads.

D. Windows Containers

Windows containers have some limitations compared to

Linux containers, largely because Linux containers were de-

signed around Linux cgroups which support useful operations

not available on Windows. Most notably in the context of

serverless computing is the support of container resource up-

dating and container pausing. A common pattern in serverless

platform implementations is pausing containers when idle

to prevent resource consumption, and then unpausing them

before execution resumes [10], [32].

Another potentially useful operation is container resource

updating. Because we reserve resources for containers before

executions begin, it would be beneficial for cold start per-

formance if we were able to start containers before they are

assigned to a function, and then resize the container once an

execution request is received. Future work can study how to

support these semantics in Windows containers, perhaps by

limiting or updating the resources to the function process itself

rather than the container as a whole. Alternatively, the proto-

type could experiment with Linux containers to compare start-

up performances and test the viability of container resizing

during cold starts.

E. Security

Security of serverless systems is also an open research

question. Hosting arbitrary user code in containers on multi-

tenant systems is a dangerous proposition, and care must be

taken when constructing and running function containers to
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prevent vulnerabilities. This intersection of remote procedure

calls (RPC) and container security represents a significant real-

world test of general container security. Therefore, although

serverless platforms are able to carefully craft the function

containers and restrict function permissions arbitrarily, in-

creasing the chances of secure execution, further study is

needed to assess the attack surface within function execution

environments.

F. Performance Measures

There are significant opportunities to expand understanding

of serverless platform performance by defining performance

measures and tests thereof. This work focused on the overhead

introduced by the platforms during single-function execution,

but the quality of these measurements can be improved by

better handling of network latencies and clocking considera-

tions. Other aspects of platform performance such as latency

variations between language runtimes and function code size,

system-wide performance of serverless platforms, performance

differences between event types, and CPU allocation scaling

also warrant study.

V. CONCLUSION

Serverless computing offers powerful, event-driven inte-

grations with numerous cloud services, simple programming

and deployment models, and fine-grained scaling and cost

management. Driven by these benefits, the growing adoption

of serverless applications warrants the evaluation of serverless

platform quality, and the development of new techniques to

maximize the technology’s potential. The performance results

of our platform are encouraging and our analysis of the current

implementation presents many opportunities for continued

development and study. We hope to see increased interest

in serverless computing by academia and increased openness

by the industry leaders for the wider benefit of serverless

technologies.
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