TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
|

Processes:
Threads & Virtualization,
Clients & Servers

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

January 26, 2023

OBJECTIVES - 1/26

|- Questlons from 1/26|

= Assignment O: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= Assignment 1: Key/Value Store - Next Week
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCss558: Applied Distributed Computing [Winter 2023]
fanuanvaci202s School of Engineering and Technology, University of Washington - Tacoma 182

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 10p

= Thursday surveys: due ~ Mon @ 10p

== TCSS558A » Assignments

Home

* Upcoming Assignments

o TCSS 558 - Online Daily Feedback Survey - 1/5

ot avalsbie undil Jan 5 ot 1:30pm | Bue Jan 6 at 10pm

TCSS558: Applied Distributed Computing [Winter 2023]
‘ L y2s 202 School of Engineering and Technology, University of Washington - Tacoma 83

SURVEY QUESTIONS

= Survey has two questions:

= Add questions about the previous class to the
second question

= 1st question: After today’s class, comment on any new
concepts that you learned about?

= It is helpful to know what is new, useful, less useful...

= 2nd question: After today’s class, what point(s) remain least
clear to you?

= >> Please add questlons HERE

TCSS558: Applied Distributed Computing [Winter 2023]
fanuanv2eizo2s School of Engineering and Technology, University of Washington - Tacoma 184

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan &6 at 10pm Points 1 Questions 4
Available Jan 5 at 1:30pm - Jan 6 at 11:59m 1dsy Time Limit None
Question 1 0.5 pts

Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 3 4 5 8 7 8 8 18
mestiy equu1 mastly
Question 2 a5 pis

Please rate the pace of today's class:

1 2 3 4 s 3 7 8 ® 10

P et might Past

TCSS558: Applied Distributed Computing [Winter 2023]

SEIIETERL 2 School of Engineering and Technology, University of Washington - Tacoma L85

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (31 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.60 (T - previous 6.56)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.77 (T - previous 5.58)

TCSS558: Applied Distributed Computing [Winter 2023]
ELERFRETD School of Engineering and Technology, University of Washington - Tacoma e

Slides by Wes J. Lloyd

L8.1

TCSS 558: Applied Distributed Computing January 26, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

FEEDBACK FROM 1/24 FEEDBACK - 2

= On slide 35, could you please clarify as to what Is n In the formula

= Compute finger table for n10: no

n3, would [t be n=6 for n62? g - = The mod now must be considered " 3
= nis the node ID n1 ® n is the node ID
= Yes, n would be 6, for node 6 (n6) = m = number of hash bits = 4 né
= for i=0 to m-1 n10 n6 iy

jth i ith i is fi = i m)
= " entry in FT for node.wnh id n is first node >= (n+2)(mod 2™) = N10 finger table for i=0 to m-1
= m = number of hash bits . .
= N3 finger table = i (start) ft[i] (node)
= j (start) ft[i] (node) = (10+2°=11) (mod 2™) n13 (first node going clockwise from i)
= (3+2°=4)(mod 2™) n6 (first node going clockwise from i) = (10+2'=12) (mod 2™) ni3 (first node going clockwise from i)
= (3+21=5)(mod 2™) n6 (first node going clockwise from i) = (10+22=14) (mod 2™) n0 (first node going clockwise from i)
= (3+22=7)(mod 2™) n10 (first node going clockwise from i) = (10+23=18) (mod 2™) n3 (first node going clockwise from i)

= (3+23=11)(mod 2™) n13 (first node going clockwise from i)

Note: the mod does nothing here ...
TCSS558: Applied Distributed Computing Winter 2023] TCss558: Applied Distributed Computing [Winter 2023]
anuany2672023 School of Engineering and Technology, University of Washington - Tacoma 187 fanuanvaci202s School of Engineering and Technology, University of Washington - Tacoma 18

FEEDBACK - 2 OBJECTIVES - 1/26

= Are there any empirical studies showing the success of policy- " Questions from 1/26

based search methods over floodIng or random walks? = Assignment O: Cloud Computing Infrastructure Tutorial
= How should ‘success’ be defined? = New testFibService.sh script

= Success could mean many things.
= Success could be fulfilling functional requirements w/o bugs
= Success could be meeting various distributed systems goals:

= Assignment 1: Key/Value Store - Next Week
= Chapter 3: Processes

distribution transparency, accessibility, availability, etc. * Chapter 3.1: Threads

= Success could be having better performance vs. Context Switches
unstructured peer-to-peer systems communicating with Threading Models
flooding or random walk - What is performance? Multithreaded clients/servers
= communication round-trip-time

= Chapter 3.2: Virtualization
= volume/throughput (transactions/second) = Chapter 3.3: Clients

= network latency (overhead) = Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]

‘ e 2si202s School of Engineering and Technology, University of Washington - Tacoma v e School of Engineering and Technology, University of Washington - Tacoma

ASSIGNMENT O TESTING CONNECTIVITY TO SERVER

= Preparing for Assignment O: = testFibPar.sh script is a parallel test script

= Establish AWS Account = Orchestrates multiple threads on client to invoke server

Standard account multiple times in parallel
= Complete AWS Cloud Credits Survey and provide AWS account ID = To simplify coordinate of parallel service calls in BASH,
= Credits will be automatically loaded by Amazon into accounts testFlbPar.sh script ignores errors !!!
= Tasks:

= Task 1 - Establish local Linux/Ubuntu environment

= Task 2 -AWS account setup, obtain user credentials

= Task 3 - Intro to: Amazon EC2 & Docker: create Dockerfile for = TEST 1: Network layer

Apache Tomcat = Ping (ICMP)
= Task 4 - Create Dockerfile for haproxy ® TEST 2: Transport layer

=Task 5 - worl’fing with ,DOt:ker.MaChin? = TCP: telnet (TCP Port 8080) - security group (firewall) test
= Task 6 - Config 3 multiple server configs to load balance

= To help test client-to-server connectivity, have created a new
testFibService.sh script

requests for RESTful Fibonacci web service = TEST 3: Application Ialyer
= Task 7 - Test configs and submit results * HTTP REST - web service test
TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ R ers School of Engineering and Technology, University of Washington - Tacoma s ‘ ORERETD School of Engineering and Technology, University of Washington - Tacoma w

Slides by Wes J. Lloyd L8.2

TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 1/26

= Questlons from 1/26

= Assignment 0: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

| = Assignment 1: Key/Value Store -|[Next Week
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing Winter 2023]
anuany2672023 School of Engineering and Technology, University of Washington - Tacoma 1813

13

REVIEW QUESTIONS

= What is difference in finding/disseminating data in
unstructured vs. structured peer-to-peer networks?
= Structured: can grasp the number of messages required based on
the organization and structure of the system
= Fixed hypercube
= Chord system

= Unstructured: requires broadcast like message schemes that gossip
to find/di inate data: Flooding, Rand walk

TCSS558: Applied Distributed Computing [Winter 2023]
2202 School of Engineering and Technology, University of Washington - Tacoma 171

15

< Activities

D visual settings @ Edic < >

@ When poll is active, respond at PollEv.com/wesleylloydsa1

On search, which system is most likely to be unable to
locate data in the distributed system?

