
TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.1

Processes:
Threads & Virtualization,
Clients & Servers

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 1/26

 Assignment 1: Key/Value Store

▪ Coming Soon

 Midterm Thursday February 9

▪ 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.2

OBJECTIVES – 1/31

1

2

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.3

ONLINE DAILY FEEDBACK SURVEY

 Survey has two questions:

 Be sure to add your questions about the previous class to the

second question

 1st question: After today’s class, comment on any new

concepts that you learned about?

▪ Have been getting questions here…

 2nd question: After today’s class, what point(s) remain least

clear to you?

▪ >> Please add questions HERE

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.4

SURVEY QUESTIONS

3

4

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.3

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L9.5

 Please classify your perspective on material covered in today’s

class (30 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.25 (- previous 6.60)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.62 (- previous 5.58)

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.6

MATERIAL / PACE

5

6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.4

 The concept of kernel threads was a bit anomalous

 Helpful links on Linux processes and threads:

 https://www.baeldung.com/linux/process -vs-thread

 https://www.baeldung.com/linux/monitor -process-thread-

count

 https://medium.com/@boutnaru/the -linux-process-journey-

kworker-f947634da73

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.7

FEEDBACK FROM 1/26

 What the dif ference between single process OS and system

before memory mapping implementation?

 By memory mapping implementation, do you mean OSes

before virtual memory where each process’s memory was

managed with dif ferent virtual segments (code, stack, heap,

data) and pages ?

 Modern single process OS for cloud computing feature threads

that share the same memory space

 Threads may not have been a feature of very early systems

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.8

FEEDBACK - 2

7

8

https://www.baeldung.com/linux/process-vs-thread
https://www.baeldung.com/linux/monitor-process-thread-count
https://medium.com/@boutnaru/the-linux-process-journey-kworker-f947634da73

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.5

 What are code segments and code pages?

 Linux manages memory in 4KB pages

 Each process has a memory segment called the code

segment

 The code segment consists of 1+ code pages (4KB each)

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.9

FEEDBACK - 3

 How many context switches will there be on example from

slide L9.33? Two? Three?

 Example: spreadsheet with formula to compute sum of

column, user modifies values in column

Multiple threads:

1. Supports interaction (UI) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

 Just three context switches ?

 When will the program context switch?

 On a single core computer?

 On a multi-core computer?

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.10

FEEDBACK - 4

9

10

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.6

 Not possible to know the number of context switches

precisely

▪ The process may have other threads

▪ A context switch occurs every time quantum (~10ms) to

ensure other threads have a chance to execute

▪ Context switches also occur as a result of system

interrupts

▪ Not all system interrupts are expected/predictable

 Single core CPU computer may have more context

switches for running this program

▪ Multiple threads must share a single CPU and increase load

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.11

FEEDBACK - 5

 Preparing for Assignment 0:

▪ Establish AWS Account

▪ Standard account

▪ Complete AWS Cloud Credits Survey and provide AWS account ID

▪ Credits will be automatically loaded by Amazon into accounts

 Tasks:

▪ Task 1 - Establish local Linux/Ubuntu environment

▪ Task 2 –AWS account setup, obtain user credentials

▪ Task 3 – Intro to: Amazon EC2 & Docker: create Dockerfile for
Apache Tomcat

▪ Task 4 – Create Dockerfile for haproxy

▪ Task 5 – Working with Docker-Machine

▪ Task 6 - Config 3 multiple server configs to load balance
requests for RESTful Fibonacci web service

▪ Task 7 – Test configs and submit results

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.12

ASSIGNMENT 0

11

12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.7

 testFibPar.sh script is a parallel test script

 Orchestrates multiple threads on client to invoke server
multiple times in parallel

 To simplify coordinate of parallel service calls in BASH,
testFibPar.sh script ignores errors !!!

