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Abstract — Virtualization of operating systems provides a 
common way to run different services in the cloud. Recently, the 
lightweight virtualization technologies claim to offer superior 
performance. In this paper, we present a detailed performance 
comparison of traditional hypervisor based virtualization and 
new lightweight solutions. In our measurements, we use several 
benchmarks tools in order to understand the strengths, 
weaknesses, and anomalies introduced by these different 
platforms in terms of processing, storage, memory and network. 
Our results show that containers achieve generally better 
performance when compared with traditional virtual machines 
and other recent solutions. Albeit containers offer clearly more 
dense deployment of virtual machines, the performance 
difference with other technologies is in many cases relatively 
small.  

Keywords — Performance; Benchmarking; Virtualization; 
Hypervisor; Container. 

I.  INTRODUCTION 
Virtualization Technologies are having a very predominant 

role during the last years, and the number of software 
solutions is increasing rapidly every day. One of the reasons 
for adopting and deploying advanced technologies, and to 
build newer paradigms in this field is due, for example, to 
keep up with the growth of exchanged data and the consequent 
need to increase the capability of data center by means of 
server virtualization. 

At the same time, the adoption of these technologies has 
extended to different areas, and incorporated into distinct use 
cases. The usage of virtualization in contexts such as Cloud 
Environments, Internet of Things, and Network Function 
Virtualization is becoming more widespread. The main 
benefits include hardware independence, isolation, secure user 
environments, and increased scalability, together with the 
large number of new properties optimized for different use 
cases. Consequently, the area has become very attractive and 
competitive, contributing to the raise of novel solutions of the 
main classes of virtualization technologies, that is container-
based virtualization and hypervisor-based virtualization. 
Further, this has boosted the introduction of hybrid techniques, 
which promise to combine the advantages of the previous. 

In this work, we show a performance analysis using 
different benchmark tools with hypervisor-based solutions, 

container and alternative solutions. The idea is to quantify the 
level of overhead introduced by these platforms and the 
existing gap compared to a non-virtualized environment. 
 The remainder of this paper is structured as follows: in 
Section II, literature review and a brief description of all the 
technologies and platforms evaluated is provided. The 
methodology used to realize our performance comparison is 
introduced in Section III. The benchmark results are presented 
in Section IV. Finally, some concluding remarks and future 
work are provided in Section V. 

II. BACKGROUND AND RELATED WORK 
In this section, we provide an overview of the different 

technologies included in the performance comparison. We 
also point out the main differences between traditional virtual 
machines, containers and some other emerging cloud 
operating systems. 

A. Background 
Container-based Virtualization provides a different level of 

abstraction in terms of virtualization and isolation when 
compared with hypervisors. In particular, it can be considered 
as a lightweight alternative to hypervisor-based virtualization. 
Hypervisors abstract hardware, which results in overhead in 
terms of virtualizing hardware and virtual device drivers. A full 
operating system (e.g., Linux) is typically run on top of this 
virtualized hardware in each virtual machine instance. In 
contrast, containers implement isolation of processes at the 
operating system level, thus avoiding such overhead. These 
containers run on top of the same shared operating system 
kernel of the underlying host machine, and one or more 
processes can be run within each container. Container-based 
virtualization architecture is visualized in Fig. 1(a). 

Due to the shared kernel (as well as operating system 
libraries), an advantage of container-based solutions is that they 
can achieve a higher density of virtualized instances, and disk 
images are smaller compared to hypervisor-based solutions. 
The shared kernel approach has also a few disadvantages. One 
limitation of containers is that, e.g., Windows containers 
cannot be run on top of a Linux host. As another tradeoff, 
containers do not isolate resources as well as hypervisors [35] 
because the host kernel is exposed to the containers, which can 
be an issue for multi-tenant security. 
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  (a)                   (b)      (c) 

Fig. 1. Virtualization Architecture: (a) Container-based architecture [35], (b) Hypervisor-based architecture [35], (c) Library OS on a hypervisor. 