Total Resuls: 0

powered by @) Poll Everywhere

17

Slides by Wes J. Lloyd

January 26, 2023

CH 2.3: SYSTEM
ARCHITECTURES

January 24,2023 TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington -

14

L] < activities

D visual settings @ Edic <

@ When poll is active, respond at PollEv.com/wesleylloydsd1
o
For a peer-to-peer system, which communication

approach will exchange the highest number of

messages across the system to disseminate or find
information?

Tots Rests: 0
powered by @) Poll Everywhere

16

[1:] < activities

= @ When poll is active, respond at PollEv.com/wesleylloyd641

Which system requires the least effort to add a new
node?

Total Results:0

powered by @) Poll Everywhere

€3 visual settings @ Edit < >

18

L8.3

TCSS 558: Applied Distributed Computing January 26, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

L] < Activities €D visual settings © edie < > L] < Activities €D visual settings @ edit < >

B @ Respond at PollEv.com/wesleylloydé4l o @ When poll is active, respond at PollEv.com/wesleylloydé41

w Which system features strict constraints regarding

W Which servers/nodes seek to store data very closeto a
how the system can add or remove nodes?

user?

Total Results: 0

Total Results:0
Powered by (]) Poll Everywhere powered by #) Poll Everywhere
L] < Activities A moderate €D visual settings @ Edit < > [1:] < Activities A Moderate €D visual settings @ Edit < >
]

]
& When poll is active, respond at PollEv.com/wesleylloyd641 e @ When poll is active, respond at PollEv.com/wesleylloyd641
G >

-W What are advantages of a decentralized structured

w What are advantages of a decentralized unstructured
peer-to-peer architecture?

peer-to-peer architecture?

Total Results: 0

Tatal Results; 0
powered by @) Poll Everywhere Poviered by @) Poll Everywhere

21 22

OBJECTIVES - 1/26

= Questlons from 1/26

scale
[rueing processes)

= Assignment O: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script Wortiond dventty

= Assignment 1: Key/Value Store - Next Week

| = Chapter 3: Processes |

= Chapter 3.1: Threads

CH. 3: PROCESSES
Context Switches CH- 3-1: THREADS

Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCsS558: Applied Distributed Computing [Winter 2023]
‘ (EFRERED School of Engineering and Technology, University of Washington - Tacoma e

23 24

Slides by Wes J. Lloyd L8.4

TCSS 558:

Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 26, 2023

CHAPTER 3

= Chapter 3 titled “processes”

= Covers variety of distributed system implementation
details

= “Grab bag” of topics

= Processes/threads
= Virtualization

= Clients

= Servers

= Code migration

TCSS558: Applied Distributed Computing Winter 2023]
anuany2672023 School of Engineering and Technology, University of Washington - Tacoma 1825

OBJECTIVES - 1/26

= Questlons from 1/26
= Assignment O: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script
= Assignment 1: Key/Value Store - Next Week
= Chapter 3: Processes
|__= Chapter 3.1: Threads]
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2023] 1826

fanuanvaci202s School of Engineering and Technology, University of Washington - Tacoma

25

26

CH. 3.1 - THREADS

(.

= For implementing a server (or client) threads offer many
advantages vs. heavy weight processes

= What Is the dlfference between a process and a thread?
= (review?) from Operating Systems

= Key difference: what do threads share amongst each other
that processes do not.... ?

= What are the segments of a program stored In memory?
= Heap segment (dynamic shared memory)
= Code segment
= Stack segment
= Data segment (global variables)

TCSS558: Applied Distributed Computing [Winter 2023]
January26;2023 School of Engineering and Technology, University of Washington - Tacoma 827

(.

= Do several processes on an operating system share...
= Heap segment?
= Stack segment?
= Code segment?

1 f th m ?

= These may be managed as shared pages (across processes) in
memory

run multipl

= Processes are isolated from each other by the 0S
= Each has a separate heap, stack, code segment

TCSS558: Applied Distributed Computing [Winter 2023] 1828

‘ January26;2023 School of Engineering and Technology, University of Washington - Tacoma

27

(.

= Threads avoid the overhead of process creation
= No new heap or code segments required

= What is a context switch?

= Context switching among threads is considered to be more
efficient than context switching processes

= Less elements to swap-in and swap-out

= Unikernel: specialized single process 0S for the cloud
= Example: Osv, Clive, MirageOS (see:
= Single process operating system with many threads

= Developed for the cloud to run only one application at a time

TCs5558: Applied Distributed Computing [Winter 2023]

R ers School of Engineering and Technology, University of Washington - Tacoma

29

Slides by Wes J. Lloyd

28

OSV: ONE PROCESS, MANY THREADS

TCSS558: Applied Distributed Computing [Winter 2023] o0

‘ ORERETD School of Engineering and Technology, University of Washington - Tacoma

30

L8.5

http://unikernel.org/projects/

TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,

UW-Tacoma

January 26, 2023

THREADS - 4

= Important implications with threads:

® (1) multi-threading should lead to performance gains

= (2) thread programming requires additional effort when
threads share memory
= Known as thread synchronlzatlon, or enabling concurrency

= Access to critlcal sectlons of code which modify shared
variables must be mutually exclusive
= No more than one thread can execute at any given time
= Critical sections must run atomlically on the CPU

TCSS558: Applied Distributed Computing Winter 2023]
‘ anuany2672023 School of Engineering and Technology, University of Washington - Tacoma 1831

BLOCKING THREADS

= Example: spreadsheet with formula to compute sum of column
= User modifies values in column

= Multiple threads:

1. Supports interaction (Ul) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

= Single core CPU

= Tasks appear as if they are performed simultaneously
= Multi core CPU

= Tasks execute simultaneously

TCSS558: Applied Distributed Computing [Winter 2023] 1532

fanuanvaci202s School of Engineering and Technology, University of Washington - Tacoma

31

INTERPROCESS COMMUNICATION

= |PC - mechanism using pipes, message queues, and shared
memory segments

= |[PC mechanisms incur context switching
= Process /0 must execute in kernel mode

= How man ntext switch re requlired for pr A
send a message to process B using IPC?
ProssA ProcsssB
= #1 C/S:

Proc A>kernel thread
S1: Switch from user space
- 1o kemel space |

#2C/S:
Kernel thread->Proc B

S3: Switch from kemed
space ko user spac

-
Gperating system ™

52: Switch comext from
process A fo process

TCsS558: Applied Distributed Computing [Winter 2023] 1833
School of Engineering and Technology, University of Washington - Tacoma

January 26, 2023

33

CONTEXT SWITCHING

= Direct overhead
= Time spent not executing program code (user or kernel)
= Time spent executing interrupt routines to swap memory segments
of different processes (or threads) in the CPU
= Stack, code, heap, registers, code pointers, stack pointers
= Memory page cache invalidation

= Indirect overhead
= Overhead not directly attributed to the physical actions of the
context switch

= Captures performance degradation related to the side effects of
context switching (e.g. rewriting of memory caches, etc.)