 To help test client-to-server connectivity, have created a new
testFibService.sh script

 TEST 1: Network layer

▪ Ping (ICMP)

 TEST 2: Transport layer

▪ TCP: telnet (TCP Port 8080) – security group (firewall) test

 TEST 3: Application layer

▪ HTTP REST – web service test

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.13

TESTING CONNECTIVITY TO SERVER

 Questions from 1/26

 Assignment 1: Key/Value Store

▪ Coming Soon

 Midterm Thursday February 9

▪ 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.14

OBJECTIVES – 1/31

13

14

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.8

 Questions from 1/26

 Assignment 1: Key/Value Store

▪ Coming Soon

 Midterm Thursday February 9

▪ 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.15

OBJECTIVES – 1/31

 Questions from 1/26

 Assignment 1: Key/Value Store

▪ Coming Soon

 Midterm Thursday February 9

▪ 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.16

OBJECTIVES – 1/31

15

16

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.9

CH. 3: PROCESSES
CH. 3.1: THREADS

L9.17

 Questions from 1/26

 Assignment 1: Key/Value Store

▪ Coming Soon

 Midterm Thursday February 9

▪ 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.18

OBJECTIVES – 1/31

17

18

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.10

 Web browser

 Uses threads to load and render portions of a web page to the
user in parallel

 A client could have dozens of concurrent connections all
loading in parallel

 testFibPar.sh

 Assignment 0 client script (GNU parallel)

 Important benefits:

 Several connections can be opened simultaneously

 Client: dozens of concurrent connections to the webserver all
loading data in parallel

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.19

MULTITHREADED CLIENTS

 In Linux, threads also receive a process ID (PID)

 To display threads of a process in Linux:

 Identify parent process explicitly:

 top –H –p <pid>

 htop –p <pid>

 ps –iT <pid>

 Virtualbox process ~ 44 threads

 No mapping to guest # of processes/threads

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.20

MULTIPLE THREADS

19

20

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.11

PROCESS METRICS

CPU
- cpuUsr: CPU time in user mode
- cpuKrn: CPU time in kernel mode

- cpuIdle: CPU idle time
- cpuIoWait: CPU time waiting for I/O

- cpuIntSrvc:CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts

- cpuNice: CPU time executing prioritized
processes

- cpuSteal: CPU ticks lost to virtualized guests

- contextsw: # of context switches
- loadavg: (avg # proc / 60 secs)

Disk
- dsr: disk sector reads

- dsreads: disk sector reads completed

- drm: merged adjacent disk reads

- readtime: time spent reading from

disk

- dsw: disk sector writes

- dswrites: disk sector writes completed

- dwm: merged adjacent disk writes

- writetime: time spent writing to disk

Network
- nbs: network bytes sent
- nbr: network bytes received

 Reported by: top , htop, w, uptime, and /proc/loadavg

 Updated every 5 seconds

 Average number of processes using or waiting for the CPU

 Three numbers show exponentially decaying usage

for 1 minute, 5 minutes, and 15 minutes

 One minute average: exponentially decaying average

 Load average = 1 ▪ (avg last minute load) – 1/e ▪ (avg load since boot)

 1.0 = 1-CPU core fully loaded

 2.0 = 2-CPU cores

 3.0 = 3-CPU cores . . .

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.22

LOAD AVERAGE

21

22

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.12

 Metric – measures degree of parallelism realized by running

system, by calculating average utilization:

 Ci – fraction of time that exactly I threads are executed

 N – maximum threads that can execute at any one time

 Web browsers found to have TLP from 1.5 to 2.5

 Clients for web browsing can utilize from 2 to 3 CPU cores

 Any more cores are redundant, and potentially wasteful

 Measure TLP to understand how many CPUs to provision

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.23

THREAD-LEVEL PARALLELISM

 Multiple threads essential for servers in distributed systems

 Even on single-core machines greatly improves performance

 Take advantage of idle/blocking time

 Two designs:

▪ Generate new thread for every request

▪ Thread pool – pre-initialize set of threads to service requests

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.24

MULTITHREADED SERVERS

23

24

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.13

 Single thread server

▪ A single thread handles all client requests

▪ BLOCKS for I/O

▪ All waiting requests are queued until thread is available

 Finite state machine

▪ Server has a single thread of execution

▪ I/O performing asynchronously (non-BLOCKing)

▪ Server handles other requests while waiting for I/O

▪ Interrupt fired with I/O completes

▪ Single thread “jumps” back into context to finish request

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.25

SINGLE THREAD & FSM SERVERS

 A blocking system call implies that a thread servicing a

request synchronously performs I/O

 The thread BLOCKS to wait on disk/network I/O before

proceeding with request processing

 Consider the implications of these designs for responsiveness,

availability, scalability. . .

