
Hypervisors vs. Lightweight Virtualization: a
Performance Comparison

Roberto Morabito, Jimmy Kjällman, and Miika Komu
Ericsson Research, NomadicLab

Jorvas, Finland
roberto.morabito@ericsson.com, jimmy.kjallman@ericsson.com, miika.komu@ericsson.com

Abstract — Virtualization of operating systems provides a
common way to run different services in the cloud. Recently, the
lightweight virtualization technologies claim to offer superior
performance. In this paper, we present a detailed performance
comparison of traditional hypervisor based virtualization and
new lightweight solutions. In our measurements, we use several
benchmarks tools in order to understand the strengths,
weaknesses, and anomalies introduced by these different
platforms in terms of processing, storage, memory and network.
Our results show that containers achieve generally better
performance when compared with traditional virtual machines
and other recent solutions. Albeit containers offer clearly more
dense deployment of virtual machines, the performance
difference with other technologies is in many cases relatively
small.

Keywords — Performance; Benchmarking; Virtualization;
Hypervisor; Container.

I. INTRODUCTION
Virtualization Technologies are having a very predominant

role during the last years, and the number of software
solutions is increasing rapidly every day. One of the reasons
for adopting and deploying advanced technologies, and to
build newer paradigms in this field is due, for example, to
keep up with the growth of exchanged data and the consequent
need to increase the capability of data center by means of
server virtualization.

At the same time, the adoption of these technologies has
extended to different areas, and incorporated into distinct use
cases. The usage of virtualization in contexts such as Cloud
Environments, Internet of Things, and Network Function
Virtualization is becoming more widespread. The main
benefits include hardware independence, isolation, secure user
environments, and increased scalability, together with the
large number of new properties optimized for different use
cases. Consequently, the area has become very attractive and
competitive, contributing to the raise of novel solutions of the
main classes of virtualization technologies, that is container-
based virtualization and hypervisor-based virtualization.
Further, this has boosted the introduction of hybrid techniques,
which promise to combine the advantages of the previous.

In this work, we show a performance analysis using
different benchmark tools with hypervisor-based solutions,

container and alternative solutions. The idea is to quantify the
level of overhead introduced by these platforms and the
existing gap compared to a non-virtualized environment.
 The remainder of this paper is structured as follows: in
Section II, literature review and a brief description of all the
technologies and platforms evaluated is provided. The
methodology used to realize our performance comparison is
introduced in Section III. The benchmark results are presented
in Section IV. Finally, some concluding remarks and future
work are provided in Section V.

II. BACKGROUND AND RELATED WORK
In this section, we provide an overview of the different

technologies included in the performance comparison. We
also point out the main differences between traditional virtual
machines, containers and some other emerging cloud
operating systems.

A. Background
Container-based Virtualization provides a different level of

abstraction in terms of virtualization and isolation when
compared with hypervisors. In particular, it can be considered
as a lightweight alternative to hypervisor-based virtualization.
Hypervisors abstract hardware, which results in overhead in
terms of virtualizing hardware and virtual device drivers. A full
operating system (e.g., Linux) is typically run on top of this
virtualized hardware in each virtual machine instance. In
contrast, containers implement isolation of processes at the
operating system level, thus avoiding such overhead. These
containers run on top of the same shared operating system
kernel of the underlying host machine, and one or more
processes can be run within each container. Container-based
virtualization architecture is visualized in Fig. 1(a).

Due to the shared kernel (as well as operating system
libraries), an advantage of container-based solutions is that they
can achieve a higher density of virtualized instances, and disk
images are smaller compared to hypervisor-based solutions.
The shared kernel approach has also a few disadvantages. One
limitation of containers is that, e.g., Windows containers
cannot be run on top of a Linux host. As another tradeoff,
containers do not isolate resources as well as hypervisors [35]
because the host kernel is exposed to the containers, which can
be an issue for multi-tenant security.

2015 IEEE International Conference on Cloud Engineering

978-1-4799-8218-9/15 $31.00 © 2015 IEEE

DOI 10.1109/IC2E.2015.74

386

 (a) (b) (c)

Fig. 1. Virtualization Architecture: (a) Container-based architecture [35], (b) Hypervisor-based architecture [35], (c) Library OS on a hypervisor.

