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TCSS 558: 

APPLIED DISTRIBUTED COMPUTING

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization
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 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (33 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.56  ( - previous 6.16)  

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.58  ( - previous 5.45)
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MATERIAL / PACE

 How is an interceptor dif ferent from a broker other than that 
interceptor seems to serve specific purposes?

 Broker is a separate server that provides an intermediary 
between clients and servers

 In business, a broker is a person who buys and sells goods or 
assets for others

 In cloud computing, brokers are resellers that purchase cloud 
computing services and resell the services

 Cloud computing broker (reseller):

▪ The University of Washington leverages a company (DLT Solutions)
which is a broker for cloud computing services

▪ A broker provides discounts and acts as a customer advocate by 
consolidating the purchase power of many organizations to increase 
leverage and ability to negotiate for lower prices and better 
service/support !
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 (CONT’D) How is an interceptor dif ferent from a broker other 

than that interceptor seems to serve specific purposes?

 The key is that a broker is a third -party / intermediary

 One architectural advantage of a broker is consolidation of 

wrappers (interfaces) in a common place for easier 

maintenance

 An interceptor is a construct local to the client or server which 

servers to intercept and handle orchestration of remote calls

 The interceptor is not a server

 The interceptor is not an intermediary

 The interceptor is just a construct that helps facilitate 

distribution transparency
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FEEDBACK - 2

 Are there any cons to using a broker wrapper?

 Broker is a centralized entity

 I f  the broker facilities app-to-app communication for too many 
applications and services it could become overly complex

 Care must be taken so that broker is scalable and resilient 
otherwise it will become a single point of failure

 Question for the class:

 Are there any cons to using a wrapper?

 Wrapper provides a boundary between a client and a backend 
(legacy) library or module

 Maintenance? 

 Can all legacy functionality be delivered through a wrapper?

 What if legacy functionality is not decoupled? (not MVC) 
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 Can you give examples of  how components can be changed at the 

runtime?

 In component-based development, components communicate with 

each other via inter faces. The client does not need to know about 

the inner workings (implementation) of the component. 

Components encapsulate their functionality.

 Components are substitutable at design or run -time. Candidate 

components must meet the requirements of the initial component 

expressed via its inter faces

 Any component that implements the inter face is considered 

‘pluggable’ such that it can be exchanged 

 Rule of thumb: component B can immediately replace component 

A, if  component B provides at least what component A provided and 

uses no more resources than component A.
Loosely  based on:  ht tps ://en.wik iped ia .org /wik i/ C omp one nt -b ase d_s of t war e_ e ng in e er i ng
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FEEDBACK - 4

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization
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 Preparing for Assignment 0:

▪ Establish AWS Account

▪ Standard account

▪ Complete AWS Cloud Credits Survey and provide AWS account ID

▪ Credits will be automatically loaded by Amazon into accounts

 Tasks:

▪ Task 1 - Establish local Linux/Ubuntu environment

▪ Task 2 –AWS account setup, obtain user credentials

▪ Task 3 – Intro to: Amazon EC2 & Docker: create Dockerfile for 
Apache Tomcat

▪ Task 4 – Create Dockerfile for haproxy

▪ Task 5 – Working with Docker-Machine

▪ Task 6 - Config 3 multiple server configs to load balance 
requests for RESTful Fibonacci web service

▪ Task 7 – Test configs and submit results
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ASSIGNMENT 0

 testFibPar.sh script is a parallel test script

 Orchestrates multiple threads on client to invoke server 
multiple times in parallel

 To simplify coordinate of parallel service calls in BASH, 
testFibPar.sh script ignores errors !!!  

 To help test client-to-server connectivity, have created a new 
testFibService.sh script

 TEST 1: Network layer

▪ Ping (ICMP)

 TEST 2: Transport layer

▪ TCP: telnet (TCP Port 8080) – security group (firewall) test

 TEST 3: Application layer

▪ HTTP REST – web service test
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TESTING CONNECTIVITY TO SERVER
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CH 2.3: SYSTEM 

ARCHITECTURES
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 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization
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 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured 

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Where should functionality be distributed?

