
TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.1

System Architectures
and Processes

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.2

OBJECTIVES – 1/24

1

2

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.3

ONLINE DAILY FEEDBACK SURVEY

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L7.4

3

4

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.3

 Please classify your perspective on material covered in today’s

class (33 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.56 ( - previous 6.16)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.58 ( - previous 5.45)

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.5

MATERIAL / PACE

 How is an interceptor dif ferent from a broker other than that
interceptor seems to serve specific purposes?

 Broker is a separate server that provides an intermediary
between clients and servers

 In business, a broker is a person who buys and sells goods or
assets for others

 In cloud computing, brokers are resellers that purchase cloud
computing services and resell the services

 Cloud computing broker (reseller):

▪ The University of Washington leverages a company (DLT Solutions)
which is a broker for cloud computing services

▪ A broker provides discounts and acts as a customer advocate by
consolidating the purchase power of many organizations to increase
leverage and ability to negotiate for lower prices and better
service/support !

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.6

FEEDBACK FROM 1/19

5

6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.4

 (CONT’D) How is an interceptor dif ferent from a broker other

than that interceptor seems to serve specific purposes?

 The key is that a broker is a third -party / intermediary

 One architectural advantage of a broker is consolidation of

wrappers (interfaces) in a common place for easier

maintenance

 An interceptor is a construct local to the client or server which

servers to intercept and handle orchestration of remote calls

 The interceptor is not a server

 The interceptor is not an intermediary

 The interceptor is just a construct that helps facilitate

distribution transparency

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.7

FEEDBACK - 2

 Are there any cons to using a broker wrapper?

 Broker is a centralized entity

 I f the broker facilities app-to-app communication for too many
applications and services it could become overly complex

 Care must be taken so that broker is scalable and resilient
otherwise it will become a single point of failure

 Question for the class:

 Are there any cons to using a wrapper?

 Wrapper provides a boundary between a client and a backend
(legacy) library or module

 Maintenance?

 Can all legacy functionality be delivered through a wrapper?

 What if legacy functionality is not decoupled? (not MVC)

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.8

FEEDBACK - 3

7

8

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.5

 Can you give examples of how components can be changed at the

runtime?

 In component-based development, components communicate with

each other via inter faces. The client does not need to know about

the inner workings (implementation) of the component.

Components encapsulate their functionality.

 Components are substitutable at design or run -time. Candidate

components must meet the requirements of the initial component

expressed via its inter faces

 Any component that implements the inter face is considered

‘pluggable’ such that it can be exchanged

 Rule of thumb: component B can immediately replace component

A, if component B provides at least what component A provided and

uses no more resources than component A.
Loosely based on: ht tps ://en.wik iped ia .org /wik i/ C omp one nt -b ase d_s of t war e_ e ng in e er i ng

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.9

FEEDBACK - 4

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.10

OBJECTIVES – 1/24

9

10

https://en.wikipedia.org/wiki/Component-based_software_engineering

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.6

 Preparing for Assignment 0:

▪ Establish AWS Account

▪ Standard account

▪ Complete AWS Cloud Credits Survey and provide AWS account ID

▪ Credits will be automatically loaded by Amazon into accounts

 Tasks:

▪ Task 1 - Establish local Linux/Ubuntu environment

▪ Task 2 –AWS account setup, obtain user credentials

▪ Task 3 – Intro to: Amazon EC2 & Docker: create Dockerfile for
Apache Tomcat

▪ Task 4 – Create Dockerfile for haproxy

▪ Task 5 – Working with Docker-Machine

▪ Task 6 - Config 3 multiple server configs to load balance
requests for RESTful Fibonacci web service

▪ Task 7 – Test configs and submit results

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.11

ASSIGNMENT 0

 testFibPar.sh script is a parallel test script

 Orchestrates multiple threads on client to invoke server
multiple times in parallel

 To simplify coordinate of parallel service calls in BASH,
testFibPar.sh script ignores errors !!!