In this paper, we focus on containers in Linux, which are
implemented primarily via control groups (cgroups) [41] and
namespaces [42] in recent Linux kernels. The former
mechanism provides resource management (e.g., limits and
priorities) for groups of processes, and the latter provides a
private, restricted view towards certain system resources within
a container (i.e., a form of sandboxing). Moreover, additional
security mechanisms (e.g., SELinux) can be used for achieving
more secure isolation among containers and between
containers and the host system. These kernel-level features
mentioned above are typically used via user-level tools.

Several container-based solutions exist, e.g., Linux-
VServer [21], OpenVZ [22], LXC [23], Docker [24], and
Rocket [39].

In our performance analysis, we focus on LXC and Docker.
LXC is a more low-level solution that has been available for
long time. Docker, on the other hand, is a higher-level platform
that that has made containers very popular in a short time
frame. Docker combines Linux containers with an overlay
filesystem and provides tools for building and packaging
applications into portable environments, i.e., container images
[25].

 Hypervisor-Based Virtualization has been widely used
during the last decade for implementing virtualization and
isolation. Contrary to containers, hypervisors operate at the
hardware level, thus supporting standalone virtual machines
that are independent and isolated of the host system. As the
hypervisor isolates the VM from the underlying host system, it
is possible to run, e.g., Windows-based VMs on top of Linux.
The trade-off here is that a full operating system is installed to
virtual machine, which means that the image will be
substantially larger. In addition, the emulation of the virtual
hardware device incurs more overhead.

According to [26], hypervisors are classified in two
different types (Fig. 1(b)):

§ Type-1: native or bare-metal hypervisors
(operate on top of the host’s hardware)

§ Type-2: hosted hypervisors (operate on top of
the host’s operating system).

 However, the distinction between the two types of
hypervisors is not always so clear. For example, Linux’s
Kernel-based Virtual Machine (KVM) has characteristics of
both types [27]. While several open source and commercial

hypervisor solutions exist, we focus here on KVM [28], which
is a virtualization solution for the Linux Kernel. KVM is used
in conjunction with a hardware emulator and virtualizer such as
QEMU.

 In addition to containers and hypervisors, a number of
hybrid virtualization solutions have emerged. One such
solution is ZeroVM [36] that provides a single-application
environment running inside NaCL sandbox from Google. Since
ZeroVM operates entirely as a lightweight and restricted
userspace process, it is easy to launch ZeroVM applications to
process e.g. data stored on a database server. I.e., computation
is brought to the data, not vice versa. A limitation of ZeroVM
is that it is very challenging to port existing Linux software to
it because it implements a subset of Linux functionality.

 However, we focus here on another cloud OS solution called
OSv [29]. It is a dedicated operating system designed
exclusively for the Cloud and can be considered as a “Library
Operating System” running single applications similarly as
ZeroVM and Docker. In contrast to the others, OSv is intended
to be run on top of a hypervisor (KVM, Xen, VirtualBox, and
VMware). In other words, it achieves the isolation benefits of
hypervisor-based systems, but avoids the overhead (and
configuration) of a complete guest OS (Fig. 1(c)). As further
benefits, OSv claims improved latency and throughput through
an optimized networking stack [30], as well as a spinlock-free
design with interrupt handling in ordinary threads. OSv
supports Java-based applications as well as Linux-based C/C++
applications.

OSv applications can be built and executed via the Capstan tool
that is conceptually similar to Docker.

OSv is a young open-source project (first Beta version has been
released recently) and it has several issues especially
concerning software portability/compatibility. OSv can only
run executables in Linux relocatable shared object format
because OSv mostly implements the ABI of Linux [34]. As
OSv supports only a single process, a limited subset of POSIX,
Linux syscalls, this means that Linux libc can be invoked.
Other system calls, such as fork(), exec(), clone(), are not
supported at the moment. Thus, porting software to OSv
usually requires some effort. Some of these limitations have
limited our ability to execute a deep and complete analysis, but
we nevertheless provide a preliminary performance evaluation
of OSv as well. Further technical details can be found in [31,
32, 33].

387

B. Related Work
Recently, the body of the literature has been focusing on

optimizations to decrease the performance gap between
virtualized and non-virtualized solutions. The research
methodology and tools vary from study to study. The
investigated and compared sets of technologies also vary from
paper to paper. For example, comparisons between different
hypervisors and non-virtualized systems, or even evaluation of
containers vs. virtual machines have been published.

Compared to the analysis presented in this work, many of
the earlier publications consider now outdated software and,
perhaps even more importantly, recent work excludes new,
emerging solutions. Some of such solutions, including new
Library Operating System, represent a valid alternative to
hypervisor and container based solutions.

