TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
| |

System Architectures
and Processes

oy Comected B

Wes J. Lloyd , EEasN

School of Engineering
& Technology (SET)

University of Washington - Tacoma

Lire
- .

OBJECTIVES - 1/24

| = Questions from 1/19 |

® Assignment O: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures
® Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization

TCSS558: Applied Distributed Computing [Winter 2023]
(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma 172

Slides by Wes J. Lloyd

January 24, 2023

L7.1

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 10p

= Thursday surveys: due ~ Mon @ 10p

— TCSS 558 A > Assignments

Winter 2021

Home

Announcements

e

* Upcoming Assignments

Zoom TCSS 558 - Online Daily Feedback Survey - 1/5
b

Chat Not available until Jan 5 at 1:30pm | Due Jan é at 10pm | -/1 pts

TCSS558: Applied Distributed Computing [Winter 2023]

januayiaa-12023 School of Engineering and Technology, University of Washington - Tacoma

| 7.3 |

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan 6 at 10pm Points 1 Questions 4

Available Jan 5 at 1:30pm - Jan 6 at 11:59pm 1 day Time Limit None

[| Question1 0.5 pts

On a scale of 1 to 10, please classify your perspective on material covered in today’s

class:
1 2 3 4 5 6 7 8 9 1e
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts

Please rate the pace of today’s class:

1 2 3 4 5 6 7 8 9 1e

Slow Just Right Fast

TCSS558: Applied Distributed Computing [Winter 2023]

fanuanvj2e 12028 School of Engineering and Technology, University of Washington - Tacoma L7.4

Slides by Wes J. Lloyd

January 24, 2023

L7.2

TCSS 558: Applied Distributed Computing January 24, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (33 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.56 (T - previous 6.16)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.58 (T - previous 5.45)

TCSS558: Applied Distributed Computing [Winter 2023]
januayiaa-12023 School of Engineering and Technology, University of Washington - Tacoma s

FEEDBACK FROM 1/19

= How is an interceptor different from a broker other than that
interceptor seems to serve specific purposes?

= Broker is a separate server that provides an intermediary
between clients and servers

® |n business, a broker is a person who buys and sells goods or
assets for others

= |n cloud computing, brokers are resellers that purchase cloud
computing services and resell the services
= Cloud computing broker (reseller):
= The University of Washington leverages a company (DLT Solutions)
which is a broker for cloud computing services
= A broker provides discounts and acts as a customer advocate by
consolidating the purchase power of many organizations to increase

leverage and ability to negotiate for lower prices and better
service/support !

School of Engineering and Technology, University of Washington - Tacoma

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 76 |

Slides by Wes J. Lloyd L7.3

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

FEEDBACK - 2

= (CONT’D) How is an interceptor different from a broker other
than that interceptor seems to serve specific purposes?

= The key is that a broker is a third-party / intermediary

® One architectural advantage of a broker is consolidation of
wrappers (interfaces) in a common place for easier
maintenance

® An interceptor is a construct local to the client or server which
servers to intercept and handle orchestration of remote calls

® The interceptor is not a server
® The interceptor is not an intermediary

® The interceptor is just a construct that helps facilitate
distribution transparency

TCSS558: Applied Distributed Computing [Winter 2023]

januayiaa-12023 School of Engineering and Technology, University of Washington - Tacoma

| 7.7

FEEDBACK - 3

Are there any cons to using a broker wrapper?

= Broker is a centralized entity

= |f the broker facilities app-to-app communication for too many
applications and services it could become overly complex

= Care must be taken so that broker is scalable and resilient

otherwise it will become a single point of failure

® Question for the class:
= Are there any cons to using a wrapper?

= Wrapper provides a boundary between a client and a backend
(legacy) library or module

® Maintenance?
= Can all legacy functionality be delivered through a wrapper?
® What if legacy functionality is not decoupled? (not MVC)

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma | L8

January 24, 2023

Slides by Wes J. Lloyd

January 24, 2023

L7.4

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

FEEDBACK - 4

Can you give examples of how components can be changed at the
runtime?

In component-based development, components communicate with
each other via interfaces. The client does not need to know about
the inner workings (implementation) of the component.
Components encapsulate their functionality.

® Components are substitutable at design or run-time. Candidate
components must meet the requirements of the initial component
expressed via its interfaces

= Any component that implements the interface is considered
‘pluggable’ such that it can be exchanged

® Rule of thumb: component B can immediately replace component
A, if component B provides at least what component A provided and

uses no more resources than component A.
Loosely based on: https://en.wikipedia.org/wiki/Component-based_software_engineering

januayiaa-12023 School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2023] | 79 |

OBJECTIVES - 1/24

® Questions from 1/19

= Assignment O: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts

= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 710 |

School of Engineering and Technology, University of Washington - Tacoma

10

Slides by Wes J. Lloyd

January 24, 2023

L7.5

https://en.wikipedia.org/wiki/Component-based_software_engineering

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

ASSIGNMENT O

= Preparing for Assignment O:
= Establish AWS Account
Standard account
= Complete AWS Cloud Credits Survey and provide AWS account ID
= Credits will be automatically loaded by Amazon into accounts

= Tasks:
= Task 1 - Establish local Linux/Ubuntu environment
= Task 2 -AWS account setup, obtain user credentials

= Task 3 - Intro to: Amazon EC2 & Docker: create Dockerfile for
Apache Tomcat

= Task 4 - Create Dockerfile for haproxy
= Task 5 - Working with Docker-Machine

= Task 6 - Config 3 multiple server configs to load balance
requests for RESTful Fibonacci web service

= Task 7 - Test configs and submit results

January 17, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 511 |

School of Engineering and Technology, University of Washington - Tacoma

11

TESTING CONNECTIVITY TO SERVER

m testFibPar.sh script is a parallel test script

® Orchestrates multiple threads on client to invoke server
multiple times in parallel

= To simplify coordinate of parallel service calls in BASH,
testFibPar.sh script ignores errors !!!