 To help test client-to-server connectivity, have created a new
testFibService.sh script

 TEST 1: Network layer

▪ Ping (ICMP)

 TEST 2: Transport layer

▪ TCP: telnet (TCP Port 8080) – security group (firewall) test

 TEST 3: Application layer

▪ HTTP REST – web service test

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.12

TESTING CONNECTIVITY TO SERVER

11

12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.7

CH 2.3: SYSTEM

ARCHITECTURES

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L7.13

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.14

OBJECTIVES – 1/24

13

14

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.8

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.15

TYPES OF SYSTEM ARCHITECTURES

 Where should functionality be distributed?

▪ At the client?

▪ At the server?

 Why should we consider component composition?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.16

MULTITIERED ARCHITECTURES

15

16

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.9

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions

• One or more component(s) deployed to each VM

• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways
n components can be
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14

7

n . . .

SC15
SC14

SC13
SC12

SC11
SC10

SC9
SC8

SC7
SC6
SC5

SC4

SC3

SC2
SC1

CPU time disk reads disk writes network reads network writes

∆ Resource Utilization Change
Min to Max Utilization

m-bound d-bound

CPU time: 6.5% 5.5%

Disk sector reads: 14.8% 819.6%
Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%

Network bytes sent: 143.7% 143.9%

Resource utilization profile changes

from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice

• Box size shows absolute deviation (+/-) from mean

• Shows relative magnitude of performance variance

Two application variants tested

• M-bound: Standard service, M is compute bound

• D-bound: Modified service, D is compute bound

17

18

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.10

19

PERFORMANCE IMPLICATIONS OF

COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆ Performance Change:
Min to max performance

M-bound: 14%

D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D),

fileserver (F), and logging server (L)

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.20

MULTITIERED ARCHITECTURES - 2

M

D F L

client
Server as a client

19

20

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.11

 Vertical distribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers

▪ M – The application server

▪ D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.21

MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

▪ Sharding: portions of a database map” to a specific server

▪ Distributed hash table

▪ Or replica servers

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.22

MULTITIERED RESOURCE SCALING - 2

21

22

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.12

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.23

OBJECTIVES – 1/24

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.24

TYPES OF SYSTEM ARCHITECTURES

23

24

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.13

 Client/server:

▪ Nodes have specific roles

 Peer-to-peer:

▪ Nodes are seen as all equal…

 How should nodes be organized for communication?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.25

DECENTRALIZED PEER-TO-PEER

ARCHITECTURES

 Nodes organized using specific topology

(e.g. ring, binary -tree, grid, etc.)

▪ Organization assists in data lookups

 Data indexed using “semantic -free” indexing

▪ Key / value storage systems

▪ Key used to look-up data

 Nodes store data associated with a subset of keys

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.26

STRUCTURED PEER-TO-PEER

25

26

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.14

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.27

DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number

of varying bits between neighboring nodes and destination

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.28

FIXED HYPERCUBE EXAMPLE

27

28

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.15

 Example: fixed hypercube

node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.29

FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does it matter which node is selected for the first hop?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.30

WHICH CONNECTOR LEADS TO THE

SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent– bad path)

0101 (3 bits dif ferent– bad path)

29

30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.16

 Fixed hypercube requires static topology

▪ Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

▪ Dynamic topology

▪ Nodes organized in ring

▪ Every node has unique ID

▪ Each node connected with other nodes (shortcuts)

▪ Shortest path between any pair of nodes is ~ order O(log N)

▪ N is the total number of nodes

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.31

DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains f inger table of successor nodes

 Client sends key/value

lookup to any node

 Node forwards client

request to node with

m-bit ID closest to, but

not greater than key k

 Nodes must continually

refresh finger tables by

communicating with

adjacent nodes to

incorporate node

joins/departures

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.32

CHORD SYSTEM

Queries
go

clock-wise

31

32

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.17

 Consider a 5 node Chord system with a 4 -bit hash

 A query is sent to an arbitrary node

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.33

5-NODE CHORD SYSTEM

1000

Lookup item
with hash key
k=8

Send query to
arbitrary node

 CHORD SYSTEM: How is the shortest path O(log N)?