Hwang et al. [1] compared four hypervisors (Hyper-V,
KVM, vSphere and Xen) in different use cases. In summary,
no superior hypervisor between those examined was
discovered. Consequently, they propose that a cloud
environment should support different software and hardware
platforms to meet particular needs. A number of hypervisor
comparisons have been published. Elisayed et al. [2] conduct a
quantitative and qualitative evaluation of VMware ESXi5,
Microsoft Hyper-V2008R2, and Citrix Xen Server 6.0.2 in
various scenarios. They perform an evaluation using
customized SQL instances, which simulates approximately 20
million of customers, 100,000 products, and 100,000 orders per
month. Varrette et al. [3] provide a similar analysis, but with
some differences. For instance, they use KVM instead of
Microsoft Hyper-V2008R2, and evaluate the performance of
virtualized environments for High Performance Computing
(HPC) workloads in terms of power consumption, energy
efficiency and scalability. The authors argue that virtualized
environments for large scale HPC workloads incur a substantial
performance impact by the virtualization layer (for all
hypervisors), albeit some contradictory evidence on
virtualization overhead does exist; Toor et al. [38] report a 4%
overhead of grid virtualization. Li et al. measure a commercial
(unspecified) hypervisor, Xen and KVM [4] using Hadoop and
MapReduce as the use cases. Also here, the authors find
similarities and significant variations in terms of performance
with different workloads.

Recent research literature compares hypervisors with
container solutions, including Dua et al. [5], who depict
increasing use for containers in PaaS environments. Estrada et
al. [6] benchmark KVM, Xen, and Linux Containers (LXC),
and compare the runtime of each environment to the
performance of a physical server. This lastly mentioned work is
particularly interesting because of the application domain. The
evaluation is based on sequence alignment software that
arranges sequences of DNA. Further, Xavier et al. analyse
MapReduce Clusters and in HPC Environments using
containers [7, 8]. Finally, Felter et al. compare KVM and
Docker performance with native environment [9]. The main
difference compared to [9] is that our analysis does not
consider only Hypervisor and Container solutions. In addition,
the network performance section in this paper includes more
results from measurements with Docker.

III. METHODOLOGY
We provide a deep evaluation with a number of

benchmarking applications using KVM, LXC, Docker, and
OSv. We use native (non-virtualized) performance as a base
case in order to measure the overhead of the virtualization. The
benchmark tools measure (using generic workloads) CPU,
Memory, Disk I/O, and Network I/O performance.

We repeated each target of measurement with different
tools to verify the consistency between the different obtained
results. We also repeated each individual measurement 15
times and the illustrations show the average of such
measurements. The graphs also show the standard deviation
(except for some particular cases where it was insignificant).

We used the following hardware for our empirical
experimentation:

Ø Computer model: Dell Precision T5500
Ø Processor: Intel Xeon X5560 (8M Cache, 2.80

GHz, 4 cores, 8 threads)
Ø Memory: 12 GB (3x4GB) 1333 MHz DDR3

ECC R
Ø Disk: OCZ-VERTEX 128GB
Ø Network: 10Gb/s interface
Ø OS: Ubuntu 14.04 (64-bit)

The software platforms and versions are listed in Table I.

TABLE I.

Platform Version

KVM QEMU emulator version 2.0.0

LXC 1.0.6

Docker 1.3.2

OSv 0.15

It should be mentioned that:

§ KVM is managed using the standard Linux libvirt
API and toolchain (virsh)

§ OSv is running over KVM
§ LXC and Docker are running directly on the host

OS
§ Linux Guest OS on KVM is Ubuntu 14.04 (64-bit)

From now on, we use the label "KVM" for the case where we
have a Linux Guest OS running on top of the KVM hypervisor.

IV. BENCHMARK RESULTS
This section presents the results of our analysis. As

explained previously, the selected benchmarks measure CPU,
Memory, Disk I/O, and Network I/O performance. Results are
organized in four different subsections. Section A describes all
the CPU measurements. Disk I/O and Memory measurements
are then shown in subsections B and C. Finally, the outcomes

388

of the Network performance analysis are described in
subsection D.

A. CPU Performance
 Y-cruncher [10] is a multi-threaded benchmark for multi-
core systems to calculate the value of Pi. Y-cruncher is able to
compute Pi and other constants, performing as a stress-testing
application for CPU. It should be noted that other alternatives
exist [11], but Y-cruncher appeared to be the only multi-
threaded one. The tool provides different outputs: multi-core
efficiency, computation time and total time. Total time is used
to verify the results, and it consists of the total computation
time plus the time required to elaborate and process the result.