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.26

SERVER DESIGN ALTERNATIVES

Model Characteristics

Multithreading Parallelism, blocking I/O

Single-thread No parallelism, blocking I/O

Finite-state machine Parallelism, non-blocking I/O

25

26

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.14

 Questions from 1/26

 Assignment 1: Key/Value Store

▪ Coming Soon

 Midterm Thursday February 9

▪ 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.27

OBJECTIVES – 1/31

CH. 3.2:

VIRTUALIZATION

L9.28

27

28

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.15

 Initially introduced in the 1970s

on IBM mainframe computers

 Legacy operating systems run in mainframe-based VMs

 Legacy software could be sustained by vir tualizing legacy OSes

 1970s vir tualization went away as desktop/rack -based

hardware became inexpensive

 Virtualization reappears in 2000s to leverage multi -core,

multi-CPU processor systems

 VM-Ware vir tual machines enable companies to host many

virtual servers with mixed OSes on private clusters

 Cloud computing: Amazon offers VMs as -a-service (IaaS)

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.29

VIRTUALIZATION

 Levels of instructions:

 Hardware: CPU

▪ Privileged instructions

KERNEL MODE

▪ General instructions

USER MODE

 Operating system: system calls

 Library: programming APIs: e.g. C/C++,C#, Java libraries

 Application:

 Goal of vir tualization:

mimic these interface to provide a virtual computer

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.30

TYPES OF VIRTUALIZATION

29

30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.16

 Process vir tual machine

▪ Interpret instructions: (interpreters)
(JavaVM) byte code → HW instructions

▪ Emulate instructions: (emulators)
(Wine) windows code → Linux code

 Native vir tual machine monitor (VMM)

▪ Hypervisor (XEN): small OS with its own kernel

▪ Provides an interface for multiple guest OSes

▪ Facilitates sharing/scheduling of
CPU, device I/O among many guests

▪ Guest OSes require special kernel to interface w/ VMM

▪ Supports Paravirtualization for performance boost to run code
directly on the CPU

▪ Type 1 hypervisor

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.31

TYPES OF VIRTUALIZATION - 2

 Hosted vir tual machine monitor (VMM)

▪ Runs atop of hosted operating system

▪ Uses host OS facilities for CPU scheduling, I/O

▪ Full virtualization

▪ Type 2 hypervisor

▪ Virtualbox

 Textbook: note 3.5–good explanation of full vs. paravir tualization

 GOAL: run all user mode instructions directly on the CPU

 x86 instruction set has ~17 privileged user mode instructions

 Full vir tualization: scan the EXE, insert code around privileged
instructions to divert control to the VMM

 Paravirtualization: special OS kernel eliminates side effects of
privileged instructions

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.32

TYPES OF VIRTUALIZATION - 3

31

32

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.17

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.33

EVOLUTION OF AWS VIRTUALIZATION

From ht tp ://www.brenda ngr eg g .com/bl og / 2017 - 1 1- 29/a ws -e c 2- v i r tu a l i zat i on -2017. html

VS:

V i r tualization

In so f tware

P :

Parav ir tual

VH:

V i r tualization

In Hardware

H:

Hardware

 Full Vir tualization - Fully Emulated

▪ Never used on EC2, before CPU extensions for virtualization

▪ Can boot any unmodified OS

▪ Support via slow emulation, performance 2x-10x slower

 Paravirtualization: Xen PV 3.0

▪ Software: Interrupts, timers

▪ Paravirtual: CPU, Network I/O, Local+Network Storage

▪ Requires special OS kernels, interfaces with hypervisor for I/O

▪ Performance 1.1x – 1.5x slower than “bare metal”

▪ Instance store instances: 1ST & 2nd generation- m1.large, m2.xlarge

 Xen HVM 3.0

▪ Hardware virtualization: CPU, memory (CPU VT-x required)

▪ Paravirtual: network, storage

▪ Software: interrupts, timers

▪ EBS backed instances

▪ m1, c1 instances

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.34

AWS VIRTUALIZATION - 2

33

34

http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.18

 XEN HVM 4.0.1

▪ Hardware virtualization: CPU, memory (CPU VT-x required)

▪ Paravirtual: network, storage, interrupts, timers

 XEN AWS 2013 (diverges from opensource XEN)