(N is the number of nodes)

 Chord provides an alternative to implement a DHT but

without a fixed size such as with the four -dimensional

hypercube

 Each node keeps a finger table containing m entries

▪m is the number of bits in the hash key

 A query is sent to an arbitrary node

 The node will look up the hash k in the finger table

 The finger table identifies the node to send the query to

 Nodes in the chord system are responsible for

maintaining up-to-date finger tables

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.34

CHORD SYSTEM - 2

33

34

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.18

 i th entry in FT at peer with id n is f irst node >= (n+2 i)(mod 2m)

 For our example hash has 4 bits (m=4)

▪ Will index storage location of 16 items (0-15)

 Consider that we have 5 nodes

 Let’s compute the finger table for n3

 Everytime a node wants to lookup a key it will
pass the query to the f irst node which is the closest successor
(going clockwise) of k in it’s finger table

 N3 Finger Table
i f t[i]

4 (3+20)(mod 24) hash i=0
5 (3+21)(mod 24) hash i=1
7 (3+22)(mod 24) hash i=2
11 (3+23)(mod 24) hash i=3

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.35

HOW TO COMPUTE FINGER TABLE (FT)

n0
n3

n6
n10

n13
clockwise

n6

n6

n10

n13

 Consider a 5 node Chord system with a 4 -bit hash

 A query is sent to an arbitrary node

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.36

5-NODE CHORD SYSTEM

1000

Lookup item
with hash key
k=8

Send query to
arbitrary node

35

36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.19

 To lookup a item with hash key k , the node will pass the query

to the closest successor of k in the finger table (the node with

the highest ID in the circle whose ID is smaller than k)

 If k =8 and the query first goes to node n3

 Query is passed to node n10

 Data each node is responsible for storing in this 5 -node chord:

n0 k={14,15,0}

n3 k= {1,2,3}

n6 k= {4,5,6}

n10 k= {7,8,9,10}

n13 k= {11,12,13}

 Path to data n3 → n10 (data found) – 1 hop  O(log n)

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.37

TO FIND THE DATA

 Consider a 5 node Chord system with a 4 -bit hash

 A query is sent to an arbitrary node

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.38

5-NODE CHORD SYSTEM

1000

Lookup item
with hash key
k=8

Send query to
arbitrary node

37

38

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.20

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed

▪ Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible

▪ How would you calculate the route algorithmically?

 Routes must be discovered

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.39

UNSTRUCTURED PEER-TO-PEER

 Flooding

 [Node u] sends request for data item to all neighbors

 [Node v]

▪ Searches locally, responds to u (or forwarder) if having data

▪ Forwards request to ALL neighbors

▪ Ignores repeated requests

 Features

▪ High network traffic

▪ Fast search results by saturating the network with requests

▪ Variable # of hops

▪ Max number of hops or time-to-live (TTL) often specified

▪ Requests can “retry” by gradually increasing TTL/max hops until

data is found

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.40

SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

39

40

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.21

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]

 If [node v] does not have data, forwards request to a
random neighbor

 Features

▪ Low network traffic

▪ Akin to sequential search

▪ Longer search time

▪ [node u] can start “n” random walks simultaneously to
reduce search time

▪ As few as n=16..64 random walks sufficient to reduce search
time (LV et al. 2002)

▪ Timeout required - need to coordinate stopping network-wide
walk when data is found…

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.41

SEARCHING FOR DATA - 2

 Policy-based search methods

 Incorporate history and knowledge about the adhoc

network at the node-level to enhance effectiveness of

queries

 Nodes maintain lists of preferred neighbors which often

succeed at resolving queries

 Favor neighbors having highest number of neighbors

▪ Can help minimize hops

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.42

SEARCHING FOR DATA - 3

41

42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.22

 Problem:

Adhoc system search performance does not scale well as

system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs) (video streaming)

▪ Store (cache) data at nodes local to the requester (client)

▪ Broker node – tracks resource usage and node availability

▪ Track where data is needed

▪ Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

▪ Super peer –Broker node, routes client requests to storage

nodes

▪ Weak peer – Store data

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.43

HIERARCHICAL

PEER-TO-PEER NETWORKS

 Super peers

▪ Head node of local centralized network

▪ Interconnected via overlay network with other super peers

▪ May have replicas for fault tolerance

 Weak peers

▪ Rely on super peers to find data

 Leader-election problem:

▪ Who can become a
super peer?