Fig. 2. Results of Y-cruncher over 30 runs. The error bars indicate the
Standard Deviation. Container-based solutions perform better than KVM.

 Figure 2 shows the results of the Y-cruncher tool. Both
container-based solutions perform better than KVM.
Considering only the computation time, containers display
performance almost similar to the native environment. As
shown in the next Y-cruncher measurements in Table II, even
multi-core efficiency (which expresses how the CPU is
efficiently used in order to execute the Pi computation)
confirms this trend, even though KVM loss is relatively small
(less than 1%).

TABLE II.

Platform Multi-core Efficiency

Native 98.27%

LXC 98.19%

Docker 98.16%

KVM 97.51%

 NBENCH [12] was developed during the 90s, but can still
be used as a valid tool for CPU, FPU (Floating Point Unit),
and memory system performance measurements. The tool
quantifies an upper limit for the mentioned performance
characteristics. Unlike Y-cruncher, NBENCH is a single-
threaded tool and the algorithm performs ten different tasks

producing three different indexes: Integer Index, Floating
Point Index, and Memory Index.

Fig. 3. NBENCH is a single-threaded benchmark tool. Except than for
Memory Index (where KVM has a performance degradation compared with
the other platforms), all the analysed technolgies achieve nearly equal
performances.

As can be observed from Fig. 3, we can find a noticeable
difference only in terms of memory index between the
analysed platforms: KVM introduces roughly 30 percent
performance degradation.

We confirmed the measurements of NBENCH with
Geekbench [13] that is a cross-platform tool to test system
stability and the processor performance. Both of the tools use
the same indexing scheme for CPU efficiency, but Geekbench
can index the overall system. Another difference is that it
allows and supports measuring both single-core and multi-core
architecture. Even considering this tool, all the compared
platforms perform quite similarly. The memory index result of
KVM was a bit lower, but the degradation is not remarkable as
with NBENCH. Of course, the implementation of the two tests
in the tools is different.

So far, the CPU tests have excluded OSv for portability
reasons. However, the remaining ones will include also OSv
measurements.

The “noploop” is a very simple CPU benchmarking tool:
“It is a procedure for measuring CPU clock speed using an
unrolled No-Operation (NOP) loop. It's intended to be simple,
minimizing variation caused by cache misses, stall cycles, and
branch misprediction.” [14]. Table III shows noploop results.

TABLE III.

Platform noploop execution time (ms)

Native 2.391

LXC 2.391

Docker 2.393

KVM 2.397

OSv 2.249

389

 We used this tool for verifying that all systems perform on
the same level without major differences in this simple case.
Counterintuitively, noploop performs better in OSv than in the
native environment, despite the difference is minimal.
Obviously, the extreme uncomplicatedness of this test does not
allow us to draw accurate conclusions, since this difference
between OSv and the other platforms may have been produced,
e.g., by a different way of measuring time (however further
analysis is needed to verify this).

Linpack benchmark exists in two variants. Intel Linpack
Benchmark [16] is one, but we employed another one [15]
because it was easier to port to OSv. Linpack tests the
performance of a system using a simple linear algebra problem.
In particular, the algorithm uses a random matrix A (size N),
and a right hand side vector B that is defined as follows:
A * X = B. The benchmark tool executes two steps in order to
solve the algebra problem:

1. LU (‘Lower Upper’) factorization of A.

2. LU factorization is used in order to solve the linear
system A * X = B.

Linpack gives the results in MegaFLOPS (millions of
floating point operations per second):

mflops = ops / (cpu * 1000000)

Running the software benchmark increasing values of N,
CPU behaves differently and three different “zones” can be
distinguished:

§ rising zone - local cache memory and processor
are not challenged.

§ flat zone - only the processor is challenged, that is,
performing at top efficiency.

§ decaying zone - local cache memory is challenged
again, that is “the matrix is so large that the cache
is not large enough to keep the necessary data
close enough to the processor to keep it running at
top speed”[15].

Fig. 4. The value of Linpack results on each platform over 15 runs. This is
the particular case of N=1000.

Fig. 4 shows a specific use case with N=1000 that is
usually used in the literature. It should be noted that the relative
differences between the different platforms are not substantial.
From this point of view, even if the non-virtualized

environment performs worse than Docker and LXC, the gap is
so small that does not allow to draw very strong implications.
Fig. 5 shows Linpack results with varying N, where OSv
presents some performance degradation in the rising zone, but
the differences are neglectable with larger values of N.