▪ Provides hardware virtualization for CPU, memory, network

▪ Paravirtual: storage, interrupts, timers

▪ Called Single root I/O Virtualization (SR-IOV)

▪ Allows sharing single physical PCI Express device (i.e. network adapter)
with multiple VMs

▪ Improves VM network performance

▪ 3rd & 4th generation instances (c3 family)

▪ Network speeds up to 10 Gbps and 25 Gbps

 XEN AWS 2017

▪ Provides hardware virtualization for CPU, memory, network, local disk

▪ Paravirtual: remote storage, interrupts, timers

▪ Introduces hardware virtualization for EBS volumes (c4 instances)

▪ Instance storage hardware virtualization (x1.32xlarge, i3 family)

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.35

AWS VIRTUALIZATION - 3

 AWS Nitro 2017

▪ Provides hardware virtualization for CPU, memory, network, local

disk, remote disk, interrupts, timers

▪ All aspects of virtualization enhanced with HW-level support

▪ November 2017

▪ Goal: provide performance indistinguishable from “bare metal”

▪ 5th generation instances – c5 instances (also c5d, c5n)

▪ Based on KVM hypervisor

▪ Overhead around ~1%

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.36

AWS VIRTUALIZATION - 4

35

36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.19

 Questions from 1/26

 Assignment 1: Key/Value Store

▪ Coming Soon

 Midterm Thursday February 9

▪ 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.37

OBJECTIVES – 1/31

WE WILL RETURN AT

2:40PM

37

38

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.20

CH. 3.3: CLIENTS

L9.39

 Thick clients

▪Web browsers

▪ Client-side scripting

▪Mobile apps

▪Multi-tier MVC apps

 Thin clients

▪Remote desktops/GUIs (very thin)

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.40

TYPES OF CLIENTS

39

40

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.21

 Application specific protocol

▪ Thick clients

▪ Clients maintain local data

▪ Middleware (APIs)

▪ Clients synchronize data with remote nodes

▪ Example: shared calendar application

 Application independent

▪ Thin clients

▪ Client acts as a remote terminal

▪ Provides interface to user (GUI / UI)

▪ Server houses entire application stack

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.41

CLIENTS

 Layered architecture to transport UI over network

 Remote desktop functionality for Linux/Unix systems

 X kernel acts as a server

▪ Provides the X protocol: application level protocol

▪ Xlib instances (client applications) exchange data and

events with X kernels (servers)

▪ Clients and servers on single machine → Linux GUI

▪ Client and server communication transported over the

network → remote Linux GUI

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.42

X WINDOWS

41

42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.22

 Window manager:

▪ Application running

atop of X-windows

which provides flair

▪ Many variants

▪ Without X windows is

quite bland

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.43

X WINDOWS - 2

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L9.44

 Layered architecture

 X-kernel: low level

interface/APIs for

controlling screen,

capturing keyboard

and mouse events

(X window Server)

 Provided on Linux

as Xlib

 Provides network

enabled GUI

 Layering allows for

use for custom

window managers

43

44

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.23

 How to Install VNC server on Ubuntu EC2 instance VM:

 sudo apt-get update

 # ubuntu 16.04

 sudo apt-get install ubuntu-desktop

 sudo apt-get install gnome-panel gnome-settings-

daemon metacity nautilus gnome-terminal

 # on ubuntu 18.04

 sudo apt install xfce4 xfce4-goodies

 sudo apt-get install tightvncserver # both

 Start VNC server to create initial config file

 vncserver :1

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.45

EXAMPLE: VNC SERVER

 On the VM: edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 16.04):

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.46

EXAMPLE: VNC SERVER – UBUNTU 16.04

#!/bin/sh

export XKL_XMODMAP_DISABLE=1

unset SESSION_MANAGER

unset DBUS_SESSION_BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup

[-r $HOME/.Xresources] && xrdb $HOME/.Xresources

xsetroot -solid grey

vncconfig -iconic &

gnome-panel &

gnome-settings-daemon &

metacity &

nautilus &

gnome-terminal &

45

46

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.24

 On the VM:

 Edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 18.04):