▪ What requirements
must be met to become
a super peer?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.44

HIERARCHICAL

PEER-TO-PEER NETWORKS - 2

43

44

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.23

WE WILL RETURN AT

2:40PM

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.46

OBJECTIVES – 1/24

45

46

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.24

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.47

TYPES OF SYSTEM ARCHITECTURES

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:

 Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

 Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

 Example:

 AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws -lambda-at-edge

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.48

HYBRID

ARCHITECTURES

47

48

https://www.infoq.com/news/2017/07/aws-lambda-at-edge

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.25

 Fog computing:

 Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

 End-user devices become part of the overall system

 Middleware extended to incorporate managing edge
devices as participants in the distributed system

 Cloud → in the sky

▪ compute/resource capacity is huge, but far away…

 Fog → (devices) on the ground

▪ compute/resource capacity is constrained and local…

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.49

HYBRID

ARCHITECTURES - 2

 BitTorrent Example:

File sharing system – users must contribute as a file host to

be eligible to download file resources

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well

known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then

participates to reserve downloaded content or network

bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.50

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE

49

50

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.26

 What is dif ference in finding/disseminating data in

unstructured vs. structured peer -to-peer networks?

▪ Spreading/finding data

▪ Flooding, Random walk

 What are some advantages of a decentralized structured peer -

to-peer architecture?

 What are some disadvantages?

 What are some advantages of a decentralized unstructured

peer-to-peer architecture?

 What are some disadvantages?

REVIEW QUESTIONS

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.51

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.52

OBJECTIVES – 1/24

51

52

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.27

CH. 3: PROCESSES
CH. 3.1: THREADS

L7.53

 Chapter 3 titled “processes”

 Covers variety of distributed system implementation

details

 “Grab bag” of topics

 Processes/threads

 Virtualization

 Clients

 Servers

 Code migration

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.54

CHAPTER 3

53

54

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.28

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.55

OBJECTIVES – 1/24

 For implementing a server (or client) threads offer many

advantages vs. heavy weight processes

 What is the dif ference between a process and a thread?

▪ (review?) from Operating Systems

 Key dif ference : what do threads share amongst each other

that processes do not…. ?

 What are the segments of a program stored in memory?

▪ Heap segment (dynamic shared memory)

▪ Code segment

▪ Stack segment

▪ Data segment (global variables)

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.56

CH. 3.1 - THREADS

55

56

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.29

 Do several processes on an operating system share…

▪ Heap segment?

▪ Stack segment?

▪ Code segment?

 Can we run multiple copies of the same code?

 These may be managed as shared pages (across processes) in

memory

 Processes are isolated from each other by the OS

▪ Each has a separate heap, stack, code segment

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.57

THREADS - 2

 Threads avoid the overhead of process creation

 No new heap or code segments required

 What is a context switch?

 Context switching among threads is considered to be more

efficient than context switching processes

 Less elements to swap-in and swap-out

 Unikernel: specialized single process OS for the cloud

 Example: Osv, Clive, MirageOS (see : http ://unikernel.org/projects/)

 Single process operating system with many threads

 Developed for the cloud to run only one application at a time

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.58

THREADS - 3

57

58

http://unikernel.org/projects/

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.30

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.59

OSV: ONE PROCESS, MANY THREADS

 Important implications with threads:

 (1) multi-threading should lead to performance gains

 (2) thread programming requires additional effort when

threads share memory

▪ Known as thread synchronization, or enabling concurrency

 Access to critical sections of code which modify shared

variables must be mutually exclusive

▪ No more than one thread can execute at any given time

▪ Critical sections must run atomically on the CPU

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.60

THREADS - 4

59

60

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.31

 Example: spreadsheet with formula to compute sum of column

 User modifies values in column

 Multiple threads:

1. Supports interaction (UI) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

 Single core CPU

▪ Tasks appear as if they are performed simultaneously

 Multi core CPU

▪ Tasks execute simultaneously

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.61

BLOCKING THREADS

 IPC – mechanism using pipes, message queues, and shared

memory segments

 IPC mechanisms incur context switching

▪ Process I/O must execute in kernel mode

 How many context switches are required for process A to

send a message to process B using IPC?

 #1 C/S:
Proc A→kernel thread



#2 C/S:

Kernel thread→Proc B

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.62

INTERPROCESS COMMUNICATION

61

62

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.32

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.63

OBJECTIVES – 1/24

 Direct overhead

▪ Time spent not executing program code (user or kernel)

▪ Time spent executing interrupt routines to swap memory segments

of different processes (or threads) in the CPU

▪ Stack, code, heap, registers, code pointers, stack pointers

▪ Memory page cache invalidation

 Indirect overhead

▪ Overhead not directly attributed to the physical actions of the

context switch

▪ Captures performance degradation related to the side effects of

context switching (e.g. rewriting of memory caches, etc.)

▪ Primarily cache perturbation

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.64

CONTEXT SWITCHING

63

64

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.33

 Refers to cache reorganization that occurs as a result of a

context switch

 Cache is not clear, but elements from cache are removed as a

result of another program running in the CPU

 80% performance overhead from context switching results

from this “cache perturbation”

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.65

CONTEXT SWITCH –

CACHE PERTURBATION

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.66

OBJECTIVES – 1/24

65

66

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.34

 Many-to-one threading: multiple user-level threads per process

 Thread operations (create, delete, locks) run in user mode

 Multithreaded process mapped to single schedulable entity

 Only run thread per process runs at any given time

 Key take-away: thread management handled by user processes

 What are some advantages of many -to-one threading?

 What are some disadvantages?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.67

THREADING MODELS

 One-to-one threading: use of separate kernel threads for each
user process - also called kernel-level threads

 The kernel API calls (e.g. I/O, locking) are farmed out to an
existing kernel level thread

 Thread operations (create, delete, locks) run in kernel mode

 Threads scheduled individually by the OS

 System calls required, context switches as expensive as
process context switching

 Idea is to have preinitialized kernel threads for user processes

 Linux uses this model…

 What are some advantages of one -to-one threading?

 What are some disadvantages?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.68

THREADING MODELS - 2

67

68

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.35

 Google chrome: processes

 Apache tomcat webserver: threads

 Multiprocess programming avoids synchronization of

concurrent access to shared data, by providing coordination

and data sharing via interprocess communication (IPC)

 Each process maintains its own private memory

 While this approach avoids synchronizing concurrent access to

shared memory, what is the tradeoff(s) ??

▪ Replication instead of synchronization – must synchronize multiple

copies of the data

 Do distributed objects share memory?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.69

APPLICATION EXAMPLES

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.70

OBJECTIVES – 1/24

69

70

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.36

 Web browser

 Uses threads to load and render portions of a web page to the
user in parallel

 A client could have dozens of concurrent connections all
loading in parallel

 testFibPar.sh

 Assignment 0 client script (GNU parallel)

 Important benefits:

 Several connections can be opened simultaneously

 Client: dozens of concurrent connections to the webserver all
loading data in parallel

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.71

MULTITHREADED CLIENTS

 In Linux, threads also receive a process ID (PID)

 To display threads of a process in Linux:

 Identify parent process explicitly:

 top –H –p <pid>

 htop –p <pid>

 ps –iT <pid>

 Virtualbox process ~ 44 threads

 No mapping to guest # of processes/threads

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.72

MULTIPLE THREADS

71

72

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.37

PROCESS METRICS

CPU
- cpuUsr: CPU time in user mode
- cpuKrn: CPU time in kernel mode

- cpuIdle: CPU idle time
- cpuIoWait: CPU time waiting for I/O

- cpuIntSrvc:CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts

- cpuNice: CPU time executing prioritized
processes

- cpuSteal: CPU ticks lost to virtualized guests

- contextsw: # of context switches
- loadavg: (avg # proc / 60 secs)

Disk
- dsr: disk sector reads

- dsreads: disk sector reads completed

- drm: merged adjacent disk reads

- readtime: time spent reading from

disk

- dsw: disk sector writes

- dswrites: disk sector writes completed

- dwm: merged adjacent disk writes

- writetime: time spent writing to disk

Network
- nbs: network bytes sent
- nbr: network bytes received

 Reported by: top , htop, w, uptime, and /proc/loadavg

 Updated every 5 seconds

 Average number of processes using or waiting for the CPU

 Three numbers show exponentially decaying usage

for 1 minute, 5 minutes, and 15 minutes

 One minute average: exponentially decaying average

 Load average = 1 ▪ (avg last minute load) – 1/e ▪ (avg load since boot)

 1.0 = 1-CPU core fully loaded

 2.0 = 2-CPU cores

 3.0 = 3-CPU cores . . .

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.74

LOAD AVERAGE

73

74

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.38

 Metric – measures degree of parallelism realized by running

system, by calculating average utilization:

 Ci – fraction of time that exactly I threads are executed

 N – maximum threads that can execute at any one time

 Web browsers found to have TLP from 1.5 to 2.5

 Clients for web browsing can utilize from 2 to 3 CPU cores

 Any more cores are redundant, and potentially wasteful

 Measure TLP to understand how many CPUs to provision

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.75

THREAD-LEVEL PARALLELISM

 Multiple threads essential for servers in distributed systems

 Even on single-core machines greatly improves performance

 Take advantage of idle/blocking time

 Two designs:

▪ Generate new thread for every request

▪ Thread pool – pre-initialize set of threads to service requests

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.76

MULTITHREADED SERVERS

75

76

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.39

 Single thread server

▪ A single thread handles all client requests

▪ BLOCKS for I/O

▪ All waiting requests are queued until thread is available

 Finite state machine

▪ Server has a single thread of execution

▪ I/O performing asynchronously (non-BLOCKing)

▪ Server handles other requests while waiting for I/O

▪ Interrupt fired with I/O completes

▪ Single thread “jumps” back into context to finish request

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.77

SINGLE THREAD & FSM SERVERS

 A blocking system call implies that a thread servicing a

request synchronously performs I/O

 The thread BLOCKS to wait on disk/network I/O before

proceeding with request processing

 Consider the implications of these designs for responsiveness,

availability, scalability. . .

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.78

SERVER DESIGN ALTERNATIVES

Model Characteristics

Multithreading Parallelism, blocking I/O

Single-thread No parallelism, blocking I/O

Finite-state machine Parallelism, non-blocking I/O

77

78

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.40

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.79

OBJECTIVES – 1/24

CH. 3.2:

VIRTUALIZATION

L7.80

79

80

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.41

 Initially introduced in the 1970s

on IBM mainframe computers

 Legacy operating systems run in mainframe-based VMs

 Legacy software could be sustained by vir tualizing legacy OSes

 1970s vir tualization went away as desktop/rack -based

hardware became inexpensive

 Virtualization reappears in 2000s to leverage multi -core,

multi-CPU processor systems

 VM-Ware vir tual machines enable companies to host many

virtual servers with mixed OSes on private clusters

 Cloud computing: Amazon offers VMs as -a-service (IaaS)

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.81

VIRTUALIZATION

 Levels of instructions:

 Hardware: CPU

▪ Privileged instructions

KERNEL MODE

▪ General instructions

USER MODE

 Operating system: system calls

 Library: programming APIs: e.g. C/C++,C#, Java libraries

 Application:

 Goal of vir tualization:

mimic these interface to provide a virtual computer

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.82

TYPES OF VIRTUALIZATION

81

82

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.42

 Process vir tual machine

▪ Interpret instructions: (interpreters)
(JavaVM) byte code → HW instructions

▪ Emulate instructions: (emulators)
(Wine) windows code → Linux code

 Native vir tual machine monitor (VMM)

▪ Hypervisor (XEN): small OS with its own kernel

▪ Provides an interface for multiple guest OSes

▪ Facilitates sharing/scheduling of
CPU, device I/O among many guests

▪ Guest OSes require special kernel to interface w/ VMM

▪ Supports Paravirtualization for performance boost to run code
directly on the CPU

▪ Type 1 hypervisor

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.83

TYPES OF VIRTUALIZATION - 2

 Hosted vir tual machine monitor (VMM)

▪ Runs atop of hosted operating system

▪ Uses host OS facilities for CPU scheduling, I/O

▪ Full virtualization

▪ Type 2 hypervisor

▪ Virtualbox

 Textbook: note 3.5–good explanation of full vs. paravir tualization

 GOAL: run all user mode instructions directly on the CPU

 x86 instruction set has ~17 privileged user mode instructions

 Full vir tualization: scan the EXE, insert code around privileged
instructions to divert control to the VMM

 Paravirtualization: special OS kernel eliminates side effects of
privileged instructions

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.84

TYPES OF VIRTUALIZATION - 3

83

84

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.43

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.85

EVOLUTION OF AWS VIRTUALIZATION

From ht tp ://www.brenda ngr eg g .com/bl og / 2017 - 1 1- 29/a ws -e c 2- v i r tu a l i zat i on -2017. html

VS:

V i r tualization

In so f tware

P :

Parav ir tual

VH:

V i r tualization

In Hardware

H:

Hardware

 Full Vir tualization - Fully Emulated

▪ Never used on EC2, before CPU extensions for virtualization

▪ Can boot any unmodified OS

▪ Support via slow emulation, performance 2x-10x slower

 Paravirtualization: Xen PV 3.0

▪ Software: Interrupts, timers

▪ Paravirtual: CPU, Network I/O, Local+Network Storage

▪ Requires special OS kernels, interfaces with hypervisor for I/O

▪ Performance 1.1x – 1.5x slower than “bare metal”

▪ Instance store instances: 1ST & 2nd generation- m1.large, m2.xlarge

 Xen HVM 3.0

▪ Hardware virtualization: CPU, memory (CPU VT-x required)

▪ Paravirtual: network, storage

▪ Software: interrupts, timers

▪ EBS backed instances

▪ m1, c1 instances

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.86

AWS VIRTUALIZATION - 2

85

86

http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.44

 XEN HVM 4.0.1

▪ Hardware virtualization: CPU, memory (CPU VT-x required)

▪ Paravirtual: network, storage, interrupts, timers

 XEN AWS 2013 (diverges from opensource XEN)

▪ Provides hardware virtualization for CPU, memory, network

▪ Paravirtual: storage, interrupts, timers

▪ Called Single root I/O Virtualization (SR-IOV)

▪ Allows sharing single physical PCI Express device (i.e. network adapter)
with multiple VMs

▪ Improves VM network performance

▪ 3rd & 4th generation instances (c3 family)

▪ Network speeds up to 10 Gbps and 25 Gbps

 XEN AWS 2017

▪ Provides hardware virtualization for CPU, memory, network, local disk

▪ Paravirtual: remote storage, interrupts, timers

▪ Introduces hardware virtualization for EBS volumes (c4 instances)

▪ Instance storage hardware virtualization (x1.32xlarge, i3 family)

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.87

AWS VIRTUALIZATION - 3

 AWS Nitro 2017

▪ Provides hardware virtualization for CPU, memory, network, local

disk, remote disk, interrupts, timers

▪ All aspects of virtualization enhanced with HW-level support

▪ November 2017

▪ Goal: provide performance indistinguishable from “bare metal”