Fig. 5. Linpack results with varying N. As described in the text, three
different zones can be detected: a rising zone (where OSv introduces some
performance degradation), a flat zone, and a decaying zone.

B. Disk I/O Performance
Bonnie++ [17] is an open-source benchmark software that

characterizes disk performance. We use it to measure disk I/O
in all the evaluated systems, with the exception of OSv
because Bonnie++ calls functions such as fork() that are not
supported by OSv. It should be noted that we have configured
Bonnie++ to test as recommended by the developer, that is,
using a test file size of at least twice the size of system
memory (in our case we consider a test file of 25GiB).

Fig. 6 shows the Bonnie++ results for sequential write
(Block Output) and sequential read (Block Input) speed. The
two container-based platforms offer very similar performance
in both cases, which are quite close to the native one. KVM
write throughput is roughly a third and read throughput almost
a fifth of the native one.

Fig. 6. Disk Throughput achieved by running Bonnie++ (test file of 25 GiB).
Results for sequential writes and sequential read are shown.

Bonnie++ tool can also test the speed at which a file is
read, written, and then flushed to the disk (Random Write test)
and the number of random seeks per second (Table IV - for

390

each platform, the percentage difference respect native
performance is indicated).

TABLE IV.

Platform Random Write speed (Kb/s) Random Seeks

Native 48254 % 1706 %

LXC 43172 − 10.53% 1517 − 11.07%

Docker 41170 − 14.68% 975 − 42.84%

KVM 23999 − 50.26% 125.7 − 92.63%

Random Write speed results are well aligned with the

results in Fig. 6. The order of the platforms is the same also in
the random seek measurements, but LXC is performing now
much better than Docker (approximately 30% better).

In order to get a broader understanding of Disk I/O
performance, we used dd which is a simple command-line tool
for Unix-like operating systems, which copies data using
block size directly chosen by the user. This command can be
used also for other several operations such as recovering data
from hard disk, backing up function, data conversion, low-
level formatting etc.

In our case, we use dd to test hypervisors and containers
capacity to read and write from special device files such as
/dev/zero/, that is a virtual file which has the particular
feature to return null (0x00) characters when it is read. We
performed this test using different block size (512 and 1024
bytes), and a test file size of 50 Gib. The following table
shows the obtained results for this test (average result for
block size 1024 bytes):

TABLE V.

Platform Disk I/O speed (MB/s)

Native 122 %

LXC 92 − 24.59%

Docker 113 − 7.37%

KVM 49.8 − 59.18%

The previous results clearly show and approximately

confirm what achieved with Bonnie++. With Native, KVM,
and LXC we obtained roughly always the same result without
any significant deviation. Differing behavior was observed
with Docker, which was performing for a few runs even better
than Native (135 MB/s).

For the sake of completeness, it has to be clarified that for
Native, and LXC we use the default file format for disk
images. KVM uses an image format like qcow2, while Docker
utilizes the AUFS union file system, which supports layering
and enables versioning of images.

In the Disk I/O evaluation, we found a mismatch between
the results of Bonnie++ and other tools such as Sysbench [18].
This suggests that Disk I/O performance estimation can be
tricky. Also, IOzone [19] introduces this kind of incongruity,

where LXC is more performing better than the native OS.
Moreover, some of the literature [6] in the related work
mentions similar unusual results. Other than this, we did not
find material that compares different disk benchmarking tools
for reliability, and this requires some further work.

C. Memory Performance
In order to test the Memory I/O, we used the STREAM [20]

software. The extreme simplicity of this tool gave us the
opportunity to perform this evaluation for all the considered
platforms, including OSv. STREAM software measures
memory performance using very simple vector kernels
operations. It produces results for four different operations:
Copy, Scale, Add, and Triad. These four operations are
defined in Table VI.

TABLE VI.

Operation Kernel

Copy x[i] = y[i]

Scale x[i] = q * y[i]

Add x[i] = y[i] + z[i]

Triad x[i] = y[i] + q * z[i]

The performance as measured by the tool has a strong

dependency to the CPU cache size. For this reason, the size of
the “Stream Array” in the tool has to be set properly according
to the following rule: “each array must be at least 4 times the
size of the available cache memory”. By following this
condition, we obtained the results depicted in the Fig. 7.
KVM, Docker and LXC all reach performance similar to the
native execution. The performance of OSv is approximately
half of the others according to these benchmarks.