= Primarily cache perturbation

TCs5558: Applied Distributed Computing [Winter 2023] o35

‘ (EFRERED School of Engineering and Technology, University of Washington - Tacoma

35

Slides by Wes J. Lloyd

32

OBJECTIVES - 1/26

= Questlons from 1/26

= Assignment O: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= Assignment 1: Key/Value Store - Next Week

= Chapter 3: Processes
= Chapter 3.1: Threads

Context Switches |

Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2023] 1836

January26;2023 School of Engineering and Technology, University of Washington - Tacoma

34

CONTEXT SWITCH -

CACHE PERTURBATION

= Refers to cache reorganization that occurs as a result of a
context switch

= Cache is not clear, but elements from cache are removed as a
result of another program running in the CPU

= 80% performance overhead from context switching results
from this “cache perturbation”

TCSS558: Applied Distributed Computing [Winter 2023] o6

ORERETD School of Engineering and Technology, University of Washington - Tacoma

36

L8.6

TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,

UW-Tacoma

January 26, 2023

OBJECTIVES - 1/26

= Questlons from 1/26

= Assignment 0: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= Assignment 1: Key/Value Store - Next Week
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
| Threading Models |
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing Winter 2023]
‘ anuany2672023 School of Engineering and Technology, University of Washington - Tacoma 1837

THREADING MODELS

= Many-to-one threading: multiple user-level threads per process
= Thread operations (create, delete, locks) run in user mode

= Multithreaded process mapped to single schedulable entity

= Only run thread per process runs at any given time

= Key take-away: thread management handled by user processes

= What are some advantages of many-to-one threading?

= What are some dlsadvantages?

TCSS558: Applied Distributed Computing [Winter 2023] 1538

‘ fanuanvaci202s School of Engineering and Technology, University of Washington - Tacoma

37

THREADING MODELS - 2

= One-to-one threading: use of separate kernel threads for each
user process - also called kernel-level threads

The kernel API calls (e.g. 1/0, locking) are farmed out to an
existing kernel level thread

Thread operations (create, delete, locks) run in kernel mode
Threads scheduled individually by the 0OS

System calls required, context switches as expensive as
process context switching

= |dea is to have preinitialized kernel threads for user processes
® Linux uses this model...

= What are some advantages of one-to-one threading?
= What are some disadvantages?

TCSS558: Applied Distributed Computing [Winter 2023] 1539

‘ L y2s 202 School of Engineering and Technology, University of Washington - Tacoma

39

WE WILL RETURN AT
2:40PM

41

Slides by Wes J. Lloyd

38

APPLICATION EXAMPLES

= Google chrome: processes
= Apache tomcat webserver: threads

= Multiprocess programming avoids synchronization of
concurrent access to shared data, by providing coordination
and data sharing via interprocess communication (IPC)

= Each process maintains its own private memory

= While this approach avolds synchronizing concurrent access to
shared memory, what Is the tradeoff(s) ??
= Replication instead of synchronization - must synchronize multiple
copies of the data

= Do distrlbuted objects share memory?

‘ T) TCss558: Applied Distributed Computing [Winter 2023] o0

School of Engineering and Technology, University of Washington - Tacoma

40

OBJECTIVES - 1/26

= Questlons from 1/26
= Assignment 0: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script
= Assignment 1: Key/Value Store - Next Week
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
| Multithreaded cllents/servers |
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2023] a2

‘ ELERFRETD School of Engineering and Technology, University of Washington - Tacoma

42

L8.7

TCSS 558: Applied Distributed Computing January 26, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

MULTIPLE THREADS

MULTITHREADED CLIENTS

= Web browser = |n Linux, threads also receive a process ID (PID)
= Uses threads to load and render portions of a web page to the = To display threads of a process in Linux:
user in parallel
= A client could have dozens of concurrent connections all . L.
loading in parallel = |dentify parent process explicitly:
= testFlbPar.sh = top -H -p <pid>
= Assignment O client script (GNU parallel) = htop -p <pid>
= ps -iT <pid>
= Important benefits:
= Several connections can be opened simultaneously = Virtualbox process ~ 44 threads
= Client: dozens of concurrent connections to the webserver all

Ferhing Gk) el = No mapping to guest # of processes/threads

TCSS558: Applied Distributed Computing Winter 2023] TCss558: Applied Distributed Computing [Winter 2023]
‘ anuany2672023 School of Engineering and Technology, University of Washington - Tacoma 1843 fanuanvaci202s School of Engineering and Technology, University of Washington - Tacoma 184t

43 44

PROCESS METRICS LOAD AVERAGE

dsr: disk sector reads " Reported by: top, htop, w, uptime, and /proc/loadavg

- dsreads: disk sector reads completed = Updated every 5 seconds
- drm: merged adjacent disk reads = Average number of processes using or waiting for the CPU
- readtime: time spent reading from . .
CPU disk = Three numbers show exponentially decaying usage
-cpulUsr: CPU time in user mode - dsw: disk sector writes for 1 minute, 5 minutes, and 15 minutes
-cpuKrn: CPU time in kernel mode dswrites: disk sector writes completed = One minute average: exponentially decaying average
-cpuldle: CPU idle time -clw_m .mergfed adjacent "!'?k“'"te_s = Load average = 1 = (avg last minute load) — 1/e = (avg load since boot)
- writetime: time spent writing to disk
- cpulntSrvc: CPU time serving interrupts
- cpuSftintSrve: CPU time serving soft mterrupts Network = 1.0 = 1-CPU core fully loaded
- cpuNice: CPU time executing prio - nbs: network bytes sent = 2.0 = 2.CPU cores
processes - nbr: network bytes received
CPU ticks lost to virtualized guests = 3.0 = 3-CPU cores . . .
of context switches
-loadavg: (avg # proc / 60 secs)

TCSS558: Applied Distributed Computing [Winter 2023]
‘ January26;2023 School of Engineering and Technology, University of Washington - Tacoma 1845

46

THREAD-LEVEL PARALLELISM MULTITHREADED SERVERS

= Metric - measures degree of parallelism realized by running = Multiple threads essential for servers in distributed systems
system, by calculating average utilization: = Even on single-core machines greatly improves performance
N = Take advantage of idle/blocking time
Ei: 16 = Two designs:
TLP = =/———
1— co = Generate new thread for every request
= Thread pool - pre-initialize set of threads to service requests

= Ci - fraction of time that exactly | threads are executed Dispatcher e

Server

= N - maximum threads that can execute at any one time

= Web browsers found to have TLP from 1.5 to 2.5

= Clients for web browsing can utilize from 2 to 3 CPU cores
= Any more cores are redundant, and potentially wasteful

= Measure TLP to understand how many CPUs to provision

TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ (EFRERED School of Engineering and Technology, University of Washington - Tacoma e ELERFRETD School of Engineering and Technology, University of Washington - Tacoma e

Warker thread

Operating system

47 48

Slides by Wes J. Lloyd L8.8

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 26, 2023

SINGLE THREAD & FSM SERVERS

= Single thread server
= A single thread handles all client requests
= BLOCKS for I/0
= All waiting requests are queued until thread is available

= Finite state machine
= Server has a single thread of execution
=1/0 performing asynchronously (non-BLOCKing)
= Server handles other requests while waiting for 1/0
= Interrupt fired with 1/0 completes
=Single thread “jumps” back into context to finish request

TCSS558: Applied Distributed Computing Winter 2023]
‘ anuany2672023 School of Engineering and Technology, University of Washington - Tacoma 1849

49

OBJECTIVES - 1/26

= Questlons from 1/26

= Assignment O: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= Assignment 1: Key/Value Store - Next Week
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
| = Chapter 3.2: Virtualization |
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

‘ January 26, 2023

51

VIRTUALIZATION

= |nitially introduced in the 1970s
on IBM mainframe computers

= Legacy operating systems run in mainframe-based VMs
= Legacy software could be sustained by virtualizing legacy OSes