In this paper, we focus on containers in Linux, which are 
implemented primarily via control groups (cgroups) [41] and 
namespaces [42] in recent Linux kernels. The former 
mechanism provides resource management (e.g., limits and 
priorities) for groups of processes, and the latter provides a 
private, restricted view towards certain system resources within 
a container (i.e., a form of sandboxing). Moreover, additional 
security mechanisms (e.g., SELinux) can be used for achieving 
more secure isolation among containers and between 
containers and the host system. These kernel-level features 
mentioned above are typically used via user-level tools. 

Several container-based solutions exist, e.g., Linux-
VServer [21], OpenVZ [22], LXC [23], Docker [24], and 
Rocket [39]. 

In our performance analysis, we focus on LXC and Docker. 
LXC is a more low-level solution that has been available for 
long time. Docker, on the other hand, is a higher-level platform 
that that has made containers very popular in a short time 
frame. Docker combines Linux containers with an overlay 
filesystem and provides tools for building and packaging 
applications into portable environments, i.e., container images 
[25]. 

 Hypervisor-Based Virtualization has been widely used 
during the last decade for implementing virtualization and 
isolation. Contrary to containers, hypervisors operate at the 
hardware level, thus supporting standalone virtual machines 
that are independent and isolated of the host system. As the 
hypervisor isolates the VM from the underlying host system, it 
is possible to run, e.g., Windows-based VMs on top of Linux. 
The trade-off here is that a full operating system is installed to 
virtual machine, which means that the image will be 
substantially larger. In addition, the emulation of the virtual 
hardware device incurs more overhead. 

According to [26], hypervisors are classified in two 
different types (Fig. 1(b)): 

§ Type-1: native or bare-metal hypervisors 
(operate on top of the host’s hardware) 

§ Type-2:  hosted hypervisors (operate on top of 
the host’s operating system). 

 However, the distinction between the two types of 
hypervisors is not always so clear. For example, Linux’s 
Kernel-based Virtual Machine (KVM) has characteristics of 
both types [27]. While several open source and commercial 

hypervisor solutions exist, we focus here on KVM [28], which 
is a virtualization solution for the Linux Kernel. KVM is used 
in conjunction with a hardware emulator and virtualizer such as 
QEMU. 

 In addition to containers and hypervisors, a number of 
hybrid virtualization solutions have emerged. One such 
solution is ZeroVM [36] that provides a single-application 
environment running inside NaCL sandbox from Google. Since 
ZeroVM operates entirely as a lightweight and restricted 
userspace process, it is easy to launch ZeroVM applications to 
process e.g. data stored on a database server. I.e., computation 
is brought to the data, not vice versa.  A limitation of ZeroVM 
is that it is very challenging to port existing Linux software to 
it because it implements a subset of Linux functionality. 

 However, we focus here on another cloud OS solution called 
OSv [29]. It is a dedicated operating system designed 
exclusively for the Cloud and can be considered as a “Library 
Operating System” running single applications similarly as 
ZeroVM and Docker. In contrast to the others, OSv is intended 
to be run on top of a hypervisor (KVM, Xen, VirtualBox, and 
VMware). In other words, it achieves the isolation benefits of 
hypervisor-based systems, but avoids the overhead (and 
configuration) of a complete guest OS (Fig. 1(c)). As further 
benefits, OSv claims improved latency and throughput through 
an optimized networking stack [30], as well as a spinlock-free 
design with interrupt handling in ordinary threads. OSv 
supports Java-based applications as well as Linux-based C/C++ 
applications. 

OSv applications can be built and executed via the Capstan tool 
that is conceptually similar to Docker. 