= To help test client-to-server connectivity, have created a new
testFibService.sh script

= TEST 1: Network layer

= Ping (ICMP)
= TEST 2: Transport layer

= TCP: telnet (TCP Port 8080) - security group (firewall) test
= TEST 3: Application layer

= HTTP REST - web service test

TCSS558: Applied Distributed Computing [Winter 2023] | 17.12 |

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

12

Slides by Wes J. Lloyd

January 24, 2023

L7.6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

— Nanintercepted cal

v

Oject middleware|

CH 2.3: SYSTEM
ARCHITECTURES

TCSS558: Applied Distributed Computing [Winter 2023]

Ty 2, A0 School of Engineering and Technology, University of Washington -

OBJECTIVES - 1/24

® Questions from 1/19

= testFibPar.sh and testFibService.sh scripts

= Chapter 2.3: System Architectures
| = Centralized system architectures |
= Decentralized peer-to-peer architectures
= Hybrid architectures

® Chapter 3: Processes
= Chapter 3.1: Threads
= Context Switches
= Threading Models
= Multithreaded clients/servers
= Chapter 3.2: Virtualization

® Assignment O: Cloud Computing Infrastructure Tutorial

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma

| L7.14 |

14

Slides by Wes J. Lloyd

January 24, 2023

L7.7

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

TYPES OF SYSTEM ARCHITECTURES

® Centralized system architectures
= Client-server

= Multitiered |

®m Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2023]

januayiaa-12023 School of Engineering and Technology, University of Washington - Tacoma

| L7.15

15

MULTITIERED ARCHITECTURES

= Where should functionality be distributed?
= At the client?
= At the server?

Client machine

‘ User interqug | User interface‘ User interface User interface User interface
Sy ’ ‘ Applicatiop“ Application Application
ki-i_”-ﬁz‘“'”-f— —————— -%—f.\ __,,//‘ ’ Database __
[User interface /_,if'“‘ -»—3_ —————— . $ —

‘ Application ‘ | Application ‘ ‘j&;’)plication ‘ - -
‘ Database ‘ | Database ‘ ‘ Database ‘ | Database ‘ “_Database ‘
Server machine

= Why should we consider component composition?

TCSS558: Applied Distributed Computing [Winter 2023]

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

| L7.16

16

Slides by Wes J. Lloyd

January 24, 2023

L7.8

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

Bell’'s Number:

5 52
k: number of ways
n components can be 6 203
distributed across containers 7 877
8 4,140
9 21,14

=1

/

Tomcat ApplicationServer
Postgresql DB
nginx file server

%ﬁ

MD
L

rmo=

Logging server (high O/H)

17

~

/ Resource utilization profile changes
from component composition

M-bound RUSLE2 - Soil Erosion Model Webservice
* Box size shows absolute deviation (+/-) from mean
* Shows relative magnitude of performance variance

Two application variants tested o
* M-bound: Standard service, M is compute bound 1

* D-bound: Modified service, D is compute bound

111.1%
145%
143.9%

Resource footprint

Disk sector writes: 21.8%
Network bytes received: 144.9%
Network bytes sent: 143.7%

10%
E—
0% .

disk reads

network writes

CPU time disk writes network reads

18

Slides by Wes J. Lloyd

January 24, 2023

L7.9

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

15 |

Min to max performance

Sl¢

M-bound: 14%
D-bound: 25.7%

|_|IJ|J

-15

4 A Performance Change Y

1 »

.
scl sc2 sc3 scd4 sc5 sc6 sc7 sc8 sc9 sclOscllscl2scl3scldscls

Service Configurations

19

19

MULTITIERED ARCHITECTURES - 2

"= MDFL architecture
= M - is the application server

" M - is also a client to the database (D),
fileserver (F), and logging server (L)

Server as a client

Client Application Database
server server
Request
operation
> Request
data
Wait for Wait for
reply data
Return

< data

Return
reply

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma 1720

January 24, 2023

20

Slides by Wes J. Lloyd

January 24, 2023

L7.10

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

MULTITIERED RESOURCE SCALING

= Vertical distribution

= The distribution of “M D F L~

®m Application is scaled by placing “tiers” on separate servers
= M - The application server
= D - The database server

m Vertical distribution impacts “network footprint” of application
m Service isolation: each component is isolated on its own HW

= Horizontal distribution

® Scaling an individual tier

= Add multiple machines and distribute load
= L oad balancing

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 721 |

School of Engineering and Technology, University of Washington - Tacoma

21

MULTITIERED RESOURCE SCALING - 2

= Horizontal distribution cont’d
= Sharding: portions of a database map” to a specific server
= Distributed hash table
= Or replica servers

January 24, 2023

TCSS558: Applied Distributed Computing [Winter 2023] 722
School of Engineering and Technology, University of Washington - Tacoma :

22

Slides by Wes J. Lloyd

January 24, 2023

L7.11

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 1/24

® Questions from 1/19

®m Assighment O: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts

= Chapter 2.3: System Architectures
= Centralized system architectures
| = Decentralized peer-to-peer architectures |
= Hybrid architectures
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 17.23 |

School of Engineering and Technology, University of Washington - Tacoma

23

TYPES OF SYSTEM ARCHITECTURES

® Centralized system architectures
= Client-server
= Multitiered

® Decentralized peer-to-peer architectures
= Structured
= Unstructured

= Hierarchically organized

= Hybrid architectures

January 24, 2023

TCSS558: Applied Distributed Computing [Winter 2023] 724
School of Engineering and Technology, University of Washington - Tacoma :

24

Slides by Wes J. Lloyd

January 24, 2023

L7.12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

DECENTRALIZED PEER-TO-PEER

ARCHITECTURES

® Client/server:
= Nodes have specific roles

® Peer-to-peer:
= Nodes are seen as all equal...

= How should nodes be organized for communication?