= 1970s virtualization went away as desktop/rack-based
hardware became inexpensive

= Virtualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

= VM-Ware virtual machines enable companies to host many
virtual servers with mixed OSes on private clusters

= Cloud computing: Amazon offers VMs as-a-service (laaS)

TCs5558: Applied Distributed Computing [Winter 2023]

‘ (EFRERED School of Engineering and Technology, University of Washington - Tacoma

53

Slides by Wes J. Lloyd

SERVER DESIGN ALTERNATIVES

= A blocking system call implies that a thread servicing a
request synchronously performs 1/0

= The thread BLOCKS to wait on disk/network I/0 before
proceeding with request processing

= Consider the implications of these designs for responsiveness,
availability, scalability. . .

m Characteristics

Multithreading Parallelism, blocking I/0
Single-thread No parallelism, blocking /0
Finite-state machine Parallelism, non-blocking I/0

TCs5558: Applied Distributed Computing [Winter 2023]
‘ fanuanvaci202s School of Engineering and Technology, University of Washington - Tacoma

50

CH. 3.2:
VIRTUALIZATION

52

TYPES OF VIRTUALIZATION

= Levels of instructions: Liraryuncions | APeaton

= Hardware: CPU System calls __
= Privileged instructions Privileged Operating system _ General

KERNEL MODE

Hardware

= General instructions
USER MODE

= Operating system: system calls
= Llbrary: programming APIs: e.g. C/C++,C#, Java libraries
= Application:

= Goal of virtuallzation:
mimic these interface to provide a virtual computer

TCSS558: Applied Distributed Computing [Winter 2023]

‘ ELERFRETD School of Engineering and Technology, University of Washington -Tacoma

54

L8.9

TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,

UW-Tacoma

TYPES OF VIRTUALIZATION - 2

January 26, 2023

e

= Process virtual machine r
= Interpret instructions: (interpreters) Runtime system

(JavaVM) byte code - HW instructions ’m‘
= Emulate instructions: (emulators) T
(Wine) windows code - Linux code Hardware

= Natlve virtual machine monlitor (VMM) "
= Hypervisor (XEN): small OS with its own kernel : "
= Provides an interface for multiple guest OSes Opsraiing system

T T T
= Facilitates sharing/scheduling of Virtual magnine manter

CPU, device I/0 among many guests - = ;
= Guest OSes require special kernel to interface w/ VMM | "=

= Supports Paravirtuallzation for performance boost to run code
directly on the CPU

= Type 1 hypervisor

TCsS558: Applied Distributed Computing [Winter 2023] .
School of Engineering and Technology, University of Washington - Tacoma

‘ January 26, 2023

TYPES OF VIRTUALIZATION - 3

= Hosted virtual machine monltor (VMM)
= Runs atop of hosted operating system
= Uses host OS facilities for CPU scheduling, 1/0
= Full virtualization
= Type 2 hypervisor
Virtualbox

T

Applicationiraries
Operating system

—

e

= Textbook: note 3.5-good explanation of full vs. paravirtualization

= GOAL: run all user mode instructions directly on the CPU

= x86 instruction set has ~17 privileged user mode instructions

= Full virtuallzatlon: scan the EXE, insert code around privileged
instructions to divert control to the VMM

= Paravlirtuallzatlon: special OS kernel eliminates side effects of
privileged instructions

TCSS558: Applied Distributed Computing [Winter 2023]

‘ fanuanvaci202s School of Engineering and Technology, University of Washington - Tacoma

55

EVOLUTION OF AWS VIRTUALIZATION

From http://www gg.com/blog/2017-11-29, 2-vi ization-2017.htm|

AWS E

ization Types
vs:

Wost > Loast
Virtualization Baro-metal pariomance

In software :::‘r:n:p:ﬂ:"m::: % %‘ﬁ\%\’
B o rmares "’:"“:*1» Q:}

Paravirtual

T T e
I
. G [2] M | sempvan P amers
Virtualization [[xenwmso |
[| enrwmanr
In Hardware [[rerawsaons
6| v Xon AWS 2017
H: 7 | ows v 2077
ua New |8 | HW | AWS Bare Motad 2017
ardwa Bre o |CEEEECRENEN|
Ak Ve ochina. HW- Wt
T B T enarieue. : P’ ot ol oo s
R et o s BAoVERs gy e o
\ Tanany 2, 202 | L e Tehmolop, everaa of sshington - Tacoma a7

56

AWS VIRTUALIZATION - 2

= Full Virtuallzatlon - Fully Emulated
= Never used on EC2, before CPU extensions for virtualization
= Can boot any unmodified 0S
= Support via slow emulation, performance 2x-10x slower
«p . lization: Xen PV 3.0
= Software: Interrupts, timers
= Paravirtual: CPU, Network 1/0, Local+Network Storage
= Requires special OS kernels, interfaces with hypervisor for /0
= Performance 1.1x - 1.5x slower than “bare metal”
= Instance store instances: 15T & 2" generation- m1.large, m2.xlarge
= Xen HVM 3.0
= Hardware virtualization: CPU, memory (CPU VT-x requlired)
= Paravirtual: network, storage
= Software: interrupts, timers
= EBS backed instances
= m1, cl instances

TCSS558: Applied Distributed Computing [Winter 2023]

‘ January26;2023 School of Engineering and Technology, University of Washington - Tacoma

57

AWS VIRTUALIZATION - 3

= XEN HVM 4.0.1
= Hardware virtualization: CPU, memory (CPU VT-x required)
= Paravirtual: network, storage, Interrupts, timers
= XEN AWS 2013 (diverges from opensource XEN)
= Provides hardware virtualization for CPU, memory, network
= Paravirtual: storage, Interrupts, timers
= Called Single root I/0 Virtualization (SR-I0V)
= Allows sharing single physical PCI Express device (i.e. network adapter)
with multiple VMs
= Improves VM network performance
= 314 & 4th generation instances (c3 family)
= Network speeds up to 10 Gbps and 25 Gbps
= XEN AWS 2017
= Provides hardware virtualization for CPU, memory, network, local disk
= Paravirtual: remote storage, Interrupts, timers
= Introduces hardware virtualization for EBS volumes (c4 instances)
= Instance storage hardware virtualization (x1.32xlarge, i3 family)

TCs5558: Applied Distributed Computing [Winter 2023]

‘ (EFRERED School of Engineering and Technology, University of Washington - Tacoma

58

AWS VIRTUALIZATION - 4

= AWS Nitro 2047
= Provides hardware virtualization for CPU, memory, network, local

= All aspects of virtualization enhanced with HW-level support

= November 2017

= Goal: provide performance indistinguishable from “bare metal”
= 5th generation instances - c5 instances (also c5d, c5n)

= Based on KVM hypervisor

= Overhead around ~1%

TCSS558: Applied Distributed Computing [Winter 2023]
‘ ORERETD School of Engineering and Technology, University of Washington - Tacoma 1860

59

Slides by Wes J. Lloyd

60

L8.10

http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html

TCSS 558: Applied Distributed Computing January 26, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 1/26

= Questlons from 1/26

= Assignment 0: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script
= Assignment 1: Key/Value Store - Next Week
= Chapter 3: Processes
= Chapter 3.1: Threads CH. 3.3: CLIENTS
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization

| = Chapter 3.3: Clients |
= Chapter 3.4: Servers
TCSS558: Applied Distributed Computing Winter 2023]
‘ anuany2672023 School of Engineering and Technology, University of Washington - Tacoma 1861