OSv is a young open-source project (first Beta version has been 
released recently) and it has several issues especially 
concerning software portability/compatibility. OSv can only 
run executables in Linux relocatable shared object format 
because OSv mostly implements the ABI of Linux [34]. As 
OSv supports only a single process, a limited subset of POSIX, 
Linux syscalls, this means that Linux libc can be invoked. 
Other system calls, such as fork(), exec(), clone(), are not 
supported at the moment. Thus, porting software to OSv 
usually requires some effort. Some of these limitations have 
limited our ability to execute a deep and complete analysis, but 
we nevertheless provide a preliminary performance evaluation 
of OSv as well. Further technical details can be found in [31, 
32, 33]. 
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B. Related Work 
Recently, the body of the literature has been focusing on 

optimizations to decrease the performance gap between 
virtualized and non-virtualized solutions. The research 
methodology and tools vary from study to study. The 
investigated and compared sets of technologies also vary from 
paper to paper. For example, comparisons between different 
hypervisors and non-virtualized systems, or even evaluation of 
containers vs. virtual machines have been published. 

Compared to the analysis presented in this work, many of 
the earlier publications consider  now outdated software and, 
perhaps even more importantly, recent work excludes new, 
emerging solutions. Some of such solutions, including new 
Library Operating System, represent a valid alternative to 
hypervisor and container based solutions. 

Hwang et al. [1] compared four hypervisors (Hyper-V, 
KVM, vSphere and Xen) in different use cases. In summary, 
no superior hypervisor between those examined was 
discovered. Consequently, they propose that a cloud 
environment should support different software and hardware 
platforms to meet particular needs. A number of hypervisor 
comparisons have been published. Elisayed et al. [2] conduct a 
quantitative and qualitative evaluation of VMware ESXi5, 
Microsoft Hyper-V2008R2, and Citrix Xen Server 6.0.2 in 
various scenarios. They perform an evaluation using 
customized SQL instances, which simulates approximately 20 
million of customers, 100,000 products, and 100,000 orders per 
month. Varrette et al. [3] provide a similar analysis, but with 
some differences. For instance, they use KVM instead of 
Microsoft Hyper-V2008R2, and evaluate the performance of 
virtualized environments for High Performance Computing 
(HPC) workloads in terms of power consumption, energy 
efficiency and scalability. The authors argue that virtualized 
environments for large scale HPC workloads incur a substantial 
performance impact by the virtualization layer (for all 
hypervisors), albeit some contradictory evidence on 
virtualization overhead does exist; Toor et al. [38] report a 4% 
overhead of grid virtualization. Li et al. measure a commercial 
(unspecified) hypervisor, Xen and KVM [4] using Hadoop and 
MapReduce as the use cases. Also here, the authors find 
similarities and significant variations in terms of performance 
with different workloads.  

Recent research literature compares hypervisors with 
container solutions, including Dua et al. [5], who depict 
increasing use for containers in PaaS environments. Estrada et 
al. [6] benchmark KVM, Xen, and Linux Containers (LXC), 
and compare the runtime of each environment to the 
performance of a physical server. This lastly mentioned work is 
particularly interesting because of the application domain. The 
evaluation is based on sequence alignment software that 
arranges sequences of DNA. Further, Xavier et al. analyse 
MapReduce Clusters and in HPC Environments using 
containers [7, 8]. Finally, Felter et al. compare KVM and 
Docker performance with native environment [9]. The main 
difference compared to [9] is that our analysis does not 
consider only Hypervisor and Container solutions. In addition, 
the network performance section in this paper includes more 
results from measurements with Docker. 

III. METHODOLOGY 
We provide a deep evaluation with a number of 

benchmarking applications using KVM, LXC, Docker, and 
OSv. We use native (non-virtualized) performance as a base 
case in order to measure the overhead of the virtualization. The 
benchmark tools measure (using generic workloads) CPU, 
Memory, Disk I/O, and Network I/O performance.  

We repeated each target of measurement with different 
tools to verify the consistency between the different obtained 
results. We also repeated each individual measurement 15 
times and the illustrations show the average of such 
measurements. The graphs also show the standard deviation 
(except for some particular cases where it was insignificant). 

We used the following hardware for our empirical 
experimentation: 

Ø Computer model: Dell Precision T5500 
Ø Processor: Intel Xeon X5560 (8M Cache, 2.80 

GHz, 4 cores, 8 threads) 
Ø Memory: 12 GB (3x4GB) 1333 MHz DDR3 

ECC R 
Ø Disk: OCZ-VERTEX 128GB 
Ø Network: 10Gb/s interface 
Ø OS: Ubuntu 14.04 (64-bit) 

 

The software platforms and versions are listed in Table I. 