TCSS558: Applied Distributed Computing [Winter 2023]

januayiaa-12023 School of Engineering and Technology, University of Washington - Tacoma

L7.25

25

STRUCTURED PEER-TO-PEER

= Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)

= Organization assists in data lookups
® Data indexed using “semantic-free” indexing
= Key / value storage systems

= Key used to look-up data

= Nodes store data associated with a subset of keys

TCSS558: Applied Distributed Computing [Winter 2023]

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

L7.26

26

Slides by Wes J. Lloyd

January 24, 2023

L7.13

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

DISTRIBUTED HASH TABLE (DHT)

® Distributed hash table (DHT) (ch. 5)
Hash function

key (data item) = hash(data item’s value)

® Hash function “generates” a unique key based on the data
= No two data elements will have the same key (hash)

m System supports data lookup via key

= Any node can receive and resolve the request

® | ookup function determines which node stores the key

existing node = lookup (key)

= Node forwards request to node with the data

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 727 |

School of Engineering and Technology, University of Washington - Tacoma

27

FIXED HYPERCUBE EXAMPLE

= Example where topology helps route data lookup request

m Statically sized 4-D hypercube, every node has 4 connectors
= 2 x 3-D cubes, 8 vertices, 12 edges

Node IDs represented as 4-bit code (0000 to 1111)

Hash data items to 4-bit key (1 of 16 slots)

Distance (number of hops) determined by identifying number
of varying bits between neighboring nodes and destination

TCSS558: Applied Distributed Computing [Winter 2023] | 17.28 |

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

28

Slides by Wes J. Lloyd

January 24, 2023

L7.14

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

FIXED HYPERCUBE EXAMPLE - 2

= Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

® Node 1110 is not a neighbor to 0111

= Which connector leads to the shortest path?

TCSS558: Applied Distributed Computing [Winter 2023] 17.26
School of Engineering and Technology, University of Washington - Tacoma :

January 24, 2023

29

WHICH CONNECTOR LEADS TO THE
SHORTEST PATH?

= Example: node 0111 (7) retrieves data from node 1110 (14)
= Node 1110 is not a neighbor to 0111

[0111] Neighbors:
1111 (1 bit different than 1110) 0011 (3 bits different- bad path)
0110 (1 bit different than 1110) 01041 (3 bits different- bad path)

= Does it matter which node is selected for the first hop?

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 1730

School of Engineering and Technology, University of Washington - Tacoma

30

Slides by Wes J. Lloyd

January 24, 2023

L7.15

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

DYNAMIC TOPOLOGY

= Fixed hypercube requires static topology
= Nodes cannot join or leave

m Relies on symmetry of number of nodes

= Can force the DHT to a certain size

= Chord system - DHT (again in ch.5)
= Dynamic topology
= Nodes organized in ring
= Every node has unique ID
= Each node connected with other nodes (shortcuts)

= Shortest path between any pair of nodes is ~ order O(log N)

= N is the total number of nodes

TCSS558: Applied Distributed Computing [Winter 2023]

januayiaa-12023 School of Engineering and Technology, University of Washington - Tacoma

| L7.31 |

31

CHORD SYSTEM

® Data items have m-bit key

= Data item is stored at closest “successor” node with ID 2 key k

® Each node maintains finger table of successor nodes

= Client sends key/value
lookup to any node

= Node forwards client
request to node with
m-bit ID closest to, but
not greater than key k

= Nodes must continually
refresh finger tables by
communicating with
adjacent nodes to
incorporate node
joins/departures

Queries
go
clock-wise

Node responsible for
keys {5,6,7.8,9)

TCSS558: Applied Distributed Computing [Winter 2023]

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

| 17.32 |

32

Slides by Wes J. Lloyd

January 24, 2023

L7.16

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

5-NODE CHORD SYSTEM

® Consider a 5 node Chord system with a 4-bit hash

= A query is sent to an arbitrary node
finger table
start | node

finger table ; : ‘I‘lugnr_ table
start| node T start| node|
[14| 0 | s 1 10 46
Lookup item 15| 0 sfe
0 1 3 7 10
with hash key s 6 15 . EIREE
k=8 14 . 2
Send query to > finger table
q n start| node|
arbitrary node . TR - it
12y IRER 8 10]
. 0 10| 10 S
| 3] 4]0 o
11 p
9 p 7

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 1733

School of Engineering and Technology, University of Washington - Tacoma

33

CHORD SYSTEM - 2

® CHORD SYSTEM: How is the shortest path O(log N)?
(N is the number of nodes)

® Chord provides an alternative to implement a DHT but
without a fixed size such as with the four-dimensional
hypercube

®m Each node keeps a finger table containing m entries
= m is the number of bits in the hash key

= A query is sent to an arbitrary node

® The node will look up the hash k in the finger table

® The finger table identifies the node to send the query to

® Nodes in the chord system are responsible for
maintaining up-to-date finger tables

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 734

School of Engineering and Technology, University of Washington - Tacoma

34

Slides by Wes J. Lloyd

January 24, 2023

L7.17

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

HOW TO COMPUTE FINGER TABLE (FT)

ith entry in FT at peer with id n is first node >= (n+2)(mod 2™)
n0

= Will index storage location of 16 items (0-15) p1
= Consider that we have 5 nodes
® Let’'s compute the finger table for n3 n6

n10
= Everytime a node wants to lookup a key it will
pass the query to the first node which is the closest successor
(going clockwise) of k in it's finger table

= N3 Finger Table
i ft[i]
4 n6 (3+2%(mod 24) hash i=0
5 né (3+21)(mod 24) hash i=1
7 n10 (3+22)(mod 24) hash i=2
11 13 (3+23)(mod 24) hash i=3

For our example hash has 4 bits (m=4) n3

januayiaa-12023 School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2023] | 17.35 |

35

5-NODE CHORD SYSTEM

® Consider a 5 node Chord system with a 4-bit hash

® A query is sent to an arbitrary node _/_\
finger table

finger table finger table
[start| node start| node|

[] 0| 46

. I 15 1 H 6
Lgokup item T% ot o
with hash key s 6| i5 i EREE

k=8

finger table finger table

start | node start| node

Send query to
arbitrary node

, [RER 71 10
12 § 12| 13 8 | 10

|14] 0] 10 | 10
3]

9 8

TCSS558: Applied Distributed Computing [Winter 2023]

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

36

Slides by Wes J. Lloyd

January 24, 2023

L7.18

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

TO FIND THE DATA

= If k =8 and the query first goes to node n3
® Query is passed to node n10

n0 k={14,15,0}
n3 k={1,2,3)
n6é k= {4,5,6)
n10 k= {7,8,9,10}
n13 k= {11,12,13}

= Path to data n3 > n10 (data found) - 1 hop = O(log n)

= To lookup a item with hash key k, the node will pass the query
to the closest successor of k in the finger table (the node with
the highest ID in the circle whose ID is smaller than k)

® Data each node is responsible for storing in this 5-node chord:

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington -

Tacoma

| L7.37 |

37

finger table
| start node‘
| 14 0 |

Lookup item [15] 0

with hash key ; % 15 |

finger table
start| node|
11 13
[EERNER
14 0
= |

Send query to
arbitrary node
12 {

9 8

5-NODE CHORD SYSTEM

® Consider a 5 node Chord system with a 4-bit hash

® A query is sent to an arbitrary node _/_\
finger table

finger table
start| node

finger table
[start| node
| 4 | 6

5 6
7 10|
ETREE

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington -

Tacoma

38

Slides by Wes J. Lloyd

January 24, 2023

L7.19

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

UNSTRUCTURED PEER-TO-PEER

= No topology: How do nodes find out about each other?
® Each node maintains adhoc list of neighbors
® Facilitates nodes frequently joining, leaving, adhoc systems

Neighbor: node reachable from another via a network path

Neighbor lists constantly refreshed

= Nodes query each other, remove unresponsive neighbors
® Forms a “random graph”

= Predetermining network routes not possible

= How would you calculate the route algorithmically?

® Routes must be discovered

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 1739 |

School of Engineering and Technology, University of Washington - Tacoma

39

SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

= Flooding
B [Node u] sends request for data item to all neighbors
E [Node v]
= Searches locally, responds to u (or forwarder) if having data
= Forwards request to ALL neighbors
= I[gnores repeated requests
= Features
= High network traffic
= Fast search results by saturating the network with requests
= Variable # of hops
= Max number of hops or time-to-live (TTL) often specified

= Requests can “retry” by gradually increasing TTL/max hops until
data is found

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 1740 |

School of Engineering and Technology, University of Washington - Tacoma

40

Slides by Wes J. Lloyd

January 24, 2023

L7.20

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

SEARCHING FOR DATA - 2

= Random walks
B [Node u] asks a randomly chosen neighbor [node v]

= |f [node v] does not have data, forwards request to a
random neighbor

= Features

= Low network traffic

= AKin to sequential search

= Longer search time

= [node u] can start “n” random walks simultaneously to
reduce search time

= As few as n=16..64 random walks sufficient to reduce search
time (LV et al. 2002)

= Timeout required - need to coordinate stopping network-wide
walk when data is found...

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma | L

January 24, 2023

41

SEARCHING FOR DATA - 3

® Policy-based search methods

® |[ncorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of
queries

= Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

® Favor neighbors having highest number of neighbors
= Can help minimize hops

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma | 742

January 24, 2023

42

Slides by Wes J. Lloyd

January 24, 2023

L7.21

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

HIERARCHICAL

PEER-TO-PEER NETWORKS

= Problem:
Adhoc system search performance does not scale well as
system grows

= Allow nodes to assume ROLES to improve search
= Content delivery networks (CDNs) (video streaming)
= Store (cache) data at nodes local to the requester (client)
= Broker node - tracks resource usage and node availability
Track where data is needed
Track which nodes have capacity (disk/CPU resources) to host data
= Node roles
= Super peer -Broker node, routes client requests to storage
nodes

= Weak peer - Store data

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 17.43 |

School of Engineering and Technology, University of Washington - Tacoma

43

HIERARCHICAL

PEER-TO-PEER NETWORKS - 2

® Super peers
= Head node of local centralized network
= [nterconnected via overlay network with other super peers
= May have replicas for fault tolerance

= Weak peers
= Rely on super peers to find data

= | eader-election problem:
= Who can become a i .

super peer? "
= What requirements \Dfsumrpeers

must be met to become ~
a super peer? T

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 744 |

School of Engineering and Technology, University of Washington - Tacoma

44

Slides by Wes J. Lloyd

January 24, 2023

L7.22

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

WE WILL RETURN AT
2:40PM

OBJECTIVES - 1/24

® Questions from 1/19

= testFibPar.sh and testFibService.sh scripts

= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
| = Hybrid architectures |
® Chapter 3: Processes
= Chapter 3.1: Threads
= Context Switches
= Threading Models
= Multithreaded clients/servers
= Chapter 3.2: Virtualization

® Assignment O: Cloud Computing Infrastructure Tutorial

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma

| L7.46

46

Slides by Wes J. Lloyd

January 24, 2023

L7.23

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

TYPES OF SYSTEM ARCHITECTURES

® Centralized system architectures
= Client-server
= Multitiered

®m Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

| = Hybrid architectures |

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 747 |

School of Engineering and Technology, University of Washington - Tacoma

47

b

HYBRID o G e

ARCHITECTURES N
— < > Enterprise network

® Combine centralized server concepts with decentralized
peer-to-peer models

= Edge-server systems:

® Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

m Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

= Example:

= AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

= https://www.infoq.com/news/2017/07/aws-lambda-at-edge

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 1748 |

School of Engineering and Technology, University of Washington - Tacoma

48

Slides by Wes J. Lloyd

January 24, 2023

L7.24

https://www.infoq.com/news/2017/07/aws-lambda-at-edge

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

LJ\:I(: tlj“e"t Cantent provider N/
HYBRID e x
ARCHITECTURES - 2 —

Core Internet "

. > < EFI :>En|erpnse network

= Fog computing:

= Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

® End-user devices become part of the overall system

= Middleware extended to incorporate managing edge
devices as participants in the distributed system

® Cloud = in the sky
= compute/resource capacity is huge, but far away...
® Fog > (devices) on the ground
= compute/resource capacity is constrained and local...

TCSS558: Applied Distributed Computing [Winter 2023] 1748
School of Engineering and Technology, University of Washington - Tacoma :

January 24, 2023

49

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE

= BitTorrent Example:
File sharing system - users must contribute as a file host to
be eligible to download file resources

® Original implementation features hybrid architecture
= | everages idle client network capacity in the background
m User joins the system by interacting with a central server

= Client accesses global directory from a tracker server at well
known address to access torrent file

= Torrent file tracks nodes having chunks of requested file

m Client begins downloading file chunks and immediately then
participates to reserve downloaded content or network
bandwidth is reduced!!