61 62

TYPES OF CLIENTS CLIENTS

=Thick clients = Application specific protocol = e
= Thick clients [preron | {proenon
*Web browsers ol
= Clients maintain local data Wedavars | proed | Madewars
Client-side scripting « Middleware (APls) Locsl 08 Lol 05
= Mobile apps = Clients synchronize data with remote nodes J—--------------.—.-J-
= Multi-tier MVC apps - Bl diflee cellnd ezl
= Application independent A RS
. . = Thin client [ptmton]
=Thin clients o efents : | P
= Client acts as a remote terminal A | ndepandent
=Remote desktops/GUIs (very thin) = Provides interface to user (GUI / Ul) ”L‘f";:?': [o=t

= Server houses entire application stack

TCSS558: Applied Distributed C ing [Wir 2023] TCSS558: Applied Distributed Cor ing [Wir 2023]
‘ L y2s 202 School of E::‘\;er‘w;‘:n‘::em:m::\:ngnive'rns::\; of Washington - Tacoma 1863 ‘ fanuanv2eizo2s School of Erp\gni:eeri:g‘ra‘nd‘“;echn::::;"ﬁmve‘r’::; of Washington - Tacoma 1864
= Layered architecture to transport Ul over network = Window manager:
q n q n = Application runnin
= Remote desktop functionality for Linux/Unix systems pp . g
atop of X-windows
= X kernel acts as a server which provides flair

= Many variants

= Without X windows is
quite bland

= Provides the X protocol: application level protocol

= Xlib instances (client applications) exchange data and
events with X kernels (servers)

= Clients and servers on single machine > Linux GUI

= Client and server communication transported over the
network > remote Linux GUI

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

‘ January 26, 2023 TCs5558: Applied Distributed Computing [Winter 2023] o6 ‘ January26, 2023 TCsS558: Applied Distributed Computing [Winter 2023] e

65 66

Slides by Wes J. Lloyd L8.11

TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,

UW-Tacoma

January 26, 2023

= Layered architecture

= X-kernel: low level Deskiop Environ
. File Managem,
interface/APls for Gnome/KDE panels, desktsp icon managers

controlling screen,

(X window Server)

Provided on Linux

Metaciy b
Session Manager
gnome-session, ksmserver

as Xlib
Display Manager - Local X Server Startup
R and User Authentication
= Provides network ‘gam, hdm, xdm
enabled GUI

capturing keyboard Window and Compositi Toalkits
Placement and Con GTK, 0, Maif Xaw
and mouse events Compiz, Met o

‘ X Window v - Bsply Hardware Maragenent
o

Layering allows for

use for custom
window managers

Network Transports - lent Server Connections
TCP/R Unix domain sockets

TCSS558: Applied Distributed Computing [Winter 2023]

January 26, 2023 School of Engineering and Technology, University of Washington - Tacoma

LB67

EXAMPLE: VNC SERVER

= How to Install VNC server on Ubuntu EC2 Instance VM:
® sudo apt-get update

ubuntu 16.04
sudo apt-get install ubuntu-desktop

sudo apt-get install gnome-panel gnome-settings-
daemon metacity nautilus gnome-terminal

" # on ubuntu 2 18.04
sudo apt install xfce4 xfced4-goodies

" sudo apt-get install tightvncserver # both

Start VNC server to create initial config file
vncserver :1

TCsS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

[e]

January 26, 2023

67

68

= On the VM: edit config file: nano ~/.vnc/xstartup
= Replace contents as below (Ubuntu 16.04):

EXAMPLE: VNC SERVER - UBUNTU 16.04

#!/bin/sh

export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &

nautilus &
gnome-terminal &

TCSS558: Applied Distributed Computing [Winter 2023]

‘ January26;2023 School of Engineering and Technology, University of Washington - Tacoma

1869

EXAMPLE: VNC SERVER - UBUNTU 18.04

= On the VM:
= Edit config file: nano ~/.vnc/xstartup
= Replace contents as below (Ubuntu 18.04):

#!/bin/bash
xrdb $HOME/.Xresources
startxfced &

TCSS558: Applied Distributed Computing [Winter 2023] 1570

January26;2023 School of Engineering and Technology, University of Washington - Tacoma

69

EXAMPLE: VNC SERVER - 3

= On the VM: reload config by restarting server
® yvncserver -kill :1

®" vncserver :1

= Open port 22 & 5901 in EC2 security group:

Editinbound rules x
—a
- = °

TCs5558: Applied Distributed Computing [Winter 2023]

‘ (EFRERED School of Engineering and Technology, University of Washington - Tacoma

71

Slides by Wes J. Lloyd

70

EXAMPLE: VNC CLIENT

= On the client (e.g. laptop):

= Create SSH connection to securely forward port 5901 on the
EC2 instance to your localhost port 5901

= This way your VNC client doesn’t need an SSH key

ssh —-i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
-f -1 <username> <EC2-instance ip_address>

= For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
1 ubuntu 52.111.202.44

TCSS558: Applied Distributed Computing [Winter 2023] on

ORERETD School of Engineering and Technology, University of Washington - Tacoma

72

L8.12

TCSS 558: Applied Distributed Computing January 26, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

EXAMPLE: VNC CLIENT - 2 REMOTE COMPUTER IN THE CLOUD

= On the client (e.g. laptop): = EC2 instance o0 =
= Use a VNC Client to connect with a GUI. . .!!!
= Remmina is provided by default in Ubuntu
= Can “google” for many others
= Remmina login:

= Chose “VNC” protocol

= Log into “localhost:5901”

Connect !

TCSS558: Applied Distributed Computing Winter 2023] TCss558: Applied Distributed Computing [Winter 2023]
‘ anuany2672023 School of Engineering and Technology, University of Washington - Tacoma 1873 fanuanvaci202s School of Engineering and Technology, University of Washington - Tacoma 15

73 74

THIN CLIENTS THIN CLIENTS - 2

= Thin clients
= X windows protocol

= Applications should separate application logic from Ul

= When application logic and Ul interaction are tightly coupled
= A variety of other remote desktop protocols exist: many requests get sent to X kernel

Remate deskiop pratocols inchude he falowing = Client must wait for response

» Appike Remote Deskiog Protocal (ARD) - Original peotocal for Apple Remate Deskiop on

&£0S machines. = Synchronous behavior and app-to-Ul coupling adverselt affects

remole prining, remale USE, accelerated video performance of WAN / Internet
pecilicall for high end worksianon remaling and collaborador

cifc potocol leaturing audio (ply

y protocal designed by Ci

of featuring autio, v te USE, H264-enabled.