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.47

EXAMPLE: VNC SERVER – UBUNTU 18.04

#!/bin/bash

xrdb $HOME/.Xresources

startxfce4 &

install vnc server

sudo apt install tigervnc-standalone-server

sudo apt install ubuntu-gnome-desktop

vncserver :1 # creates a config file

vncserver -kill :1 # stop server

vi ~/.vnc/xstartup # edit config file

#!/bin/sh

Start Gnome 3 Desktop

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup

[-r $HOME/.Xresources] && xrdb $HOME/.Xresources

vncconfig -iconic &

dbus-launch --exit-with-session gnome-session &

sudo systemctl start gdm # start gnome desktop

sudo systemctl enable gdm

vncserver :1 # restart vnc server

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.48

VNC SERVER - UBUNTU 20.04 - GNOME

47

48

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.25

 On the VM: reload config by restarting server

 vncserver -kill :1

 vncserver :1

 Open port 22 & 5901 in EC2 security group:

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.49

EXAMPLE: VNC SERVER - 3

 On the client (e.g. laptop):

 Create SSH connection to securely forward port 5901 on the

EC2 instance to your localhost port 5901

 This way your VNC client doesn’t need an SSH key

ssh –i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N

-f -l <username> <EC2-instance ip_address>

 For example:

ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -

l ubuntu 52.111.202.44

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.50

EXAMPLE: VNC CLIENT

49

50

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.26

 On the client (e.g. laptop):

 Use a VNC Client to connect

 Remmina is provided by default on Ubuntu 16.04

 Can “google” for many others

 Remmina login:

 Chose “VNC” protocol

 Log into “localhost:5901”

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.51

EXAMPLE: VNC CLIENT - 2

 EC2 instance

with a GUI. . .!!!

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.52

REMOTE COMPUTER IN THE CLOUD

51

52

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.27

 Thin clients

▪ X windows protocol

▪ A variety of other remote desktop protocols exist:

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.53

THIN CLIENTS

 Applications should separate application logic from UI

 When application logic and UI interaction are tightly coupled

many requests get sent to X kernel

 Client must wait for response

 Synchronous behavior and app-to-UI coupling adverselt affects

performance of WAN / Internet

 Protocol optimizations: reduce bandwidth by shrinking size of

X protocol messages

 Send only dif ferences between messages with same identifier

 Optimizations enable connections with 9600 kbps

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.54

THIN CLIENTS - 2

53

54

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.28

 Virtual network computing (VNC)

 Send display over the network at the pixel level

(instead of X lib events)

 Reduce pixel encodings to save bandwidth – fewer colors

 Pixel-based approaches loose application semantics

 Can transport any GUI this way

 THINC- hybrid approach

 Send video device driver commands over network

 More powerful than pixel based operations

 Less powerful compared to protocols such as X

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.55

THIN CLIENTS - 3

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.56

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib

VNC X11

55

56

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.29

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.57

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11

● Generic – no app context ● Application context

● Graphics data is available

● Higher network bandwidth ● UI data/operations

● Fewer colors ● Lower network bandwidth

● Utilize graphics compression ● More colors

● More network traffic

 Clients help enable distribution transparency of servers

 Replication transparency

▪ Client aggregates responses from multiple servers

▪ Only the client knows of replicas

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.58

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY

57

58

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.30

 Location/relocation/migration transparency

▪ Harness convenient naming system to allow client to infer new

locations

▪ Server inform client of moves / Client reconnects to new endpoint

▪ Client hides network address of server, and reconnects as needed

▪ May involve temporary loss in performance

 Replication transparency

▪ Client aggregates responses from multiple servers

 Failure transparency

▪ Client retries, or maps to another server, or uses cached data

 Concurrency transparency

▪ Transaction servers abstract coordination of multithreading

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.59

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY - 2

 Questions from 1/26

 Assignment 1: Key/Value Store

▪ Coming Soon

 Midterm Thursday February 9

▪ 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.60

OBJECTIVES – 1/31

59

60

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.31

CH. 3.4: SERVERS

L9.61

 Cloud & Distributed Systems – rely on Linux

 http://www.zdnet.com/article/it -runs-on-the-cloud-and-the-

cloud-runs-on-linux-any-questions/

 IT is moving to the cloud. And, what powers the cloud?