▪ At the client?

▪ At the server? 

 Why should we consider component composition?

January 24, 2023
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MULTITIERED ARCHITECTURES
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Component Composition Example

• An application with 4 components has 15 compositions

• One or more component(s) deployed to each VM 

• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways 
n components can be 
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14

7

n . . .

SC15
SC14

SC13
SC12

SC11
SC10

SC9
SC8

SC7
SC6
SC5

SC4

SC3

SC2
SC1

CPU time        disk reads   disk writes  network reads     network writes

∆  Resource Utilization Change
Min to Max Utilization

m-bound d-bound       

CPU time: 6.5% 5.5%

Disk sector reads: 14.8% 819.6%
Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%

Network bytes sent: 143.7% 143.9%

Resource utilization profile changes 

from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice

• Box size shows absolute deviation (+/-) from mean

• Shows relative magnitude of performance variance

Two application variants tested

• M-bound: Standard service, M is compute bound

• D-bound: Modified service, D is compute bound
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19

PERFORMANCE IMPLICATIONS OF

COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆  Performance Change:
Min to max performance

M-bound: 14%

D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D), 

fileserver (F), and logging server (L)
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MULTITIERED ARCHITECTURES - 2

M

D F L

client
Server as a client
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 Vertical distribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers

▪ M – The application server

▪ D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing

January 24, 2023
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MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

▪ Sharding: portions of a database map” to a specific server

▪ Distributed hash table

▪ Or replica servers

January 24, 2023
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MULTITIERED RESOURCE SCALING - 2
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 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization
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OBJECTIVES – 1/24

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured 

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 24, 2023
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TYPES OF SYSTEM ARCHITECTURES
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 Client/server:

▪ Nodes have specific roles

 Peer-to-peer:

▪ Nodes are seen as all equal…

 How should nodes be organized for communication?

January 24, 2023
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DECENTRALIZED PEER-TO-PEER 

ARCHITECTURES

 Nodes organized using specific topology 

(e.g. ring, binary -tree, grid, etc.)

▪ Organization assists in data lookups

 Data indexed using “semantic -free” indexing

▪ Key / value storage systems

▪ Key used to look-up data

 Nodes store data associated with a subset of keys

January 24, 2023
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STRUCTURED PEER-TO-PEER
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 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.27

DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number 

of varying bits between neighboring nodes and destination

January 24, 2023
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FIXED HYPERCUBE EXAMPLE

27

28



TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.15

 Example: fixed hypercube

node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

January 24, 2023
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FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does it matter which node is selected for the first hop?

January 24, 2023
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WHICH CONNECTOR LEADS TO THE 

SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent– bad path)

0101 (3 bits dif ferent– bad path)
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 Fixed hypercube requires static topology

▪ Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

▪ Dynamic topology

▪ Nodes organized in ring

▪ Every node has unique ID

▪ Each node connected with other nodes (shortcuts)

▪ Shortest path between any pair of nodes is ~ order O(log N)

▪ N is the total number of nodes

January 24, 2023
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DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains f inger table of successor nodes

 Client sends key/value 

lookup to any node

 Node forwards client 

request to node with 

m-bit ID closest to, but 

not greater than key k 

 Nodes must continually

refresh finger tables by 

communicating with 

adjacent nodes to 

incorporate node 

joins/departures

January 24, 2023
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CHORD SYSTEM

Queries
go

clock-wise
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 Consider a 5 node Chord system with a 4 -bit hash

 A query is sent to an arbitrary node

January 24, 2023
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5-NODE CHORD SYSTEM

1000

Lookup item
with hash key
k=8

Send query to
arbitrary node

 CHORD SYSTEM: How is the shortest path O(log N)?  