= Protocol optimlzatlons: reduce bandwidth by shrinking size of
X protocol messages

= Send only differences between messages with same identifier
,IQ.‘:';W:;[! i = Optimizations enable connections with 9600 kbps

Buffer

Protocol for Independent Computing Emvironme

igh perfosmance remate deskiog protocal developed by Splas
‘Splashiop can deliver high flame taies wih ow latency, and also
m (X11) - a wellstablihe

low power consumpion
latform protocol mainly zsed for displaying local applications: X11 is network f

TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ January26;2023 School of Engineering and Technology, University of Washington - Tacoma 1875 January26;2023 School of Engineering and Technology, University of Washington - Tacoma

75 76

THIN CLIENTS - 3 TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

= Virtual network computing (VNC)
= Send display over the network at the pixel level

= Tradeoff space: abstraction level of remote display protocols

(instead of X lib events) Pixel-level Graphics
i, R " VNC |'| X11
= Reduce pixel encodings to save bandwidth - fewer colors < >
= Pixel-based approaches loose application semantics U

= Can transport any GUI this way

= THINC- hybrid approach

= Send video device driver commands over network
= More powerful than pixel based operations

= Less powerful compared to protocols such as X

TCSS558: Applied Distributed Computing [Winter 2023]
‘ R ers ORERETD School of Engineering and Technology, University of Washington - Tacoma

TCs5558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

77 78

Slides by Wes J. Lloyd L8.13

TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,

UW-Tacoma

January 26, 2023

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols

Plxel-level Graphics llb
VNC n X11
< U >
e Generic - no app context e Application context
e Graphics data is available
e Higher network bandwidth e Ul data/operations
e Fewer colors e Lower network bandwidth
e Utilize graphics compression e More colors
e More network traffic

TCSS558: Applied Distributed Computing Winter 2023]
‘ anuany2672023 School of Engineering and Technology, University of Washington - Tacoma 1879

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY

= Clients help enable distribution transparency of servers

= Replication transparency
= Client aggregates responses from multiple servers
= Only the client knows of replicas

Thent machine Server 1 ver 2 Server
Clent Server Server Server
appl appl appl appl
|
A - - «

tient side handles
request replication

e

Repicated request_—~

TCss558: Applied Distributed Computing [Winter 2023]
fanuanvaci202s School of Engineering and Technology, University of Washington - Tacoma 1880

79

80

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY - 2

= Location/relocation/migration transparency
= Harness convenient naming system to allow client to infer new
locations

= Server inform client of moves / Client reconnects to new endpoint
= Client hides network address of server, and reconnects as needed
= May involve temporary loss in performance

= Replication transparency
= Client aggregates responses from multiple servers

= Failure transparency
= Client retries, or maps to another server, or uses cached data

= Concurrency transparency
= Transaction servers abstract coordination of multithreading

TCSS558: Applied Distributed Computing [Winter 2023]

‘ L y2s 202 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 1/26

= Questlons from 1/26
= Assignment O: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script
= Assignment 1: Key/Value Store - Next Week
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients

= Chapter 3.4: Servers |

TCSS558: Applied Distributed Computing [Winter 2023]

fanuanv2eizo2s School of Engineering and Technology, University of Washington - Tacoma

81

83

Slides by Wes J. Lloyd

82

SERVERS

= Cloud & Distributed Systems - rely on Linux

= http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions

= |T is moving to the cloud. And, what powers the cloud?

*Linux
= Uptime Institute survey - 1,000 IT executives (2016)

= 50% of IT executives - plan to migrate majority of IT workloads to

off-premise to cloud or colocation sites

= 23% expect the shift in 2017, 70% by 2020...
= Docker on Windows / Mac 0S X

= Based on Linux

= Mac: Hyperkit Linux VM

= Windows: Hyper-V Linux VM

TCSS558: Applied Distributed Computing [Winter 2023]
ELERFRETD School of Engineering and Technology, University of Washington - Tacoma e

84

L8.14

http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/

TCSS 558: Applied Distributed Computing January 26, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

SERVERS - 2 END POINTS

= Clients connect to servers via:
IP Address and Port Number

= Servers implement a specific service for a collection of clients
= Servers wait for incoming requests, and respond accordingly

= How do ports get assigned?

= Servertypes
= |terative: immediately handle client requests

= Concurrent: Pass client request to separate thread = Client must find IP address(es) of servers

= Many protocols support “default” port numbers

= A single server often hosts multiple end points

= Multithreaded servers are concurrent servers
(servers/services)

= E.g. Apache Tomcat
= When designing new TCP client/servers must be careful
= Alternative: fork a new process for each incoming request not to repurpose ports already commonly used by others
= Hybrid: mix the use of multiple processes with thread pools

TCSS558: Applied Distributed Computing Winter 2023] TCss558: Applied Distributed Computing [Winter 2023]
fanuanvaci202s School of Engineering and Technology, University of Washington - Tacoma 1885

‘ anuany2672023 School of Engineering and Technology, University of Washington - Tacoma 1885 ‘

85 86

ComMMON PORTS packetiife.net
TCP/UDP Port Numbers TYPES OF SERVERS
7 Ecne 554 RTSP 2745 U cver-ovor

19 Chargan 546587 DHOE 2067 Symantoc Av 5070 Guicktime

2021 71 560 rmonior 3080 Intorbase DB 7212 ShostSurt
2 SN so: NSNS o’s KRR 7seo-ross EUSSHANN
23 Tainet sa7 sure 3128 HTTP proxy 8000 nternet Rada =Daemon server
25 suTe 591 FileMaker 3127 8080 HITP Fraxy .
42 WIS Replcaton 593 Merosot DEOM 3328 HTTF Prosy B086.8087 Kacoersky AV " Example: NTP server
a3 wirors 831 Intermes Prining 3222 G w18 rvory
49 TACACS 636 DAPoverssL | 3260 155 Target 8200 VMware Server = Superserver
33 0ns 839 HegP () 3308 M50l 8500 Adobe ColFusion

67.68 DHCP/BOOTP 646 LOP (MPLS) 3389 Terminal Server 8767 EETEEE
6 TETR 691 M5 Exchange 3689 Munes sses IS m Stateless server
70 Gopher 860 i5cs1 3690 Subverson 9100 HP lDirect
8 Finger 873 ssync 3728 91019103 Hacula = Example: Apache server
80 902 Vlhwore Server 37643788 Verelo au1n
88 Korberos s89-000 [EEUHSSN 4333 msaL 9800 WesDAY
102 1 Exrrs o) O o N oo S = Stateful server
110 PoP3 95 PO BUERSSLII 4664 Goagle Deskeop 9ns FHSHSHHBEET
113 dent 1028 Micresoht RPC preay e 9999 Urchin = Object servers
110 KATP (Usenct) 10261028 Windows Messenger 4899 ocemin 10060 Webimin
123 e 1080 50CxS Proxy 5000 Upe 10000 Backupree s
138 Micrsoft A7 1080 5001 Stngbox 1013330038 ey L] servers

e — 1104 openven 3001 e 31372 Opente
143 MR 1214 EESS so04-s005 RTF 12035-12036 ERCIINEIN
161-162 SHMP 1241 Nessus 5050 Yahoo! Messanger | 12345 RSN ‘ January 326, 2023 TCSS555: Appled Distrbuted Computing [Winer 2023 o5

177 XDMCP 1311 Dell OpenManage 5060 SIP. 13720-13721 NetBackup 00l of Engineering and Technology, University of Washington - Tacoma

87 88

NTP EXAMPLE SUPERSERVER

= Linux inetd / xinetd

. = Single superserver
punlcealivienitini: = Extended internet service daemon

= Not installed by default on Ubuntu

= Intended for use on server machines

= Daemon servers

= Track current server end points (outside servers)

Example: network time protocol (ntp) daemon = Used to configure box as a server for multiple internet services
Listen locally on specific port (ntp is 123) E.g. ftp, pop, telnet
Daemons routes local client traffic to the configured = inetd daemon responds to multiple endpoints for multiple
services

endpoint servers

University of Washington: time.u.washington.edu = Requests fork a process to run required executable program

Example “ntpq -p = Check what ports you're listening on:
= Queries local ntp daemon, routes traffic to configured server(s) " sudo netstat -tap | grep LISTEN
TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
R ers School of Engineering and Technology, University of Washington - Tacoma e FIE 2D School of Engineering and Technology, University of Washington - Tacoma o

89 90

Slides by Wes J. Lloyd L8.15

TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,

UW-Tacoma

INTERRUPTING A SERVER

= Server design issue:
= Active client/server communication is taking place over a port
= How can the server / data transfer protocol support interruption?