TABLE I.   

Platform Version 

KVM QEMU emulator version 2.0.0 

LXC 1.0.6 

Docker 1.3.2 

OSv 0.15 

 

It should be mentioned that: 

§ KVM is managed using the standard Linux libvirt 
API and toolchain (virsh) 

§ OSv is running over KVM 
§ LXC and Docker are running directly on the host 

OS 
§ Linux Guest OS on KVM is Ubuntu 14.04 (64-bit) 

 
From now on, we use the label "KVM" for the case where we 
have a Linux Guest OS running on top of the KVM hypervisor. 

IV. BENCHMARK RESULTS 
This section presents the results of our analysis. As 

explained previously, the selected benchmarks measure CPU, 
Memory, Disk I/O, and Network I/O performance. Results are 
organized in four different subsections. Section A describes all 
the CPU measurements. Disk I/O and Memory measurements 
are then shown in subsections B and C. Finally, the outcomes 
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of the Network performance analysis are described in 
subsection D. 

A. CPU Performance 
 Y-cruncher [10] is a multi-threaded benchmark for multi-
core systems to calculate the value of Pi. Y-cruncher is able to 
compute Pi and other constants, performing as a stress-testing 
application for CPU. It should be noted that other alternatives 
exist [11], but Y-cruncher appeared to be the only multi-
threaded one. The tool provides different outputs: multi-core 
efficiency, computation time and total time. Total time is used 
to verify the results, and it consists of the total computation 
time plus the time required to elaborate and process the result. 

 

Fig. 2. Results of Y-cruncher over 30 runs. The error bars indicate the 
Standard Deviation. Container-based solutions perform better than KVM. 

 Figure 2 shows the results of the Y-cruncher tool. Both 
container-based solutions perform better than KVM. 
Considering only the computation time, containers display 
performance almost similar to the native environment. As 
shown in the next Y-cruncher measurements in Table II, even 
multi-core efficiency (which expresses how the CPU is 
efficiently used in order to execute the Pi computation) 
confirms this trend, even though KVM loss is relatively small  
(less than 1%). 

TABLE II.    

Platform Multi-core Efficiency 

Native 98.27% 

LXC 98.19% 

Docker 98.16% 

KVM 97.51% 

 

 NBENCH [12] was developed during the 90s, but can still 
be used as a valid tool for CPU, FPU (Floating Point Unit), 
and memory system performance measurements. The tool 
quantifies an upper limit for the mentioned performance 
characteristics. Unlike Y-cruncher, NBENCH is a single-
threaded tool and the algorithm performs ten different tasks 

producing three different indexes: Integer Index, Floating 
Point Index, and Memory Index. 

 

Fig. 3. NBENCH is a single-threaded benchmark tool. Except than for 
Memory Index (where KVM has a performance degradation compared with 
the other platforms), all the analysed technolgies achieve nearly equal 
performances. 

As can be observed from Fig. 3, we can find a noticeable 
difference only in terms of memory index between the 
analysed platforms: KVM introduces roughly 30 percent 
performance degradation. 

We confirmed the measurements of NBENCH with 
Geekbench [13] that is a cross-platform tool to test system 
stability and the processor performance. Both of the tools use 
the same indexing scheme for CPU efficiency, but Geekbench 
can index the overall system. Another difference is that it 
allows and supports measuring both single-core and multi-core 
architecture. Even considering this tool, all the compared 
platforms perform quite similarly. The memory index result of 
KVM was a bit lower, but the degradation is not remarkable as 
with NBENCH. Of course, the implementation of the two tests 
in the tools is different. 

So far, the CPU tests have excluded OSv for portability 
reasons. However, the remaining ones will include also OSv 
measurements. 

The “noploop” is a very simple CPU benchmarking tool: 
“It is a procedure for measuring CPU clock speed using an 
unrolled No-Operation (NOP) loop. It's intended to be simple, 
minimizing variation caused by cache misses, stall cycles, and 
branch misprediction.” [14]. Table III shows noploop results. 