(N is the number of nodes)

 Chord provides an alternative to implement a DHT but 

without a fixed size such as with the four -dimensional 

hypercube

 Each node keeps a finger table containing m entries

▪m is the number of bits in the hash key

 A query is sent to an arbitrary node

 The node will look up the hash k in the finger table

 The finger table identifies the node to send the query to

 Nodes in the chord system are responsible for 

maintaining up-to-date finger tables

January 24, 2023
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CHORD SYSTEM - 2
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 i th entry in FT at peer with id n is f irst node >= (n+2 i)(mod 2m)

 For our example hash has 4 bits (m=4)

▪ Will index storage location of 16 items (0-15)

 Consider that we have 5 nodes

 Let’s compute the finger table for n3

 Everytime a node wants to lookup a key it will
pass the query to the f irst node which is the closest successor 
(going clockwise) of k in it’s finger table

 N3 Finger Table
i f t[ i]

4 (3+20)(mod 24)  hash i=0
5 (3+21)(mod 24)  hash i=1
7 (3+22)(mod 24)  hash i=2
11 (3+23)(mod 24)  hash i=3

January 24, 2023
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HOW TO COMPUTE FINGER TABLE (FT)

n0
n3

n6
n10

n13
clockwise

n6

n6

n10

n13

 Consider a 5 node Chord system with a 4 -bit hash

 A query is sent to an arbitrary node
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5-NODE CHORD SYSTEM

1000

Lookup item
with hash key
k=8

Send query to
arbitrary node
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 To lookup a item with hash key k ,  the node will pass the query 

to the closest successor of k in the finger table (the node with 

the highest ID in the circle whose ID is smaller than k )

 If k =8 and the query first goes to node n3

 Query is passed to node n10

 Data each node is responsible for storing in this 5 -node chord:

n0 k={14,15,0}

n3 k= {1,2,3}

n6 k= {4,5,6}

n10 k= {7,8,9,10}

n13 k= {11,12,13}

 Path to data n3 → n10 (data found) – 1 hop  O(log n)

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.37

TO FIND THE DATA

 Consider a 5 node Chord system with a 4 -bit hash

 A query is sent to an arbitrary node

January 24, 2023
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5-NODE CHORD SYSTEM

1000

Lookup item
with hash key
k=8

Send query to
arbitrary node
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 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed

▪ Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible

▪ How would you calculate the route algorithmically?

 Routes must be discovered

January 24, 2023
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UNSTRUCTURED PEER-TO-PEER

 Flooding

 [Node u] sends request for data item to all neighbors

 [Node v]

▪ Searches locally, responds to u (or forwarder) if having data

▪ Forwards request to ALL neighbors

▪ Ignores repeated requests

 Features

▪ High network traffic

▪ Fast search results by saturating the network with requests

▪ Variable # of hops

▪ Max number of hops or time-to-live (TTL) often specified

▪ Requests can “retry” by gradually increasing TTL/max hops until 

data is found
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SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS
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 Random walks
 [Node u] asks a randomly chosen neighbor [node v]

 If [node v] does not have data, forwards request to a 
random neighbor

 Features

▪ Low network traffic

▪ Akin to sequential search

▪ Longer search time

▪ [node u] can start “n” random walks simultaneously to 
reduce search time

▪ As few as n=16..64 random walks sufficient to reduce search 
time  (LV et al. 2002)

▪ Timeout required - need to coordinate stopping network-wide 
walk when data is found…
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SEARCHING FOR DATA - 2

 Policy-based search methods

 Incorporate history and knowledge about the adhoc

network at the node-level to enhance effectiveness of 

queries

 Nodes maintain lists of preferred neighbors which often 

succeed at resolving queries

 Favor neighbors having highest number of neighbors

▪ Can help minimize hops

January 24, 2023
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SEARCHING FOR DATA - 3
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 Problem:

Adhoc system search performance does not scale well as 

system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs)   (video streaming)

▪ Store (cache) data at nodes local to the requester (client)

▪ Broker node – tracks resource usage and node availability

▪ Track where data is needed

▪ Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

▪ Super peer –Broker node, routes client requests to storage 

nodes

▪ Weak peer – Store data
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HIERARCHICAL

PEER-TO-PEER NETWORKS

 Super peers

▪ Head node of local centralized network

▪ Interconnected via overlay network with other super peers

▪ May have replicas for fault tolerance

 Weak peers

▪ Rely on super peers to find data

 Leader-election problem:

▪ Who can become a
super peer?