▪Linux

 Uptime Institute survey - 1,000 IT executives (2016)

▪ 50% of IT executives – plan to migrate majority of IT workloads to

off-premise to cloud or colocation sites

▪ 23% expect the shift in 2017, 70% by 2020…

 Docker on Windows / Mac OS X

▪ Based on Linux

▪ Mac: Hyperkit Linux VM

▪ Windows: Hyper-V Linux VM

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.62

SERVERS

61

62

http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.32

 Servers implement a specific service for a collection of clients

 Servers wait for incoming requests, and respond accordingly

 Server types

 Iterative: immediately handle client requests

 Concurrent: Pass client request to separate thread

 Multithreaded servers are concurrent servers

▪ E.g. Apache Tomcat

 Alternative : fork a new process for each incoming request

 Hybrid : mix the use of multiple processes with thread pools

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.63

SERVERS - 2

 Clients connect to servers via:

IP Address and Port Number

 How do ports get assigned?

▪Many protocols support “default” port numbers

▪ Client must find IP address(es) of servers

▪ A single server often hosts multiple end points

(servers/services)

▪When designing new TCP client/servers must be careful

not to repurpose ports already commonly used by others

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.64

END POINTS

63

64

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.33

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.65

Daemon server

▪ Example: NTP server

Superserver

Stateless server

▪ Example: Apache server

Stateful server

Object servers

EJB servers

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.66

TYPES OF SERVERS

65

66

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.34

 Daemon servers

▪ Run locally on Linux

▪ Track current server end points (outside servers)

▪ Example: network time protocol (ntp) daemon

▪ Listen locally on specific port (ntp is 123)

▪ Daemons routes local client traffic to the configured

endpoint servers

▪ University of Washington: time.u.washington.edu

▪ Example “ntpq –p”

▪ Queries local ntp daemon, routes traffic to configured server(s)

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.67

NTP EXAMPLE

 Linux inetd / xinetd

▪ Single superserver

▪ Extended internet service daemon

▪ Not installed by default on Ubuntu

▪ Intended for use on server machines

▪ Used to configure box as a server for multiple internet services

▪ E.g. ftp, pop, telnet

▪ inetd daemon responds to multiple endpoints for multiple
services

▪ Requests fork a process to run required executable program

 Check what ports you’re listening on:

▪ sudo netstat -tap | grep LISTEN

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.68

SUPERSERVER

67

68

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.35

 Server design issue:

▪ Active client/server communication is taking place over a port

▪ How can the server / data transfer protocol support interruption?

 Consider transferring a 1 GB image, how do you pass a

unrelated message in this stream?

1. Out-of-band data: special messages sent in-stream to support

interrupting the server (TCP urgent data)

2. Use a separate connection (different port) for admin control info

 Example: sftp secure file transfer protocol

▪ Once a file transfer is started, can’t be stopped easily

▪ Must kill the client and/or server

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.69

INTERRUPTING A SERVER

 Data about state of clients is not stored

 Example: web application servers are typically stateless

▪ Also function-as-a-service (FaaS) platforms

 Many servers maintain information on clients (e.g. log files)

 Loss of stateless data doesn’t disrupt server availability

▪ Loosing log files typically has minimal consequences

 Soft state: server maintains state on the client for a limited

time (to support sessions)

 Soft state information expires and is deleted

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.70

STATELESS SERVERS

69

70

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.36

 Maintain persistent information about clients

 Information must be explicitly deleted by the server

 Example:

File server - allows clients to keep local file copies for RW

 Server tracks client file permissions and most recent versions

▪ Table of (client, file) entries

 If server crashes data must be recovered

 Entire state before a crash must be restored

 Fault tolerance - Ch. 8

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.71

STATEFUL SERVERS

 Session state

▪ Tracks series of operations by a single user

▪ Maintained temporarily, not indefinitely

▪ Often retained for multi-tier client server applications

▪ Minimal consequence if session state is lost

▪ Clients must start over, reinitialize sessions

 Permanent state

▪ Customer information, software keys

 Client-side cookies

▪ When servers don’t maintain client state, clients can store state

locally in “cookies”

▪ Cookies are not executable, simply client -side data

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.72

STATEFUL SERVERS - 2

71

72

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.37

 OBJECTIVE: Host objects and enable remote client access

 Do not provide a specific service

▪ Do nothing if there are no objects to host

 Support adding/removing hosted objects

 Provide a home where objects live

 Objects, themselves , provide “services”

 Object parts

▪ State data

▪ Code (methods, etc.)