TABLE III.   

Platform noploop execution time (ms) 

Native 2.391  

LXC 2.391 

Docker 2.393 

KVM 2.397 

OSv 2.249 
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 We used this tool for verifying that all systems perform on 
the same level without major differences in this simple case. 
Counterintuitively, noploop performs better in OSv than in the 
native environment, despite the difference is minimal. 
Obviously, the extreme uncomplicatedness of this test does not 
allow us to draw accurate conclusions, since this difference 
between OSv and the other platforms may have been produced, 
e.g., by a different way of measuring time (however further 
analysis is needed to verify this). 

Linpack benchmark exists in two variants. Intel Linpack 
Benchmark [16] is one, but we employed another one [15] 
because it was easier to port to OSv. Linpack tests the 
performance of a system using a simple linear algebra problem. 
In particular, the algorithm uses a random matrix A (size N), 
and a right hand side vector B that is defined as follows: 
A * X = B. The benchmark tool executes two steps in order to 
solve the algebra problem: 

1. LU (‘Lower Upper’) factorization of A. 

2. LU factorization is used in order to solve the linear 
system A * X = B. 

Linpack gives the results in MegaFLOPS (millions of 
floating point operations per second): 

mflops = ops / ( cpu * 1000000 ) 

Running the software benchmark increasing values of N, 
CPU behaves differently and three different “zones” can be 
distinguished: 

§ rising zone - local cache memory and processor 
are not challenged. 

§ flat zone - only the processor is challenged, that is, 
performing at top efficiency. 

§ decaying zone - local cache memory is challenged 
again, that is “the matrix is so large that the cache 
is not large enough to keep the necessary data 
close enough to the processor to keep it running at 
top speed”[15]. 

 

Fig. 4. The value of Linpack results on each platform over 15 runs. This is 
the particular case of N=1000. 

Fig. 4 shows a specific use case with N=1000 that is 
usually used in the literature. It should be noted that the relative 
differences between the different platforms are not substantial. 
From this point of view, even if the non-virtualized 

environment performs worse than Docker and LXC, the gap is 
so small that does not allow to draw very strong implications. 
Fig. 5 shows Linpack results with varying N, where OSv 
presents some performance degradation in the rising zone, but 
the differences are neglectable with larger values of N. 

 

Fig. 5. Linpack results with varying N. As described in the text, three 
different zones can be detected: a rising zone (where OSv introduces some 
performance degradation), a flat zone, and a decaying zone. 

B. Disk I/O Performance 
Bonnie++ [17] is an open-source benchmark software that 

characterizes disk performance. We use it to measure disk I/O 
in all the evaluated systems, with the exception of OSv 
because Bonnie++ calls functions such as fork() that are not 
supported by OSv. It should be noted that we have configured 
Bonnie++ to test as recommended by the developer, that is, 
using a test file size of at least twice the size of system 
memory (in our case we consider a test file of 25GiB). 

Fig. 6 shows the Bonnie++ results for sequential write 
(Block Output) and sequential read (Block Input) speed. The 
two container-based platforms offer very similar performance 
in both cases, which are quite close to the native one. KVM 
write throughput is roughly a third and read throughput almost 
a fifth of the native one. 
 

 
Fig. 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB). 
Results for sequential writes and sequential read are shown. 

Bonnie++ tool can also test the speed at which a file is 
read, written, and then flushed to the disk (Random Write test) 
and the number of random seeks per second (Table IV - for 
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each platform, the percentage difference respect native 
performance is indicated). 

TABLE IV.   

Platform Random Write speed (Kb/s) Random Seeks 

Native 48254 % 1706 % 

LXC 43172 − 10.53% 1517 − 11.07% 

Docker 41170 − 14.68% 975 − 42.84% 

KVM 23999 − 50.26% 125.7 − 92.63% 

 
Random Write speed results are well aligned with the 

results in Fig. 6. The order of the platforms is the same also in 
the random seek measurements, but LXC is performing now 
much better than Docker (approximately 30% better). 