▪ What requirements 
must be met to become 
a super peer?
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HIERARCHICAL 

PEER-TO-PEER NETWORKS - 2
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WE WILL RETURN AT 

2:40PM

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization
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 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured 

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:

 Adhoc peer-to-peer devices connect to the internet through an 
edge server (origin server) 

 Edge servers (provided by an ISP) can optimize content and 
application distribution by storing assets near the edge

 Example:

 AWS Lambda@Edge: Enables Node.js Lambda Functions to 
execute “at the edge” harnessing existing CloudFront Content 
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws -lambda-at-edge
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HYBRID 

ARCHITECTURES
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 Fog computing:

 Extend the scope of managed resources beyond the 
cloud to leverage compute and storage capacity of 
end-user devices  

 End-user devices become part of the overall system 

 Middleware extended to incorporate managing edge 
devices as participants in the distributed system  

 Cloud → in the sky   

▪ compute/resource capacity is huge, but far away…

 Fog → (devices) on the ground   

▪ compute/resource capacity is constrained and local…
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HYBRID 

ARCHITECTURES - 2

 BitTorrent Example:

File sharing system – users must contribute as a file host to 

be eligible to download file resources 

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well 

known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then 

participates to reserve downloaded content or network 

bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes
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COLLABORATIVE DISTRIBUTED 

SYSTEM EXAMPLE
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 What is dif ference in finding/disseminating data in 

unstructured vs. structured peer -to-peer networks?

▪ Spreading/finding data

▪ Flooding, Random walk

 What are some advantages of a decentralized structured peer -

to-peer architecture?

 What are some disadvantages?

 What are some advantages of a decentralized unstructured 

peer-to-peer architecture?

 What are some disadvantages? 

REVIEW QUESTIONS
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 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization
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CH. 3: PROCESSES
CH. 3.1: THREADS

L7.53

 Chapter 3 titled “processes”

 Covers variety of distributed system implementation 

details

 “Grab bag” of topics

 Processes/threads

 Virtualization

 Clients

 Servers

 Code migration
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CHAPTER 3
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 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization
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OBJECTIVES – 1/24

 For implementing a server (or client) threads offer many 

advantages vs. heavy weight processes

 What is the dif ference between a process and a thread?

▪ (review?) from Operating Systems

 Key dif ference :  what do threads share amongst each other 

that processes do not…. ?

 What are the segments of a program stored in memory?

▪ Heap segment (dynamic shared memory)

▪ Code segment

▪ Stack segment

▪ Data segment (global variables)
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CH. 3.1 - THREADS
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 Do several processes on an operating system share…

▪ Heap segment?

▪ Stack segment?

▪ Code segment?

 Can we run multiple copies of the same code?

 These may be managed as shared pages (across processes) in 

memory

 Processes are isolated from each other by the OS

▪ Each has a separate heap, stack, code segment
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THREADS - 2

 Threads avoid the overhead of process creation

 No new heap or code segments required

 What is a context switch? 