® Chunks can be downloaded in parallel from distributed nodes

January 24, 2023

TCSS558: Applied Distributed Computing [Winter 2023] 1750
School of Engineering and Technology, University of Washington - Tacoma :

50

Slides by Wes J. Lloyd

January 24, 2023

L7.25

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

REVIEW QUESTIONS

® What is difference in finding/disseminating data in
unstructured vs. structured peer-to-peer networks?
= Spreading/finding data
= Flooding, Random walk

= What are some advantages of a decentralized structured peer-
to-peer architecture?

= What are some disadvantages?

= What are some advantages of a decentralized unstructured
peer-to-peer architecture?

= What are some disadvantages?

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 1751 |

School of Engineering and Technology, University of Washington - Tacoma

51

OBJECTIVES - 1/24

® Questions from 1/19

® Assignment O: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts

= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

| = Chapter 3: Processes |
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 752 |

School of Engineering and Technology, University of Washington - Tacoma

52

Slides by Wes J. Lloyd

January 24, 2023

L7.26

TCSS 558: Applied Distributed Computing January 24, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

]
=)
=)

2=
EEE

Workload diversity
(process types)

CH. 3: PROCESSES
CH. 3.1: THREADS

CHAPTER 3

® Chapter 3 titled “processes”

® Covers variety of distributed system implementation
details

® “Grab bag” of topics

® Processes/threads
® Virtualization

= Clients

= Servers

= Code migration

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.54

January 24, 2023

54

Slides by Wes J. Lloyd L7.27

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 1/24

® Questions from 1/19
®m Assighment O: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

® Chapter 3: Processes

= Chapter 3.1: Threads I

Context Switches

Threading Models

Multithreaded clients/servers
= Chapter 3.2: Virtualization

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 1755 |

School of Engineering and Technology, University of Washington - Tacoma

55

CH. 3.1 - THREADS

= For implementing a server (or client) threads offer many
advantages vs. heavy weight processes

= What is the difference between a process and a thread?
= (review?) from Operating Systems

= Key difference: what do threads share amongst each other
that processes do not.... ?

= What are the segments of a program stored in memory?
= Heap segment (dynamic shared memory)
= Code segment
= Stack segment
= Data segment (global variables)

TCSS558: Applied Distributed Computing [Winter 2023] | L7.56 |

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

56

Slides by Wes J. Lloyd

January 24, 2023

L7.28

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

THREADS - 2

= Do several processes oh an operating system share...
= Heap segment?
= Stack segment?
= Code segment?

= Can we run multiple copies of the same code?

= These may be managed as shared pages (across processes) in
memory

= Processes are isolated from each other by the 0OS
= Each has a separate heap, stack, code segment

januayiaa-12023 School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2023] | 17.57 |

57

THREADS - 3

® Threads avoid the overhead of process creation
= No new heap or code segments required

= What is a context switch?

m Context switching among threads is considered to be more
efficient than context switching processes

= | ess elements to swap-in and swap-out

= Unikernel: specialized single process OS for the cloud

= Example: Osv, Clive, MirageOS (see: http://unikernel.org/projects/)
= Single process operating system with many threads

= Developed for the cloud to run only one application at a time

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2023] | L7.58 |

58

Slides by Wes J. Lloyd

January 24, 2023

L7.29

http://unikernel.org/projects/

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

ONE PROCESS, MANY THREADS

Threads

DN BMI DRI ZNU RS ZWM DR ZWI NI 2w

page-access-
sca =

Nibhitpserver

>java.so "
>>java.so ™™

>>java.so =

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] |

School of Engineering and Technology, University of Washington - Tacoma

59

THREADS - 4

® [mportant implications with threads:
® (1) multi-threading should lead to performance gains

® (2) thread programming requires additional effort when
threads share memory

= Known as thread synchronization, or enabling concurrency

® Access to critical sections of code which modify shared
variables must be mutually exclusive

= No more than one thread can execute at any given time
= Critical sections must run atomically on the CPU

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma | 1760 |

January 24, 2023

60

Slides by Wes J. Lloyd

January 24, 2023

L7.30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

BLOCKING THREADS

= Example: spreadsheet with formula to compute sum of column
= User modifies values in column

= Multiple threads:

1. Supports interaction (Ul) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

= Single core CPU

= Tasks appear as if they are performed simultaneously
= Multi core CPU

= Tasks execute simultaneously

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

| L7.61 |

January 24, 2023

61

INTERPROCESS COMMUNICATION

= |PC - mechanism using pipes, message queues, and shared
memory segments

= |PC mechanisms incur context switching
= Process I/0 must execute in kernel mode

= How many context switches are required for process A to
send a message to process B using IPC?

Process A Process B
= #1 C/S:

Proc A>kernel thread
]

#2 C/S:
Kernel thread—>Proc B

S1: Switch from user space
to kernel space

__ S3: Switch from kernel
t,/- ol space to user space|

Operating system

§2: Switch context from

process A to process B

TCSS558: Applied Distributed Computing [Winter 2023]

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

| L7.62 |

62

Slides by Wes J. Lloyd

January 24, 2023

L7.31

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 1/24

® Questions from 1/19
®m Assighment O: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

= Chapter 3: Processes
= Chapter 3.1: Threads
I Context Switches l
Threading Models

Multithreaded clients/servers
= Chapter 3.2: Virtualization

TCSS558: Applied Distributed Computing [Winter 2023]

| januayiaa-12023 School of Engineering and Technology, University of Washington - Tacoma

| L7.63

63

CONTEXT SWITCHING

= Direct overhead
= Time spent not executing program code (user or kernel)

= Time spent executing interrupt routines to swap memory segments
of different processes (or threads) in the CPU

= Stack, code, heap, registers, code pointers, stack pointers
= Memory page cache invalidation

= |Indirect overhead

= Overhead not directly attributed to the physical actions of the
context switch

= Captures performance degradation related to the side effects of
context switching (e.g. rewriting of memory caches, etc.)