Fig. 7. Memory throughput is tested with STREAM. Measurements show
that for all four operations we achieve comparable performance for each
platform compared with Native distribution. OSv performs worse than the
other systems in this case.

D. Network I/O Performance
We measured Network I/O with Netperf [37]. Netperf is a

benchmark tool with several predefined tests to measure
network performance between two hosts. More precisely, it is

391

possible to perform unidirectional and request/response data
transfer with TCP and UDP protocol.

The configuration for the tests is as follows:

Ø Two identical machines directly connected with
10 Gigabit Ethernet Link.

Ø One host is running netperf client and the other
netperf server.

Ø Default values for the Local/Remote socket size
and the Message sizes are used.

Ø Test duration time: 60 seconds.
Ø netperf used tests: TCP_STREAM, TCP_RR,

UDP_STREAM, UDP_RR.
Ø IPv4 addressing
Ø Results represent the average across 15 runs
Ø netperf server is running on the tested platform

TCP_STREAM and UDP_STREAM represent the default

test in netperf, that is, transmitting TCP and UDP data between
the netperf client and the netperf server (netserver). Connection
establishment time is not included in the measurements. The
test output shows performance for processing inbound packets.

TABLE VII.

Platform TCP_STREAM (Mbps) UDP_STREAM (Mbps)

Native 9413.76 % 6907.98 %

LXC 9411.01 − 0.00029% 3996.89 − 42.14%

Docker 9412 − 0.00018% 3939.44 − 42.97%

KVM 6739.01 − 28.41% 3153.04 − 54.35%

OSv 6921.97 − 26.46% 3668.95 − 46.88%

In Table VII, we can find the results for each platform and
for both tests.

Using TCP, LXC and Docker achieve almost equal
performance compared to the native one, and KVM is 28.41%
slower. OSv performs better than KVM and it introduces a gap
equal to 26.46% compared to the Native system.

All platforms offer lower throughput with UDP. LXC and
Docker offer comparable performance between them (but
respectively 42.14% and 42.97% lower than native); KVM
overhead is the largest (54.35%). OSv ranks in the middle
(46.88% worst than native). It should be noted here that the
length of the transmission might have affected all the results.

The netperf request and response tests (TCP_RR and
UDP_RR) evaluate the number of TCP and UDP transactions.
Each transaction is determined by the following events:

§ The netperf client sends request to the server
§ The netserver sends a response to the client

As visualized in Table VIII, the virtualized platforms are

not as reactive as the native one. For the TCP_RR test, LXC
and Docker introduce a moderate level of overhead (17.35%
and 19.36%) when compared to native execution. KVM offers

the lowest result (47.35% slower than native). OSv performs
better than KVM (roughly 4% faster).

TABLE VIII.

Platform TCP_RR (T/s) UDP_RR (T/s)

Native 20742.36 % 21196.87 %

LXC 17142.67 − 17.35% 18901.95 − 10.82%

Docker 16725.26 − 19.36% 18623.71 − 12.13%

KVM 10920.48 − 47.35% 11495.63 − 45.76%

OSv 11717.3 − 43.11% 12050.88 − 43.14%

In the UDP_RR test, the relative differences between the
different platforms are similar to the TCP_RR test, with. LXC
and Docker that slightly reduce the performance gap
(difference is now 10.82% for LXC, and 12.13% for Docker).
OSv introduces roughly the same gap as for the TCP test
(43.14%), while KVM is 45.76% slower than non-virtualized
environment.

V. CONCLUSIONS AND FUTURE WORK
Container-based solutions and others emerging systems are

challenging traditional hypervisor based virtual machines in
cloud computing. The new technologies are more lightweight,
thus facilitating more dense deployment of services. In this
paper, we presented a detailed performance evaluation of four
different technologies on Linux. More precisely, we measured
Linux on KVM as an example of a hypervisor-based system
running a traditional guest OS, Docker and LXC as container
based solutions, and OSv as new type of lightweight guest OS.

Our results clearly show that the performance of KVM
hypervisor has dramatically improved during the last few
years. Nevertheless, especially Disk I/O efficiency can still
represent a bottleneck for some types of applications, even
though a further evaluation for Disk I/O is still needed due to
some inconsistency between the different tools.

The level of overhead introduced by containers can be
considered almost negligible. Taking all of the differences
between LXC and Docker into account, we confirm that
containers perform well, albeit the versatility and ease of
management is paid in terms of security. As further work, it
would be useful to repeat the measurements, e.g., with the
recently announced “Linux Container Daemon” (LXD)[40], a
new type of hypervisor that claims to offer improved support
for security without losing the performance benefits. In
general, security and isolation aspects of containers deserve a
more thorough analysis.