 Transient object(s)

▪ Objects with limited lifetime (< server)

▪ Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”).

▪ Disadvantage: initialization may be expensive

▪ Alternative: preinitialize and retain objects on server start -up

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.73

OBJECT SERVERS

 Should object servers isolate memory for object instances?

▪ Share neither code nor data

▪ May be necessary if objects couple data and implementation

 Object server threading designs:

▪ Single thread of control for object server

▪ One thread for each object

▪ Servers use separate thread for client requests

 Threads created on demand vs.
Server maintains pool of threads

 What are the tradeof fs for creating server threads on demand vs.
using a thread pool?

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.74

OBJECT SERVERS - 2

73

74

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.38

 EJB- specialized Java object hosted by a EJB web container

 4 types: stateless, stateful, entity, and message-driven beans

 Provides “middleware” standard (framework) for implementing
back-ends of enterprise applications

 EJB web application containers integrate support for:

▪ Transaction processing

▪ Persistence

▪ Concurrency

▪ Event-driven programming

▪ Asynchronous method invocation

▪ Job scheduling

▪ Naming and discovery services (JNDI)

▪ Interprocess communication

▪ Security

▪ Software component deployment to an application server

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.75

EJB – ENTERPRISE JAVA BEANS

 Highly configurable, extensible, platform independent

 Supports TCP HTTP protocol communication

 Uses hooks – placeholders for group of functions

 Requests processed in phases by hooks

 Many hooks:

▪ Translate a URL

▪ Write info to log

▪ Check client ID

▪ Check access rights

 Hooks processed in order

enforcing flow-of-control

 Functions in replaceable

modules

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.76

APACHE WEB SERVER

Hooks point to functions in modules

75

76

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.39

 Hosted across an LAN or WAN

 Collection of interconnected machines

 Can be organized in tiers:

▪ Web server → app server → DB server

▪ App and DB server sometimes integrated

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.77

SERVER CLUSTERS

 Front end of three tier architecture (logical switch) provides

distribution transparency – hides multiple servers

 Transport-layer switches: switch accepts TCP connection

requests, hands off to a server

▪ Example: hardware load balancer (F5 networks – Seattle)

▪ HW Load balancer - OSI layers 4-7

 Network-address-translation (NAT) approach:

▪ All requests pass through switch

▪ Switch sits in the middle of the client/server TCP connection

▪ Maps (rewrites) source and destination addresses

 Connection hand-off approach:

▪ TCP Handoff: switch hands of connection to a selected server

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.78

LAN REQUEST DISPATCHING

77

78

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.40

 Who is the best server to handle the request?

 Switch plays important role in

distributing requests

 Implements load balancing

 Round-robin – routes client

requests to servers in a looping

fashion

 Transport-level – route client

requests based on TCP port number

 Content-aware request distribution – route requests based on

inspecting data payload and determining which server node

should process the request

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.79

LAN REQUEST DISPATCHING - 2

 Deployed across the internet

 Leverage resource/infrastructure from Internet Service

Providers (ISPs)

 Cloud computing simplifies building WAN clusters

 Resource from a single cloud provider can be combined to

form a cluster

 For deploying a cloud-based cluster (WAN), what are the

implications of deploying nodes to:

 (1) a single availability zone (e.g. us -east-1e)?

 (2) across multiple availability zones?

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.80

WIDE AREA CLUSTERS

79

80

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.41

 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System

▪ Hierarchical decentralized naming system

 Linux: find your DNS servers:

Find you device name of interest

nmcli dev

Show device configuration

nmcli device show <device name>

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.81

WAN REQUEST DISPATCHING

 First query local server(s) for address

 Typically there are (2) local DNS servers

▪ One is backup

 Hostname may be cached at local DNS server
▪ E.g. www.google.com

 If not found, local DNS server routes to other servers

 Routing based on components of the hostname

 DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

 Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.82

DNS LOOKUP

81

82

http://www.google.com/

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.42

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L9.83

 nslookup <ip addr / hostname>

 Name server lookup – translates hostname or IP to the inverse

 traceroute <ip addr / hostname>

 Traces network path to destination

 By default, output is limited to 30 hops, can be increased

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.84

DNS: LINUX COMMANDS

83

84

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.43

 Ping www.google.com in WA from wireless network:

▪ nslookup: 6 alternate addresses returned, choose (74.125.28.147)

▪ Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:

▪ nslookup: 1 address returned, choose 172.217.9.196

▪ Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us -east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.85

DNS EXAMPLE – WAN DISPATCHING

 Ping www.google.com in WA from wireless network:

▪ nslookup: 6 alternate addresses returned, choose (74.125.28.147)

▪ Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:

▪ nslookup: 1 address returned, choose 172.217.9.196

▪ Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us -east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.86

DNS EXAMPLE – WAN DISPATCHING

Latency to ping VA server in WA: ~3.63x
WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x
VA client: local-google 1.278ms to WA-google 62.349!

85

86

http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 31, 2023

Slides by Wes J. Lloyd L9.44

QUESTIONS

January 31, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L9.87

87

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/31
	Slide 3: Online daily feedback survey
	Slide 4: Survey questions
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 1/26
	Slide 8: Feedback - 2
	Slide 9: Feedback - 3
	Slide 10: Feedback - 4
	Slide 11: Feedback - 5
	Slide 12: Assignment 0
	Slide 13: Testing connectivity to server
	Slide 14: OBJECTIVES – 1/31
	Slide 15: OBJECTIVES – 1/31
	Slide 16: OBJECTIVES – 1/31
	Slide 17: Ch. 3: processes Ch. 3.1: threads
	Slide 18: OBJECTIVES – 1/31
	Slide 19: Multithreaded clients
	Slide 20: Multiple threads
	Slide 21: Process metrics
	Slide 22: Load average
	Slide 23: Thread-level parallelism
	Slide 24: Multithreaded servers
	Slide 25: Single thread & fsm servers
	Slide 26: Server design alternatives
	Slide 27: OBJECTIVES – 1/31
	Slide 28: Ch. 3.2: virtualization
	Slide 29: virtualization
	Slide 30: Types of virtualization
	Slide 31: Types of virtualization - 2
	Slide 32: Types of virtualization - 3
	Slide 33: Evolution of Aws virtualization
	Slide 34: Aws virtualization - 2
	Slide 35: Aws virtualization - 3
	Slide 36: Aws virtualization - 4
	Slide 37: OBJECTIVES – 1/31
	Slide 38: We will return at 2:40pm
	Slide 39: Ch. 3.3: clients
	Slide 40: Types of clients
	Slide 41: clients
	Slide 42: X windows
	Slide 43: X windows - 2
	Slide 44
	Slide 45: EXAMPLE: Vnc server
	Slide 46: Example: Vnc server – ubuntu 16.04
	Slide 47: Example: Vnc server – ubuntu 18.04
	Slide 48: Vnc server - ubuntu 20.04 - gnome
	Slide 49: Example: Vnc server - 3
	Slide 50: Example: Vnc client
	Slide 51: Example: Vnc client - 2
	Slide 52: Remote computer in the cloud
	Slide 53: Thin Clients
	Slide 54: Thin clients - 2
	Slide 55: Thin clients - 3
	Slide 56: Tradeoffs: abstraction of remote display protocols
	Slide 57: Tradeoffs: abstraction of remote display protocols
	Slide 58: Client roles in providing distribution transparency
	Slide 59: Client roles in providing distribution transparency - 2
	Slide 60: OBJECTIVES – 1/31
	Slide 61: Ch. 3.4: servers
	Slide 62: servers
	Slide 63: Servers - 2
	Slide 64: End points
	Slide 65
	Slide 66: Types of servers
	Slide 67: Ntp example
	Slide 68: Superserver
	Slide 69: Interrupting a server
	Slide 70: Stateless servers
	Slide 71: Stateful servers
	Slide 72: Stateful servers - 2
	Slide 73: Object servers
	Slide 74: Object servers - 2
	Slide 75: Ejb – enterprise java beans
	Slide 76: Apache web server
	Slide 77: Server clusters
	Slide 78: Lan Request dispatching
	Slide 79: Lan Request dispatching - 2
	Slide 80: Wide area clusters
	Slide 81: Wan request dispatching
	Slide 82: Dns lookup
	Slide 83
	Slide 84: Dns: Linux commands
	Slide 85: Dns example – wan dispatching
	Slide 86: Dns example – wan dispatching
	Slide 87: Questions