In order to get a broader understanding of Disk I/O 
performance, we used dd which is a simple command-line tool 
for Unix-like operating systems, which copies data using 
block size directly chosen by the user. This command can be 
used also for other several operations such as recovering data 
from hard disk, backing up function, data conversion, low-
level formatting etc. 

In our case, we use dd to test hypervisors and containers 
capacity to read and write from special device files such as 
/dev/zero/, that is a virtual file which has the particular 
feature to return null (0x00) characters when it is read. We 
performed this test using different block size (512 and 1024 
bytes), and a test file size of 50 Gib. The following table 
shows the obtained results for this test (average result for 
block size 1024 bytes): 

TABLE V.   

Platform Disk I/O speed (MB/s) 

Native 122 % 

LXC 92 − 24.59% 

Docker 113 − 7.37% 

KVM 49.8 − 59.18% 

 
The previous results clearly show and approximately 

confirm what achieved with Bonnie++. With Native, KVM, 
and LXC we obtained roughly always the same result without 
any significant deviation. Differing behavior was observed 
with Docker, which was performing for a few runs even better 
than Native (135 MB/s). 

For the sake of completeness, it has to be clarified that for 
Native, and LXC we use the default file format for disk 
images. KVM uses an image format like qcow2, while Docker 
utilizes the AUFS union file system, which supports layering 
and enables versioning of images. 

In the Disk I/O evaluation, we found a mismatch between 
the results of Bonnie++ and other tools such as Sysbench [18]. 
This suggests that Disk I/O performance estimation can be 
tricky. Also, IOzone [19] introduces this kind of incongruity, 

where LXC is more performing better than the native OS. 
Moreover, some of the literature [6] in the related work 
mentions similar unusual results. Other than this, we did not 
find material that compares different disk benchmarking tools 
for reliability, and this requires some further work. 

C. Memory Performance 
In order to test the Memory I/O, we used the STREAM [20] 

software. The extreme simplicity of this tool gave us the 
opportunity to perform this evaluation for all the considered 
platforms, including OSv. STREAM software measures 
memory performance using very simple vector kernels 
operations. It produces results for four different operations: 
Copy, Scale, Add, and Triad. These four operations are 
defined in Table VI. 

TABLE VI.   

Operation Kernel 

Copy x[i] = y[i] 

Scale x[i] = q * y[i] 

Add x[i] = y[i] + z[i] 

Triad x[i] = y[i] + q * z[i] 

 
The performance as measured by the tool has a strong 

dependency to the CPU cache size. For this reason, the size of 
the “Stream Array” in the tool has to be set properly according 
to the following rule: “each array must be at least 4 times the 
size of the available cache memory”. By following this 
condition, we obtained the results depicted in the Fig. 7. 
KVM, Docker and LXC all reach performance similar to the 
native execution. The performance of OSv is approximately 
half of the others according to these benchmarks. 
 

 
Fig. 7. Memory throughput is tested with STREAM. Measurements show 
that for all four operations we achieve comparable performance for each 
platform compared with Native distribution. OSv performs worse than the 
other systems in this case. 

D. Network I/O Performance 
We measured Network I/O with Netperf [37]. Netperf is a 

benchmark tool with several predefined tests to measure 
network performance between two hosts. More precisely, it is 
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possible to perform unidirectional and request/response data 
transfer with TCP and UDP protocol. 

The configuration for the tests is as follows: 

Ø Two identical machines directly connected with 
10 Gigabit Ethernet Link. 

Ø One host is running netperf client and the other 
netperf server. 

Ø Default values for the Local/Remote socket size 
and the Message sizes are used. 

Ø Test duration time: 60 seconds. 
Ø netperf used tests: TCP_STREAM, TCP_RR, 

UDP_STREAM, UDP_RR. 
Ø IPv4 addressing 
Ø Results represent the average across 15 runs 
Ø netperf server is running on the tested platform 

 
TCP_STREAM and UDP_STREAM represent the default 

test in netperf, that is, transmitting TCP and UDP data between 
the netperf client and the netperf server (netserver). Connection 
establishment time is not included in the measurements. The 
test output shows performance for processing inbound packets. 