OSv represents an interesting work-in-progress alternative,
although it introduces some limitations in terms of software
portability. Indeed, porting existing software requires some
effort. However, some of the performance measurements look
promising, and also the size of VM images is relatively small
(in the range of hundreds of MBs).

392

ACKNOWLEDGMENTDS
This work is partially funded by the FP7 Marie Curie Initial

Training Network (ITN) METRICS project (grant agreement
No. 607728), and by Tekes with the Celtic-Plus CONVINcE
Project (Project-ID CP2013/2-1). The authors would like to
thank Nicklas Beijar and Tero Kauppinen of the Cloud team of
NomadicLab for providing us help and support.

REFERENCES

[1] Hwang, Jinho, Sai Zeng, and Timothy Wood. "A component-based
performance comparison of four hypervisors." Integrated Network
Management (IM 2013), 2013 IFIP/IEEE International Symposium on.
IEEE, 2013.

[2] Elsayed, Abdellatief, and Nashwa Abdelbaki. "Performance evaluation
and comparison of the top market virtualization hypervisors." Computer
Engineering & Systems (ICCES), 2013 8th International Conference on.
IEEE, 2013.

[3] Varrette, Sébastien, et al. "HPC Performance and Energy-Efficiency of
Xen, KVM and VMware Hypervisors." Computer Architecture and
High Performance Computing (SBAC-PAD), 2013 25th International
Symposium on. IEEE, 2013.

[4] Li, Jack, et al. "Performance Overhead Among Three Hypervisors: An
Experimental Study using Hadoop Benchmarks." Big Data (BigData
Congress), 2013 IEEE International Congress on. IEEE, 2013.

[5] Dua, Rajdeep, A. Reddy Raja, and Dharmesh Kakadia. "Virtualization
vs Containerization to Support PaaS." Cloud Engineering (IC2E), 2014
IEEE International Conference on. IEEE, 2014.

[6] Estrada, Zachary J., et al. "A Performance Evaluation of Sequence
Alignment Software in Virtualized Environments." Cluster, Cloud and
Grid Computing (CCGrid), 2014 14th IEEE/ACM International
Symposium on. IEEE, 2014.

[7] Xavier, Miguel Gomes, Marcelo Veiga Neves, and Cesar Augusto
Fonticielha De Rose. "A Performance Comparison of Container-based
Virtualization Systems for MapReduce Clusters." Parallel, Distributed
and Network-Based Processing (PDP), 2014 22nd Euromicro
International Conference on. IEEE, 2014

[8] Xavier, Miguel G., et al. "Performance evaluation of container-based
virtualization for high performance computing environments." Parallel,
Distributed and Network-Based Processing (PDP), 2013 21st
Euromicro International Conference on. IEEE, 2013.

[9] W. Felter, A. Ferreira, R. Rajamony, J. Rubio . An Updated Performance
Comparison of Virtual Machines and Linux Containers. [Online].
Available at: http://domino.research.ibm.com/library/cyberdig.nsf/
papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf,
last accessed 04/Dec/2014.

[10] Y-cruncher – A Multi-Threaded Pi-Program. [Online]. Available at:
http://www.numberworld.org/Y-cruncher/, last accessed 01/Dec/2014.

[11] Single-Threaded Computer Benchmark | SuperPI. [Online]. Available at:
http://www.superpi.net/, last accessed 27/Oct/2014.

[12] Linux/Unix nbench – Tux.org. [Online]. Available at:
http://www.tux.org/~mayer/linux/bmark.html/, last accessed
03/Dec/2014.

[13] Geekbench 3 – Cross-Platform Processor Benchmark. [Online].
Available at: http://www.primatelabs.com/geekbench/, last accessed
22/Oct/2014.

[14] The noploop CPU Benchmark – Brendan Gregg’s Homepage –.
[Online]. Available at: http://www.brendangregg.com/blog/2014-04-
26/the-noploop-cpu-benchmark.html/, last accessed 27/Nov/2014.

[15] LINPACK_BENCH – The LINPACK Benchmark. [Online]. Available
at:
http://people.sc.fsu.edu/~jburkardt/c_src/linpack_bench/linpack_bench.h
tml, last accessed 23/Nov/2014.