= Consider transferring a 1 GB image, how do you pass a
unrelated message in this stream?

1. Out-of-band data: special messages sent in-stream to support
interrupting the server (TCP urgent data)
2. Use a separate connection (different port) for admin control info

Example: sftp secure file transfer protocol
= Once a file transfer is started, can’t be stopped easily
= Must kill the client and/or server

TCsS558: Applied Distributed Computing [Winter 2023] o1
School of Engineering and Technology, University of Washington - Tacoma

‘ January 26, 2023

January 26, 2023

STATELESS SERVERS

= Data about state of clients is not stored
= Example: web application servers are typically stateless
= Also function-as-a-service (FaaS) platforms

= Many servers maintain information on clients (e.g. log files)

= Loss of stateless data doesn’t disrupt server availability
= Loosing log files typically has minimal consequences

= Soft state: server maintains state on the client for a limited
time (to support sessions)
= Soft state information expires and is deleted

TCSS558: Applied Distributed Computing [Winter 2023]

fanuanvaci202s School of Engineering and Technology, University of Washington - Tacoma

91

92

STATEFUL SERVERS

Maintain persistent information about clients

Information must be explicitly deleted by the server

Example:

File server - allows clients to keep local file copies for RW
Server tracks client file permissions and most recent versions
= Table of (client, file) entries

If server crashes data must be recovered
Entire state before a crash must be restored

Fault tolerance - Ch. 8

TCSS558: Applied Distributed Computing [Winter 2023]
‘ January26;2023 School of Engineering and Technology, University of Washington - Tacoma 1893

STATEFUL SERVERS - 2

= Session state
= Tracks series of operations by a single user
= Maintained temporarily, not indefinitely
= Often retained for multi-tier client server applications
= Minimal consequence if session state is lost
= Clients must start over, reinitialize sessions

= Permanent state
= Customer information, software keys

= Client-side cookies
= When servers don’t maintain client state, clients can store state
locally in “cookies”
= Cookies are not executable, simply client-side data

TCSS558: Applied Distributed Computing [Winter 2023]

January26;2023 School of Engineering and Technology, University of Washington - Tacoma

93

94

OBJECT SERVERS

= OBJECTIVE: Host objects and enable remote client access
= Do not provide a specific service
= Do nothing if there are no objects to host
= Support adding/removing hosted objects
= Provide a home where objects live
= Objects, themselves, provide “services”

= Object parts
= State data
= Code (methods, etc.)

= Translent object(s)
= Objects with limited lifetime (< server)

= Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”).

= Disadvantage: initialization may be expensive
= Alternative: preinitialize and retain objects on server start-up

TCs5558: Applied Distributed Computing [Winter 2023] to9s

‘ (EFRERED School of Engineering and Technology, University of Washington - Tacoma

OBJECT SERVERS - 2

= Should object servers Isolate memory for object Instances?
= Share neither code nor data
= May be necessary if objects couple data and implementation

= Object server threading designs:
= Single thread of control for object server
= One thread for each object
= Servers use separate thread for client requests

= Threads created on demand vs.

Server maintains pool of threads

using a thread pool?

TCSS558: Applied Distributed Computing [Winter 2023]

ORERETD School of Engineering and Technology, University of Washington - Tacoma

95

Slides by Wes J. Lloyd

96

L8.16

TCSS 558: Applied Distributed Computing January 26, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

EJB - ENTERPRISE JAVA BEANS

APACHE WEB SERVER

EJB- specialized Java object hosted by a EJB web container [
4 types: stateless, stateful, entity, and message-driven beans
Provides “middleware” standard (framework) for implementing

Highly configurable, extensible, platform independent
= Supports TCP HTTP protocol communication

back-ends of enterprise applications = Uses hooks - placeholders for group of functions
= EJB web application containers integrate support for: = Requests processed in phases by hooks
= Transaction processing = Many hooks: Modks Madule Moaule

= Concurrency
= Event-driven programming

= Write info to log

s
- P Eeee = Translate a URL |TI I [Dl I‘ ‘QDI H‘

Unk batwgsry

" T : function and h
= Asynchronous method invocation = Check client ID .{H». -El -@
= Job scheduling = Check access rights TT o oEm l'l ‘
= Naming and discovery services (JNDI) = Hooks processed in order 251 Hooks point to functions in modules
= Interprocess communication enforcing flow-of-control
 neroro ing _ o] |
= Functions in replaceable uncSons oafled por hock
= Software component deployment to an application server modules _— |
TCSS558: Applied Distributed Computing (Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ (e, 28 School of Engineering and Technology, University of Washington - Tacoma i ‘ LI School of Engineering and Technology, University of Washington - Tacoma o

97 98

SERVER CLUSTERS LAN REQUEST DISPATCHING

= Hosted across an LAN or WAN = Front end of three tier architecture (logical switch) provides
= Collection of interconnected machines distribution transparency - hides multiple servers
= Can be organized in tiers:

= Web server > app server > DB server

= App and DB server sometimes integrated

= Transport-layer switches: switch accepts TCP connection
requests, hands off to a server
= Example: hardware load balancer (F5 networks - Seattle)

Logcal swila Apicaonicampule servers Gistibuter * HW Load balancer - 0S| layers 4-7
(poseibly multple) Neiolabase
stom

= Network-address-translation (NAT) approach:

g y = All requests pass through switch
= Switch sits in the middle of the client/server TCP connection
= Maps (rewrites) source and destination addresses

= Connection hand-off approach:

«
«

(1L
ﬂ|.

First tior Second ser Third tier = TCP Handoff: switch hands of connection to a selected server
TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ January26;2023 School of Engineering and Technology, University of Washington - Tacoma 1899 January26;2023 School of Engineering and Technology, University of Washington - Tacoma L8100

99 100

LAN REQUEST DISPATCHING - 2

WIDE AREA CLUSTERS

= Who is the best server to handle the request? = Deployed across the internet

= Leverage resource/infrastructure from Internet Service
Providers (ISPs)

H%‘.”.“e-'"m = Cloud computing simplifies building WAN clusters

>N = Resource from a single cloud provider can be combined to
form a cluster

= Switch plays important role in
distributing requests
= Implements load balancing

Togialy 3
single TGP

= Round-roblin - routes client
requests to servers in a looping
fashion

= Transport-level - route client
requests based on TCP port number

= Content-aware request distribution - route requests based on
inspecting data payload and determining which server node
should process the request

TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ (EFRERED School of Engineering and Technology, University of Washington - Tacoma ot ORERETD School of Engineering and Technology, University of Washington - Tacoma e

= For deploying a cloud-based cluster (WAN), what are the
Implicatlons of deploylng nodes to:

= (1) a single availability zone (e.g. us-east-1e)?
= (2) across multiple availability zones?