TABLE VII.   

Platform TCP_STREAM (Mbps) UDP_STREAM (Mbps) 

Native 9413.76  % 6907.98  % 

LXC 9411.01 − 0.00029% 3996.89  − 42.14% 

Docker 9412  − 0.00018% 3939.44  − 42.97% 

KVM 6739.01  − 28.41% 3153.04  − 54.35% 

OSv 6921.97  − 26.46% 3668.95  − 46.88% 

 

In Table VII, we can find the results for each platform and 
for both tests. 

Using TCP, LXC and Docker achieve almost equal 
performance compared to the native one, and KVM is 28.41% 
slower. OSv performs better than KVM and it introduces a gap 
equal to 26.46% compared to the Native system. 

All platforms offer lower throughput with UDP. LXC and 
Docker offer comparable performance between them (but 
respectively 42.14% and 42.97% lower than native); KVM 
overhead is the largest (54.35%). OSv ranks in the middle 
(46.88% worst than native). It should be noted here that the 
length of the transmission might have affected all the results. 

The netperf request and response tests (TCP_RR and 
UDP_RR) evaluate the number of TCP and UDP transactions. 
Each transaction is determined by the following events: 

§ The netperf client sends request to the server 
§ The netserver sends a response to the client 

 
As visualized in Table VIII, the virtualized platforms are 

not as reactive as the native one. For the TCP_RR test, LXC 
and Docker introduce a moderate level of overhead (17.35% 
and 19.36%) when compared to native execution. KVM offers 

the lowest result (47.35% slower than native). OSv performs 
better than KVM (roughly 4% faster). 

TABLE VIII.   

Platform TCP_RR (T/s) UDP_RR (T/s) 

Native 20742.36  % 21196.87  % 

LXC 17142.67  − 17.35% 18901.95  − 10.82% 

Docker 16725.26  − 19.36% 18623.71  − 12.13% 

KVM 10920.48  − 47.35% 11495.63  − 45.76% 

OSv 11717.3  − 43.11% 12050.88  − 43.14% 

 

In the UDP_RR test, the relative differences between the 
different platforms are similar to the TCP_RR test, with. LXC 
and Docker that slightly reduce the performance gap 
(difference is now 10.82% for LXC, and 12.13% for Docker). 
OSv introduces roughly the same gap as for the TCP test 
(43.14%), while KVM is 45.76% slower than non-virtualized 
environment.  

V. CONCLUSIONS AND FUTURE WORK 
Container-based solutions and others emerging systems are 

challenging traditional hypervisor based virtual machines in 
cloud computing. The new technologies are more lightweight, 
thus facilitating more dense deployment of services. In this 
paper, we presented a detailed performance evaluation of four 
different technologies on Linux. More precisely, we measured 
Linux on KVM as an example of a hypervisor-based system 
running a traditional guest OS, Docker and LXC as container 
based solutions, and OSv as new type of lightweight guest OS. 

Our results clearly show that the performance of KVM 
hypervisor has dramatically improved during the last few 
years. Nevertheless, especially Disk I/O efficiency can still 
represent a bottleneck for some types of applications, even 
though a further evaluation for Disk I/O is still needed due to 
some inconsistency between the different tools. 

The level of overhead introduced by containers can be 
considered almost negligible. Taking all of the differences 
between LXC and Docker into account, we confirm that 
containers perform well, albeit the versatility and ease of 
management is paid in terms of security. As further work, it 
would be useful to repeat the measurements, e.g., with the 
recently announced “Linux Container Daemon” (LXD)[40], a 
new type of hypervisor that claims to offer improved support 
for security without losing the performance benefits. In 
general, security and isolation aspects of containers deserve a 
more thorough analysis. 

OSv represents an interesting work-in-progress alternative, 
although it introduces some limitations in terms of software 
portability. Indeed, porting existing software requires some 
effort. However, some of the performance measurements look 
promising, and also the size of VM images is relatively small 
(in the range of hundreds of MBs). 
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