▪ 5th generation instances – c5 instances (also c5d, c5n)

▪ Based on KVM hypervisor

▪ Overhead around ~1%

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.88

AWS VIRTUALIZATION - 4

87

88

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.45

QUESTIONS

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L7.135

135

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/24
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/19
	Slide 7: Feedback - 2
	Slide 8: Feedback - 3
	Slide 9: Feedback - 4
	Slide 10: OBJECTIVES – 1/24
	Slide 11: Assignment 0
	Slide 12: Testing connectivity to server
	Slide 13: Ch 2.3: System architectures
	Slide 14: OBJECTIVES – 1/24
	Slide 15: Types of System architectures
	Slide 16: Multitiered architectures
	Slide 17
	Slide 18
	Slide 19: Performance implications of component deployments
	Slide 20: Multitiered architectures - 2
	Slide 21: Multitiered resource scaling
	Slide 22: Multitiered resource scaling - 2
	Slide 23: OBJECTIVES – 1/24
	Slide 24: Types of System architectures
	Slide 25: Decentralized Peer-to-peer architectures
	Slide 26: Structured peer-to-peer
	Slide 27: Distributed hash table (DHT)
	Slide 28: Fixed hypercube example
	Slide 29: Fixed Hypercube example - 2
	Slide 30: Which connector leads to the shortest path?
	Slide 31: Dynamic topology
	Slide 32: Chord system
	Slide 33: 5-node chord system
	Slide 34: Chord system - 2
	Slide 35: How to compute finger table (ft)
	Slide 36: 5-node chord system
	Slide 37: To find the data
	Slide 38: 5-node chord system
	Slide 39: unstructured peer-to-peer
	Slide 40: Searching for data: unstructured peer-to-peer systems
	Slide 41: Searching for data - 2
	Slide 42: Searching for data - 3
	Slide 43: Hierarchical peer-to-peer networks
	Slide 44: Hierarchical peer-to-peer networks - 2
	Slide 45: We will return at 2:40pm
	Slide 46: OBJECTIVES – 1/24
	Slide 47: Types of System architectures
	Slide 48: Hybrid architectures
	Slide 49: Hybrid architectures - 2
	Slide 50: Collaborative distributed system example
	Slide 51: Review questions
	Slide 52: OBJECTIVES – 1/24
	Slide 53: Ch. 3: processes Ch. 3.1: threads
	Slide 54: Chapter 3
	Slide 55: OBJECTIVES – 1/24
	Slide 56: Ch. 3.1 - threads
	Slide 57: Threads - 2
	Slide 58: Threads - 3
	Slide 59: Osv: one process, many threads
	Slide 60: Threads - 4
	Slide 61: blocking threads
	Slide 62: Interprocess communication
	Slide 63: OBJECTIVES – 1/24
	Slide 64: Context switching
	Slide 65: Context switch – cache perturbation
	Slide 66: OBJECTIVES – 1/24
	Slide 67: Threading models
	Slide 68: Threading models - 2
	Slide 69: Application examples
	Slide 70: OBJECTIVES – 1/24
	Slide 71: Multithreaded clients
	Slide 72: Multiple threads
	Slide 73: Process metrics
	Slide 74: Load average
	Slide 75: Thread-level parallelism
	Slide 76: Multithreaded servers
	Slide 77: Single thread & fsm servers
	Slide 78: Server design alternatives
	Slide 79: OBJECTIVES – 1/24
	Slide 80: Ch. 3.2: virtualization
	Slide 81: virtualization
	Slide 82: Types of virtualization
	Slide 83: Types of virtualization - 2
	Slide 84: Types of virtualization - 3
	Slide 85: Evolution of Aws virtualization
	Slide 86: Aws virtualization - 2
	Slide 87: Aws virtualization - 3
	Slide 88: Aws virtualization - 4
	Slide 135: Questions