[16] Intel® Math Kernel Library – LINPACK Download. [Online]. Available
at: https://software.intel.com/en-us/articles/intel-math-kernel-library-
linpack-download, last accessed 23/Nov/2014.

[17] Bonnie++ now at 1.03e (last version before 2.0)!. [Online]. Available at:
http://www.coker.com.au/bonnie++/, last accessed 05/Dec/2014.

[18] Sysbench in Launchpad - SysBench: a system performance benchmark.
[Online]. Available at: https://launchpad.net/sysbench, last accessed
23/Nov/2014.

[19] IOzone Filesystem Benchmark. [Online]. Available at:
http://www.iozone.org/, last accessed 23/Nov/2014.

[20] McCalpin, John D.: "STREAM: Sustainable Memory Bandwidth in
High Performance Computers", a continually updated technical report
(1991-2007), available at: "http://www.cs.virginia.edu/stream/"

[21] Linux-VServer. [Online]. Available at: http://linux-vserver.org/, last
accessed 11/Dec/2014.

[22] OpenVZ Linux Containers Wiki. [Online]. Available at:
http://openvz.org/Main_Page, last accessed 11/Dec/2014.

[23] Linux Containers. [Online]. Available at: http://linuxcontainers.org, last
accessed 11/Dec/2014.

[24] Docker – Build, Ship, and Run Any App, Anywhere. [Online]. Available
at: http://www.docker.com/, last accessed 14/Dec/2014.

[25] FAQ – Docker Documentation. [Online]. Available at:
https://docs.docker.com/faq/, last accessed 14/Dec/2014.

[26] Popek, Gerald J., and Robert P. Goldberg. "Formal requirements for
virtualizable third generation architectures." Communications of the
ACM 17.7 (1974): 412-421

[27] KVM reignites Type 1 vs. Type 2 hypervisor debate. [Online]. Available
at:
http://searchservervirtualization.techtarget.com/news/2240034817/KVM
-reignites-Type-1-vs-Type-2-hypervisor-debate, last accessed
04/Dec/2014.

[28] KVM: Main Page. [Online]. Available at: http://www.linux-
kvm.org/page/Main_Page, last accessed 11/Dec/2014.

[29] OSv – the operating system designed for the cloud. [Online]. Available
at: http://www.osv.io, last accessed 14/Dec/2014.

[30] Use Cases – Osv. [Online]. Available at: http://www.osv.io/user-cases,
last accessed 14/Dec/2014.

[31] Kivity, Avi, et al. "OSv—Optimizing the Operating System for Virtual
Machines."2014 USENIX Annual Technical Conference (USENIX ATC
14). USENIX Association. 2014

[32] Home � cloudius-systems/osv Wiki � GitHub. [Online]. Available at:
http://github.com/cloudius-systems/osv/wiki, last accessed 14/Dec/2014.

[33] Learn More – OSv. [Online]. Available at: http://osv.io/learn-more/, last
accessed 14/Dec/2014.

[34] OSv Linux ABI Compatibility � cloudius-systems/osv Wiki � GitHub
[Online]. Available at: https://github.com/cloudius-
systems/osv/wiki/OSv-Linux-ABI-Compatibility, last accessed
07/Dec/2014.

[35] Analysis of Docker Security. [Online]. Available at:
http://arxiv.org/abs/1501.02967, last accessed 14/Jan/2015.

[36] ZeroVM sponsored by Rackspace. [Online]. Available at:
http://www.zerovm.org, last accessed 01/Dec/2014.

[37] The Netperf Homepage. [Online]. Available at: http://www.netperf.org,
last accessed 27/Nov/2014.

[38] Toor, S., et al. "A scalable infrastructure for the CMS data analysis
based on OpenStack Cloud and Gluster file system." Journal of Physics:
Conference Series . Vol. 513 No. 6. IOP Publishing, 2014

[39] CoreOS is building a container runtime, Rocket. [Online]. Available at:
http://coreos.com/blog/rocket/, last accessed 12/Dec/2014.

[40] The next hypervisor LXD is fast, secure container management for
Linux Cloud. [Online]. Available at: http://coreos.com/blog/rocket/,
last accessed 12/Dec/2014.

[41] Paul Menage et al. CGROUPS. [Online]. Avaliable at:
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt, last
accessed 20/Jan/2015.

[42] Linux Programmer's Manual: namespaces - overview of Linux
namespaces. [Online]. Available at: http://man7.org/linux/man-
pages/man7/namespaces.7.html, last accessed 20/Jan/2015.

393