 Context switching among threads is considered to be more 

efficient than context switching processes

 Less elements to swap-in and swap-out

 Unikernel: specialized single process OS for the cloud

 Example: Osv, Clive, MirageOS (see :  http ://unikernel.org/projects/ )

 Single process operating system with many threads

 Developed for the cloud to run only one application at a time
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THREADS - 3
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OSV: ONE PROCESS, MANY THREADS

 Important implications with threads:

 (1) multi-threading should lead to performance gains

 (2) thread programming requires additional effort when 

threads share memory

▪ Known as thread synchronization, or enabling concurrency

 Access to critical sections of code which modify shared 

variables must be mutually exclusive

▪ No more than one thread can execute at any given time

▪ Critical sections must run atomically on the CPU
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THREADS - 4
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 Example: spreadsheet with formula to compute sum of column

 User modifies values in column

 Multiple threads:

1. Supports interaction (UI) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

 Single core CPU

▪ Tasks appear as if they are performed simultaneously

 Multi core CPU

▪ Tasks execute simultaneously 
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BLOCKING THREADS

 IPC – mechanism using pipes, message queues, and shared 

memory segments

 IPC mechanisms incur context switching

▪ Process I/O must execute in kernel mode

 How many context switches are required for process A to 

send a message to process B using IPC?

 #1 C/S:
Proc A→kernel thread



#2 C/S:

Kernel thread→Proc B

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.62

INTERPROCESS COMMUNICATION
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 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization
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OBJECTIVES – 1/24

 Direct overhead

▪ Time spent not executing program code (user or kernel)

▪ Time spent executing interrupt routines to swap memory segments 

of different processes (or threads) in the CPU

▪ Stack, code, heap, registers, code pointers, stack pointers

▪ Memory page cache invalidation

 Indirect overhead

▪ Overhead not directly attributed to the physical actions of the 

context switch

▪ Captures performance degradation related to the side effects of 

context switching  (e.g. rewriting of memory caches, etc.)

▪ Primarily cache perturbation 
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CONTEXT SWITCHING
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 Refers to cache reorganization that occurs as a result of a 

context switch

 Cache is not clear, but elements from cache are removed as a 

result of another program running in the CPU

 80% performance overhead from context switching results 

from this “cache perturbation”
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CONTEXT SWITCH –

CACHE PERTURBATION

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization
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 Many-to-one threading: multiple user-level threads per process

 Thread operations (create, delete, locks) run in user mode 

 Multithreaded process mapped to single schedulable entity

 Only run thread per process runs at any given time

 Key take-away: thread management handled by user processes

 What are some advantages of many -to-one threading?

 What are some disadvantages?
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THREADING MODELS

 One-to-one threading: use of separate kernel threads for each 
user process - also called kernel-level threads

 The kernel API calls (e.g. I/O, locking) are farmed out to an 
existing kernel level thread  

 Thread operations (create, delete, locks) run in kernel mode

 Threads scheduled individually by the OS

 System calls required, context switches as expensive as 
process context switching

 Idea is to have preinitialized kernel threads for user processes

 Linux uses this model…

 What are some advantages of one -to-one threading?

 What are some disadvantages?
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THREADING MODELS - 2
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 Google chrome: processes

 Apache tomcat webserver: threads

 Multiprocess programming avoids synchronization of 

concurrent access to shared data, by providing coordination 

and data sharing via interprocess communication (IPC) 

 Each process maintains its own private memory

 While this approach avoids synchronizing concurrent access to 

shared memory, what is the tradeoff(s) ??

▪ Replication instead of synchronization – must synchronize multiple 

copies of the data

 Do distributed objects share memory?
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APPLICATION EXAMPLES

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization
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 Web browser

 Uses threads to load and render portions of a web page to the 
user in parallel

 A client could have dozens of concurrent connections all 
loading in parallel

 testFibPar.sh

 Assignment 0 client script  (GNU parallel)

 Important benefits:

 Several connections can be opened simultaneously

 Client: dozens of concurrent connections to the webserver all 
loading data in parallel
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MULTITHREADED CLIENTS

 In Linux, threads also receive a process ID (PID)

 To display threads of a process in Linux:

 Identify parent process explicitly:

 top –H –p <pid>

 htop –p <pid>

 ps –iT <pid>

 Virtualbox process ~ 44 threads

 No mapping to guest # of processes/threads
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MULTIPLE THREADS
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PROCESS METRICS