= Primarily cache perturbation

TCSS558: Applied Distributed Computing [Winter 2023]

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

| L7.64

64

Slides by Wes J. Lloyd

January 24, 2023

L7.32

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

CONTEXT SWITCH -

CACHE PERTURBATION

= Refers to cache reorganization that occurs as a result of a
context switch

® Cache is not clear, but elements from cache are removed as a
result of another program running in the CPU

= 80% performance overhead from context switching results
from this “cache perturbation”

MRU IE‘
LRU |E|
January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 1765 |

School of Engineering and Technology, University of Washington - Tacoma

65

OBJECTIVES - 1/24

® Questions from 1/19

®m Assignment O: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts

= Chapter 2.3: System Architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

® Chapter 3: Processes

= Chapter 3.1: Threads
Context Switches

Threading Models I

Multithreaded clients/servers
= Chapter 3.2: Virtualization

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 766 |

School of Engineering and Technology, University of Washington - Tacoma

66

Slides by Wes J. Lloyd

January 24, 2023

L7.33

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

THREADING MODELS

= Many-to-one threading: multiple user-level threads per process
= Thread operations (create, delete, locks) run in user mode

= Multithreaded process mapped to single schedulable entity

= Only run thread per process runs at any given time

= Key take-away: thread management handled by user processes

= What are some advantages of many-to-one threading?

= What are some disadvantages?

TCSS558: Applied Distributed Computing [Winter 2023] | L7.67 |

januayiaa-12023 School of Engineering and Technology, University of Washington - Tacoma

67

THREADING MODELS - 2

= One-to-one threading: use of separate kernel threads for each
user process - also called kernel-level threads

® The kernel API calls (e.g. 1/0, locking) are farmed out to an
existing kernel level thread

= Thread operations (create, delete, locks) run in kernel mode
® Threads scheduled individually by the 0OS

= System calls required, context switches as expensive as
process context switching

= |dea is to have preinitialized kernel threads for user processes
= Linux uses this model...

= What are some advantages of one-to-one threading?

= What are some disadvantages?

TCSS558: Applied Distributed Computing [Winter 2023] | L7.68 |

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

68

Slides by Wes J. Lloyd

January 24, 2023

L7.34

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

APPLICATION EXAMPLES

®m Google chrome: processes
® Apache tomcat webserver: threads

® Multiprocess programming avoids synchronization of
concurrent access to shared data, by providing coordination
and data sharing via interprocess communication (IPC)

® Each process maintains its own private memory

= While this approach avoids synchronizing concurrent access to
shared memory, what is the tradeoff(s) ??

= Replication instead of synchronization - must synchronize multiple
copies of the data

= Do distributed objects share memory?

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 1760 |

School of Engineering and Technology, University of Washington - Tacoma

69

OBJECTIVES - 1/24

® Questions from 1/19

® Assignment O: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts

= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models

Multithreaded clients/servers |

= Chapter 3.2: Virtualization

TCSS558: Applied Distributed Computing [Winter 2023] | 17.70 |

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

70

Slides by Wes J. Lloyd

January 24, 2023

L7.35

TCSS 558: Applied Distributed Computing January 24, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

MULTITHREADED CLIENTS

= Web browser

m Uses threads to load and render portions of a web page to the
user in parallel

® A client could have dozens of concurrent connections all
loading in parallel

= testFibPar.sh
m Assignment O client script (GNU parallel)

= Important benefits:
= Several connections can be opened simultaneously

= Client: dozens of concurrent connections to the webserver all
loading data in parallel

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 771 |

School of Engineering and Technology, University of Washington - Tacoma

71

MULTIPLE THREADS

® |n Linux, threads also receive a process ID (PID)
= To display threads of a process in Linux:

m |dentify parent process explicitly:
= top -H -p <pid>
= htop -p <pid>

® ps -iT <pid>

= Virtualbox process ~ 44 threads
= No mapping to guest # of processes/threads

TCSS558: Applied Distributed Computing [Winter 2023] | 7.72 |

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

72

Slides by Wes J. Lloyd L7.36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

PROCESS METRICS

isk
- dsr: disk sector reads
- dsreads: disk sector reads completed
- drm: merged adjacent disk reads
- readtime: time spent reading from
CPU disk
-cpuUsr: CPU time in user mode - dsw: disk sector writes
-cpuKrn: CPU time in kernel mode - dswrites: disk sector writes completed
-cpuldle: CPU idle time - dwm: merged adjacent disk writes
- cpuloWait: CPU time waiting for /0 - writetime: time spent writing to disk
- cpulntSrvc:CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts Network
-cpuNice: CPU time executing prioritized - nbs: network bytes sent
processes - nbr: network bytes received
- cpuSteal: CPU ticks lost to virtualized guests
- contextsw: # of context switches
- loadavg: (avg # proc / 60 secs)

LOAD AVERAGE

= Reported by: top, htop, w, uptime, and /proc/loadavg
= Updated every 5 seconds
= Average number of processes using or waiting for the CPU

® Three humbers show exponentially decaying usage
for 1 minute, 5 minutes, and 15 minutes

® One minute average: exponentially decaying average
= Load average = 1 = (avg last minute load) — 1/e = (avg load since boot)

m 1.0 = 1-CPU core fully loaded
= 2.0 = 2-CPU cores
= 3.0 = 3-CPU cores . ..

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | e |

School of Engineering and Technology, University of Washington - Tacoma

74

Slides by Wes J. Lloyd

January 24, 2023

L7.37

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

THREAD-LEVEL PARALLELISM

®m Metric - measures degree of parallelism realized by running
system, by calculating average utilization:

N .
Zi:1 I-Cj

1—c¢p

TLP =

m Ci - fraction of time that exactly | threads are executed

= N - maximum threads that can execute at any one time

= Web browsers found to have TLP from 1.5 to 2.5

= Clients for web browsing can utilize from 2 to 3 CPU cores
= Any more cores are redundant, and potentially wasteful

= Measure TLP to understand how many CPUs to provision

TCSS558: Applied Distributed Computing [Winter 2023]

januayiaa-12023 School of Engineering and Technology, University of Washington - Tacoma

| L7.75

75

MULTITHREADED SERVERS

= Multiple threads essential for servers in distributed systems
= Even on single-core machines greatly improves performance
= Take advantage of idle/blocking time
= Two designs:

= Generate new thread for every request

= Thread pool - pre-initialize set of threads to service requests

Request dispatched
Dispatcher thread to a worker thread Server

B I‘:I\‘\‘ |+ Worker thread

Operating system

Request coming in Y
from the network

TCSS558: Applied Distributed Computing [Winter 2023]