101 102

Slides by Wes J. Lloyd L8.17

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 26, 2023

WAN REQUEST DISPATCHING

= Goal: minimize network latency using WANs (e.g. Internet)
= Send requests to nearby servers

= Request dispatcher: routes requests to nearby server
= Example: Domain Name System
= Hierarchical decentralized naming system

= Linux: find your DNS servers:

Find you device name of interest
nmcli dev

Show device configuration

nmcli device show <device name>

TCSS558: Applied Distributed Computing Winter 2023]
‘ anuany2672023 School of Engineering and Technology, University of Washington - Tacoma 18103

103

Local Name Server
5. terative Query 1o oot
4. Check (root)
Cache
© 13 Update, 1 Root Name Server
Cache
Cache
Server 7. Herative
3. Recursive LSy s ol
_"Ii,"::d‘:':" 8 Hame Server for
‘ googlepler.edu
2. Check A .edu Name Server
Cache
‘ > 9. Herative Guery .
to googleplex.cdu
e Sptt 10. Name Server for googleplex
Cache Resolver ‘compsci.googlepier.edu
: I googleplex.edu
1. Resolution | Name Server
= [1" yto
IP Address compscigoogleplex.edu .j
— compsci
n e ==
=) ey ady
Name Server E:‘Zl
T ATHTTP Request Lol a b
User & Browser toResolved Address L
Client

DNS LOOKUP

= First query local server(s) for address

= Typically there are (2) local DNS servers
= One is backup

= Hostname may be cached at local DNS server

= E.g. www.google.com
= |f not found, local DNS server routes to other servers
= Routing based on components of the hostname

= DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

= Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

TCs5558: Applied Distributed Computing [Winter 2023]
‘ fanuanvaci202s School of Engineering and Technology, University of Washington - Tacoma

104

DNS: LINUX COMMANDS

" nslookup <ip addr / hostname>
= Name server lookup - translates hostname or IP to the inverse

® traceroute <ip addr / hostname>
= Traces network path to destination
= By default, output is limited to 30 hops, can be increased

TCSS558: Applied Distributed Computing [Winter 2023]

‘ January26;2023 School of Engineering and Technology, University of Washington - Tacoma

105

DNS EXAMPLE - WAN DISPATCHING

Ping www.google.com in WA from wireless network:

= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

= Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)
Ping www.google.com in VA (us-east-1) from EC2 instance:

= nslookup: 1 address returned, choose 172.217.9.196

= Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

From VA EC2 instance, ping WA www.google server
Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)
Pinging the WA-local server is ~60x slower from VA

From local wireless network, ping VA us-east-1 google :
Ping 172.217.9.196: Average RTT=81.637ms (11 attempts,15 hops)

TCsS558: Applied Distributed Computing [Winter 2023]
‘ (EFRERED School of Engineering and Technology, University of Washington - Tacoma 18107

106

DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:
= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

Latency to ping VA server in WA: ~3.63x

WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x

VA client: local-google 1.278ms to WA-google 62.349!

= From local wireless network, ping VA us-east-1 google :
= Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCSS558: Applied Distributed Computing [Winter 2023]

‘ ORERETD School of Engineering and Technology, University of Washington - Tacoma

107

Slides by Wes J. Lloyd

108

L8.18

http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/

TCSS 558: Applied Distributed Computing January 26, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

QUESTIONS

January 26, 2023

109

Slides by Wes J. Lloyd L8.19

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/26
	Slide 3: Online daily feedback survey
	Slide 4: Survey questions
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 1/24
	Slide 8: Feedback - 2
	Slide 9: Feedback - 2
	Slide 10: OBJECTIVES – 1/26
	Slide 11: Assignment 0
	Slide 12: Testing connectivity to server
	Slide 13: OBJECTIVES – 1/26
	Slide 14: Ch 2.3: System architectures
	Slide 15: Review questions
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: OBJECTIVES – 1/26
	Slide 24: Ch. 3: processes Ch. 3.1: threads
	Slide 25: Chapter 3
	Slide 26: OBJECTIVES – 1/26
	Slide 27: Ch. 3.1 - threads
	Slide 28: Threads - 2
	Slide 29: Threads - 3
	Slide 30: Osv: one process, many threads
	Slide 31: Threads - 4
	Slide 32: blocking threads
	Slide 33: Interprocess communication
	Slide 34: OBJECTIVES – 1/26
	Slide 35: Context switching
	Slide 36: Context switch – cache perturbation
	Slide 37: OBJECTIVES – 1/26
	Slide 38: Threading models
	Slide 39: Threading models - 2
	Slide 40: Application examples
	Slide 41: We will return at 2:40pm
	Slide 42: OBJECTIVES – 1/26
	Slide 43: Multithreaded clients
	Slide 44: Multiple threads
	Slide 45: Process metrics
	Slide 46: Load average
	Slide 47: Thread-level parallelism
	Slide 48: Multithreaded servers
	Slide 49: Single thread & fsm servers
	Slide 50: Server design alternatives
	Slide 51: OBJECTIVES – 1/26
	Slide 52: Ch. 3.2: virtualization
	Slide 53: virtualization
	Slide 54: Types of virtualization
	Slide 55: Types of virtualization - 2
	Slide 56: Types of virtualization - 3
	Slide 57: Evolution of Aws virtualization
	Slide 58: Aws virtualization - 2
	Slide 59: Aws virtualization - 3
	Slide 60: Aws virtualization - 4
	Slide 61: OBJECTIVES – 1/26
	Slide 62: Ch. 3.3: clients
	Slide 63: Types of clients
	Slide 64: clients
	Slide 65: X windows
	Slide 66: X windows - 2
	Slide 67
	Slide 68: EXAMPLE: Vnc server
	Slide 69: Example: Vnc server – ubuntu 16.04
	Slide 70: Example: Vnc server – ubuntu 18.04
	Slide 71: Example: Vnc server - 3
	Slide 72: Example: Vnc client
	Slide 73: Example: Vnc client - 2
	Slide 74: Remote computer in the cloud
	Slide 75: Thin Clients
	Slide 76: Thin clients - 2
	Slide 77: Thin clients - 3
	Slide 78: Tradeoffs: abstraction of remote display protocols
	Slide 79: Tradeoffs: abstraction of remote display protocols
	Slide 80: Client roles in providing distribution transparency
	Slide 81: Client roles in providing distribution transparency - 2
	Slide 82: OBJECTIVES – 1/26
	Slide 83: Ch. 3.4: servers
	Slide 84: servers
	Slide 85: Servers - 2
	Slide 86: End points
	Slide 87
	Slide 88: Types of servers
	Slide 89: Ntp example
	Slide 90: Superserver
	Slide 91: Interrupting a server
	Slide 92: Stateless servers
	Slide 93: Stateful servers
	Slide 94: Stateful servers - 2
	Slide 95: Object servers
	Slide 96: Object servers - 2
	Slide 97: Ejb – enterprise java beans
	Slide 98: Apache web server
	Slide 99: Server clusters
	Slide 100: Lan Request dispatching
	Slide 101: Lan Request dispatching - 2
	Slide 102: Wide area clusters
	Slide 103: Wan request dispatching
	Slide 104: Dns lookup
	Slide 105
	Slide 106: Dns: Linux commands
	Slide 107: Dns example – wan dispatching
	Slide 108: Dns example – wan dispatching
	Slide 109: Questions