CPU
- cpuUsr: CPU time in user mode
- cpuKrn: CPU time in kernel mode 

- cpuIdle: CPU idle time 
- cpuIoWait: CPU time waiting for I/O

- cpuIntSrvc:CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts

- cpuNice: CPU time executing prioritized
processes

- cpuSteal: CPU ticks lost to virtualized guests

- contextsw: # of context switches 
- loadavg: (avg # proc / 60 secs)

Disk
- dsr: disk sector reads 

- dsreads: disk sector reads completed 

- drm: merged adjacent disk reads 

- readtime: time spent reading from 

disk 

- dsw: disk sector writes 

- dswrites: disk sector writes completed

- dwm: merged adjacent disk writes 

- writetime: time spent writing to disk 

Network
- nbs: network bytes sent 
- nbr: network bytes received 

 Reported by: top ,  htop,  w,  uptime,  and /proc/loadavg

 Updated every 5 seconds

 Average number of processes using or waiting for the CPU

 Three numbers show exponentially decaying usage

for 1 minute, 5 minutes, and 15 minutes

 One minute average: exponentially decaying average

 Load average = 1 ▪ (avg last minute load) – 1/e ▪ (avg load since boot)

 1.0 = 1-CPU core fully loaded

 2.0 = 2-CPU cores

 3.0 = 3-CPU cores . . .
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LOAD AVERAGE
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 Metric – measures degree of parallelism realized by running 

system, by calculating average utilization:

 Ci – fraction of time that exactly I threads are executed

 N – maximum threads that can execute at any one time

 Web browsers found to have TLP from 1.5 to 2.5

 Clients for web browsing can utilize from 2 to 3 CPU cores

 Any more cores are redundant, and potentially wasteful

 Measure TLP to understand how many CPUs to provision
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THREAD-LEVEL PARALLELISM

 Multiple threads essential for servers in distributed systems

 Even on single-core machines greatly improves performance

 Take advantage of idle/blocking time

 Two designs:

▪ Generate new thread for every request

▪ Thread pool – pre-initialize set of threads to service requests
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MULTITHREADED SERVERS

75

76



TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.39

 Single thread server

▪ A single thread handles all client requests

▪ BLOCKS for I/O

▪ All waiting requests are queued until thread is available

 Finite state machine

▪ Server has a single thread of execution

▪ I/O performing asynchronously (non-BLOCKing) 

▪ Server handles other requests while waiting for I/O

▪ Interrupt fired with I/O completes

▪ Single thread “jumps” back into context to finish request
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SINGLE THREAD & FSM SERVERS

 A blocking system call implies that a thread servicing a 

request synchronously performs I/O 

 The thread BLOCKS to wait on disk/network I/O before 

proceeding with request processing

 Consider the implications of these designs for responsiveness, 

availability, scalability. . .
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SERVER DESIGN ALTERNATIVES

Model Characteristics

Multithreading Parallelism, blocking I/O 

Single-thread No parallelism, blocking I/O

Finite-state machine Parallelism, non-blocking I/O
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 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization
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CH. 3.2: 

VIRTUALIZATION

L7.80
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 Initially introduced in the 1970s

on IBM mainframe computers

 Legacy operating systems run in mainframe-based VMs

 Legacy software could be sustained by vir tualizing legacy OSes

 1970s vir tualization went away as desktop/rack -based 

hardware became inexpensive

 Virtualization reappears in 2000s to leverage multi -core,

multi-CPU processor systems

 VM-Ware vir tual machines enable companies to host many 

virtual servers with mixed OSes on private clusters

 Cloud computing: Amazon offers VMs as -a-service (IaaS)
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VIRTUALIZATION

 Levels of instructions:

 Hardware: CPU

▪ Privileged instructions

KERNEL MODE

▪ General instructions

USER MODE

 Operating system: system calls

 Library: programming APIs: e.g. C/C++,C#, Java libraries

 Application: 