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

| L7.76

76

Slides by Wes J. Lloyd

January 24, 2023

L7.38

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

SINGLE THREAD & FSM SERVERS

® Single thread server
= A single thread handles all client requests
= BLOCKS for I/0
= All waiting requests are queued until thread is available

= Finite state machine
= Server has a single thread of execution
= /0 performing asynchronously (non-BLOCKing)
= Server handles other requests while waiting for 1/0
= Interrupt fired with /0 completes
= Single thread “jumps” back into context to finish request

TCSS558: Applied Distributed Computing [Winter 2023]

januayiaa-12023 School of Engineering and Technology, University of Washington - Tacoma

| L7.77

77

SERVER DESIGN ALTERNATIVES

= A blocking system call implies that a thread servicing a
request synchronously performs I/0

® The thread BLOCKS to wait on disk/network 1/0 before
proceeding with request processing

® Consider the implications of these designhs for responsiveness,
availability, scalability. . .

m Characteristics

Multithreading Parallelism, blocking I/0
Single-thread No parallelism, blocking I/0
Finite-state machine Parallelism, non-blocking 1/0

TCSS558: Applied Distributed Computing [Winter 2023]

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

| L7.78

78

Slides by Wes J. Lloyd

January 24, 2023

L7.39

TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 1/24

® Questions from 1/19

® Assignment 0: Cloud Computing Infrastructure Tutorial
= testFibPar.sh and testFibService.sh scripts

= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures
= Chapter 3: Processes
= Chapter 3.1: Threads
= Context Switches
= Threading Models
= Multithreaded clients/servers

= Chapter 3.2: Virtualization |

January 24, 2023

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

| L7.79

79

VIRTUALIZATION

80

Slides by Wes J. Lloyd

January 24, 2023

L7.40

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

VIRTUALIZATION

® |nitially introduced in the 1970s
on IBM mainframe computers

® | egacy operating systems run in mainframe-based VMs
m Legacy software could be sustained by virtualizing legacy OSes

m 1970s virtualization went away as desktop/rack-based
hardware became inexpensive

= Virtualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

= VM-Ware virtual machines enable companies to host many
virtual servers with mixed OSes on private clusters

= Cloud computing: Amazon offers VMs as-a-service (laaS)

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 781 |

School of Engineering and Technology, University of Washington - Tacoma

81

TYPES OF VIRTUALIZATION

= Levels of instructions: |iary unctions ‘ Application
= I

= Hardware: CPU System calls __ | Library

General
= instructions

= Privileged instructions Privileged Operating system
KERNEL MODE instructions ——= T

Hardware

= General instructions
USER MODE

= Operating system: system calls

= Library: programming APIs: e.g. C/C++,C#, Java libraries

= Application:
= Goal of virtualization:
mimic these interface to provide a virtual computer

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 782 |

School of Engineering and Technology, University of Washington - Tacoma

82

Slides by Wes J. Lloyd

January 24, 2023

L7.41

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

TYPES OF VIRTUALIZATION - 2

Application/Libraries

= Process virtual machine I I

= |nterpret instructions: (interpreters) T EFRIET
(JavaVM) byte code - HW instructions Operating system

= Emulate instructions: (emulators) \ L1 I
(Wine) windows code = Linux code Hardware ‘

= Native virtual machine monitor (VMM) ————
Application/Libraries
= Hypervisor (XEN): small OS with its own kernel
= Provides an interface for multiple guest OSes Operating system
T T I
= Facilitates sharing/scheduling of ‘ Virtual machine monitor

CPU, device I/0 among many guests I 1 1

= Guest OSes require special kernel to interface w/ VMM | "

= Supports Paravirtualization for performance boost to run code
directly on the CPU

= Type 1 hypervisor

January 24, 2023

TCSS558: Applied Distributed Computing [Winter 2023] 1783
School of Engineering and Technology, University of Washington - Tacoma :

83

TYPES OF VIRTUALIZATION - 3

= Hosted virtual machine monitor (VMM) Aeplcatonbraris
= Runs atop of hosted operating system Operating system

= Uses host OS facilities for CPU scheduling, 1/0
= Full virtualization

= Type 2 hypervisor

= Virtualbox

Virtual machine monitor

Operating system
I [T I

Hardware ‘

= Textbook: note 3.5-good explanation of full vs. paravirtualization

= GOAL: run all user mode instructions directly on the CPU

m x86 instruction set has ~17 privileged user mode instructions

= Full virtualization: scan the EXE, insert code around privileged
instructions to divert control to the VMM

= Paravirtualization: special OS kernel eliminates side effects of
privileged instructions

TCSS558: Applied Distributed Computing [Winter 2023] | L7.84 |

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

84

Slides by Wes J. Lloyd

January 24, 2023

L7.42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

EVOLUTION OF AWS VIRTUALIZATION

From http://www.brendangregg.com/blog/2047-11-29/aws-ec2-virtualization-2017.html
AWS EC2 Virtualization Types

VS:
Virtualization
In software

Importance
Most

Bare-metal performance
Near-metal parformance

N,
Optimized performance C‘% 45%:’/6} % o '@%ﬁﬁv"q
C, >

P: Poor performance 'ﬁ,’q}
Paravirtual 7 Tech Type]
1 VM Fully Emulated
VH: Old |2 WM Xen PV 3.0 PV drivers
Virtualization 3| W Xen HVM 3.0 PV drivers
4| WM Xen HVM 4.0.1 PVHVM drivers
In Hardware 5| wvm Xen AWS 2013 PVHVM + SR-I0V(net)
6 VM Xen AWS 2017 PVHVM + SR-I0V(net, stor.)
H: 7| V™ AWS Nitro 2017
Hardware New |8 | HW [AWS Bare Metal 2017 H|H H|H
Bare Metal IEREREREERERER

VM: Virtual Machine, HW: Hardware,
VE: Virl. in software. VH: Virt. in hardware. P: Paravirt. Not all combinations shown.
SR-10V(net): ixgbe/ena driver. SR-I0V(storage): nvme driver.