 Goal of vir tualization:

mimic these interface to provide a virtual computer
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TYPES OF VIRTUALIZATION
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 Process vir tual machine

▪ Interpret instructions: (interpreters)
(JavaVM)  byte code → HW instructions

▪ Emulate instructions: (emulators)
(Wine)  windows code → Linux code

 Native vir tual machine monitor (VMM)

▪ Hypervisor (XEN): small OS with its own kernel 

▪ Provides an interface for multiple guest OSes

▪ Facilitates sharing/scheduling of 
CPU, device I/O among many guests

▪ Guest OSes require special kernel to interface w/ VMM

▪ Supports Paravirtualization for performance boost to run code 
directly on the CPU 

▪ Type 1 hypervisor
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TYPES OF VIRTUALIZATION - 2

 Hosted vir tual machine monitor (VMM)

▪ Runs atop of hosted operating system

▪ Uses host OS facilities for CPU scheduling, I/O

▪ Full virtualization

▪ Type 2 hypervisor

▪ Virtualbox

 Textbook: note 3.5–good explanation of full  vs. paravir tualization

 GOAL: run all user mode instructions directly on the CPU

 x86 instruction set has ~17 privileged user mode instructions

 Full vir tualization: scan the EXE, insert code around privileged 
instructions to divert control to the VMM

 Paravirtualization: special OS kernel eliminates side effects of 
privileged instructions
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TYPES OF VIRTUALIZATION - 3
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From ht tp ://www.brenda ngr eg g .com/bl og / 2017 - 1 1- 29/a ws -e c 2- v i r tu a l i zat i on -2017. html

VS:

V i r tualization

In  so f tware

P :

Parav ir tual

VH:

V i r tualization

In  Hardware

H:

Hardware

 Full  Vir tualization - Fully Emulated 

▪ Never used on EC2, before CPU extensions for virtualization

▪ Can boot any unmodified OS

▪ Support via slow emulation, performance 2x-10x slower

 Paravirtualization: Xen PV 3.0

▪ Software: Interrupts, timers

▪ Paravirtual: CPU, Network I/O, Local+Network Storage

▪ Requires special OS kernels, interfaces with hypervisor for I/O

▪ Performance 1.1x – 1.5x slower than “bare metal”

▪ Instance store instances: 1ST & 2nd generation- m1.large, m2.xlarge

 Xen HVM 3.0

▪ Hardware virtualization: CPU, memory (CPU VT-x required)

▪ Paravirtual: network, storage

▪ Software: interrupts, timers

▪ EBS backed instances

▪ m1, c1 instances
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 XEN HVM 4.0.1

▪ Hardware virtualization: CPU, memory (CPU VT-x required)

▪ Paravirtual: network, storage, interrupts, timers

 XEN AWS 2013 (diverges from opensource XEN)

▪ Provides hardware virtualization for CPU, memory, network

▪ Paravirtual: storage, interrupts, timers

▪ Called Single root I/O Virtualization (SR-IOV)

▪ Allows sharing single physical PCI Express device (i.e. network adapter) 
with multiple VMs

▪ Improves VM network performance

▪ 3rd & 4th generation instances (c3 family)

▪ Network speeds up to 10 Gbps and 25 Gbps

 XEN AWS 2017

▪ Provides hardware virtualization for CPU, memory, network, local disk

▪ Paravirtual: remote storage, interrupts, timers

▪ Introduces hardware virtualization for EBS volumes (c4 instances)

▪ Instance storage hardware virtualization (x1.32xlarge, i3 family)
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 AWS Nitro 2017

▪ Provides hardware virtualization for CPU, memory, network, local 

disk, remote disk, interrupts, timers

▪ All aspects of virtualization enhanced with HW-level support

▪ November 2017

▪ Goal: provide performance indistinguishable from “bare metal”

▪ 5th generation instances – c5 instances (also c5d, c5n)

▪ Based on KVM hypervisor

▪ Overhead around ~1%
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QUESTIONS
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