TCSS558: Applied Distributed Computing [Winter 2023]

januayiaa-12023 School of Engineering and Technology, University of Washington - Tacoma

| L7.85 |

85

AWS VIRTUALIZATION - 2

= Full Virtualization - Fully Emulated
= Never used on EC2, before CPU extensions for virtualization
= Can boot any unmodified 0S
= Support via slow emulation, performance 2x-10x slower

= Paravirtualization: Xen PV 3.0
= Software: Interrupts, timers
= Paravirtual: CPU, Network I/0, Local+Network Storage
= Requires special OS kernels, interfaces with hypervisor for /0
= Performance 1.1x - 1.5x slower than “bare metal”
= |Instance store instances: 15T & 2"d generation- mi.large, m2.xlarge

= Xen HVM 3.0
= Hardware virtualization: CPU, memory (CPU VT-x required)
= Paravirtual: network, storage
= Software: interrupts, timers
= EBS backed instances
= m1, cl instances

TCSS558: Applied Distributed Computing [Winter 2023]

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

| L7.86 |

86

Slides by Wes J. Lloyd

January 24, 2023

L7.43

http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

AWS VIRTUALIZATION - 3

= XEN HVM 4.0.1
= Hardware virtualization: CPU, memory (CPU VT-x required)
= Paravirtual: network, storage, interrupts, timers

= XEN AWS 2013 (diverges from opensource XEN)
= Provides hardware virtualization for CPU, memory, network
= Paravirtual: storage, interrupts, timers
= Called Single root I/0 Virtualization (SR-10V)

= Allows sharing single physical PCl Express device (i.e. network adapter)
with multiple VMs

= Improves VM network performance
= 3rd & 4th generation instances (c3 family)
= Network speeds up to 10 Gbps and 25 Gbps
= XEN AWS 2017
= Provides hardware virtualization for CPU, memory, network, local disk
= Paravirtual: remote storage, interrupts, timers
= Introduces hardware virtualization for EBS volumes (c4 instances)
= |Instance storage hardware virtualization (x1.32xlarge, i3 family)

TCSS558: Applied Distributed Computing [Winter 2023]

januayiaa-12023 School of Engineering and Technology, University of Washington - Tacoma

| L7.87

87

AWS VIRTUALIZATION - 4

= AWS Nitro 2017

= Provides hardware virtualization for CPU, memory, network, local
disk, remote disk, interrupts, timers

= All aspects of virtualization enhanced with HW-level support

= November 2017

= Goal: provide performance indistinguishable from “bare metal”
= 5th generation instances - ¢5 instances (also ¢5d, c5n)

= Based on KVM hypervisor

= Overhead around ~1%

TCSS558: Applied Distributed Computing [Winter 2023]

(ELUETRY 242 2P E) School of Engineering and Technology, University of Washington - Tacoma

| L7.88

88

Slides by Wes J. Lloyd

January 24, 2023

L7.44

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

QUESTIONS

January 24, 2023 TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington -

135

Slides by Wes J. Lloyd

January 24, 2023

L7.45

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/24
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/19
	Slide 7: Feedback - 2
	Slide 8: Feedback - 3
	Slide 9: Feedback - 4
	Slide 10: OBJECTIVES – 1/24
	Slide 11: Assignment 0
	Slide 12: Testing connectivity to server
	Slide 13: Ch 2.3: System architectures
	Slide 14: OBJECTIVES – 1/24
	Slide 15: Types of System architectures
	Slide 16: Multitiered architectures
	Slide 17
	Slide 18
	Slide 19: Performance implications of component deployments
	Slide 20: Multitiered architectures - 2
	Slide 21: Multitiered resource scaling
	Slide 22: Multitiered resource scaling - 2
	Slide 23: OBJECTIVES – 1/24
	Slide 24: Types of System architectures
	Slide 25: Decentralized Peer-to-peer architectures
	Slide 26: Structured peer-to-peer
	Slide 27: Distributed hash table (DHT)
	Slide 28: Fixed hypercube example
	Slide 29: Fixed Hypercube example - 2
	Slide 30: Which connector leads to the shortest path?
	Slide 31: Dynamic topology
	Slide 32: Chord system
	Slide 33: 5-node chord system
	Slide 34: Chord system - 2
	Slide 35: How to compute finger table (ft)
	Slide 36: 5-node chord system
	Slide 37: To find the data
	Slide 38: 5-node chord system
	Slide 39: unstructured peer-to-peer
	Slide 40: Searching for data: unstructured peer-to-peer systems
	Slide 41: Searching for data - 2
	Slide 42: Searching for data - 3
	Slide 43: Hierarchical peer-to-peer networks
	Slide 44: Hierarchical peer-to-peer networks - 2
	Slide 45: We will return at 2:40pm
	Slide 46: OBJECTIVES – 1/24
	Slide 47: Types of System architectures
	Slide 48: Hybrid architectures
	Slide 49: Hybrid architectures - 2
	Slide 50: Collaborative distributed system example
	Slide 51: Review questions
	Slide 52: OBJECTIVES – 1/24
	Slide 53: Ch. 3: processes Ch. 3.1: threads
	Slide 54: Chapter 3
	Slide 55: OBJECTIVES – 1/24
	Slide 56: Ch. 3.1 - threads
	Slide 57: Threads - 2
	Slide 58: Threads - 3
	Slide 59: Osv: one process, many threads
	Slide 60: Threads - 4
	Slide 61: blocking threads
	Slide 62: Interprocess communication
	Slide 63: OBJECTIVES – 1/24
	Slide 64: Context switching
	Slide 65: Context switch – cache perturbation
	Slide 66: OBJECTIVES – 1/24
	Slide 67: Threading models
	Slide 68: Threading models - 2
	Slide 69: Application examples
	Slide 70: OBJECTIVES – 1/24
	Slide 71: Multithreaded clients
	Slide 72: Multiple threads
	Slide 73: Process metrics
	Slide 74: Load average
	Slide 75: Thread-level parallelism
	Slide 76: Multithreaded servers
	Slide 77: Single thread & fsm servers
	Slide 78: Server design alternatives
	Slide 79: OBJECTIVES – 1/24
	Slide 80: Ch. 3.2: virtualization
	Slide 81: virtualization
	Slide 82: Types of virtualization
	Slide 83: Types of virtualization - 2
	Slide 84: Types of virtualization - 3
	Slide 85: Evolution of Aws virtualization
	Slide 86: Aws virtualization - 2
	Slide 87: Aws virtualization - 3
	Slide 88: Aws virtualization - 4
	Slide 135: Questions

