
TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.1

System Architectures
and Processes

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.2

OBJECTIVES – 1/24

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.3

ONLINE DAILY FEEDBACK SURVEY

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L7.4

 Please classify your perspective on material covered in today’s

class (33 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.56 (- previous 6.16)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.58 (- previous 5.45)

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.5

MATERIAL / PACE

 How is an interceptor d if ferent f rom a broker other than that
interceptor seems to serve specific purposes?

 Broker is a separate server that provides an intermediary
between clients and servers

 In business, a broker is a person who buys and sells goods or
assets for others

 In cloud computing, brokers are resellers that purchase cloud
computing services and resell the services

 Cloud computing broker (reseller):

▪ The University of Washington leverages a company (DLT Solutions)
which is a broker for cloud computing services

▪ A broker provides discounts and acts as a customer advocate by
consolidating the purchase power of many organizations to increase
leverage and ability to negotiate for lower prices and better
service/support !

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.6

FEEDBACK FROM 1/19

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.2

 (CONT’D) How is an interceptor dif ferent f rom a broker other

than that interceptor seems to serve specific purposes?

 The key is that a broker is a third -party / intermediary

 One architectural advantage of a broker is consolidation of

wrappers (inter faces) in a common place for easier

maintenance

 An interceptor is a construct local to the client or server which

servers to intercept and handle orchestration of remote calls

 The interceptor is not a server

 The interceptor is not an intermediary

 The interceptor is just a construct that helps facilitate

distribution transparency

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.7

FEEDBACK - 2

 Are there any cons to us ing a broker wrapper?

 Broker is a centralized ent ity

 I f the broker facil it ies app -to-app communicat ion for too many
applicat ions and services it could become overly complex

 Care must be taken so that broker is scalable and resil ient
otherwise it wil l become a single point of failure

 Quest ion for the class:

 Are there any cons to us ing a wrapper?

 Wrapper provides a boundary between a cl ient and a backend
(legacy) l ibrary or module

 Maintenance?

 Can all legacy funct ionality be delivered through a wrapper?

 What if legacy funct ionality is not decoupled? (not MVC)

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.8

FEEDBACK - 3

 Can you g ive examples o f how components can be changed at the

runtime?

 In component -based development, components communicate with

each other via inter faces. The cl ient does not need to know about

the inner workings (implementation) of the component.

Components encapsulate their funct ionality.

 Components are subst itutable at design or run -t ime. Candidate

components must meet the requirements of the init ial component

expressed via its inter faces

 Any component that implements the inter face is considered

‘pluggable’ such that it can be exchanged

 Rule of thumb: component B can immediately replace component

A , if component B provides at least what component A provided and

uses no more resources than component A .
Lo o s el y bas e d o n : h t tps : //en. wi ki ped ia .o rg/wi ki /Compo nent -base d_sof twar e_e ngi neer i ng

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.9

FEEDBACK - 4

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.10

OBJECTIVES – 1/24

 Preparing for Assignment 0:

▪ Establish AWS Account

▪ Standard account

▪ Complete AWS Cloud Credits Survey and provide AWS account ID

▪ Credits will be automatically loaded by Amazon into accounts

 Tasks:

▪ Task 1 - Establish local Linux/Ubuntu environment

▪ Task 2 –AWS account setup, obtain user credentials

▪ Task 3 – Intro to: Amazon EC2 & Docker: create Dockerfile for
Apache Tomcat

▪ Task 4 – Create Dockerfile for haproxy

▪ Task 5 – Working with Docker-Machine

▪ Task 6 - Config 3 multiple server configs to load balance
requests for RESTful Fibonacci web service

▪ Task 7 – Test configs and submit results

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.11

ASSIGNMENT 0

 testFibPar.sh script is a parallel test script

 Orchestrates multiple threads on client to invoke server
multiple times in parallel

 To simplify coordinate of parallel service calls in BASH,
testFibPar.sh script ignores errors !!!

 To help test client-to-server connectivity, have created a new
testFibService.sh script

 TEST 1: Network layer

▪ Ping (ICMP)

 TEST 2: Transport layer

▪ TCP: telnet (TCP Port 8080) – security group (firewall) test

 TEST 3: Application layer

▪ HTTP REST – web service test

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.12

TESTING CONNECTIVITY TO SERVER

7 8

9 10

11 12

https://en.wikipedia.org/wiki/Component-based_software_engineering

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.3

CH 2.3: SYSTEM

ARCHITECTURES

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L7.13

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.14

OBJECTIVES – 1/24

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.15

TYPES OF SYSTEM ARCHITECTURES

 Where should functionality be distributed?

▪ At the client?

▪ At the server?

 Why should we consider component composition?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.16

MULTITIERED ARCHITECTURES

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions

• One or more component(s) deployed to each VM
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways
n components can be
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14

7

n . . .

SC15
SC14

SC13
SC12

SC11
SC10
SC9

SC8
SC7

SC6
SC5
SC4

SC3
SC2

SC1

CPU time disk reads disk writes network reads network writes

∆ Resource Utilization Change
Min to Max Utilization

m-bound d-bound

CPU time: 6.5% 5.5%

Disk sector reads: 14.8% 819.6%
Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%

Network bytes sent: 143.7% 143.9%

Resource utilization profile changes

from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean

• Shows relative magnitude of performance variance

Two application variants tested

• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.4

19

PERFORMANCE IMPLICATIONS OF

COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆ Performance Change:
Min to max performance

M-bound: 14%

D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D),

f ileserver (F), and logging server (L)

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.20

MULTITIERED ARCHITECTURES - 2

M

D F L

client
Server as a client

 Vertical d istribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers

▪ M – The application server

▪ D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.21

MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

▪ Sharding: portions of a database map” to a specific server

▪ Distributed hash table

▪ Or replica servers

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.22

MULTITIERED RESOURCE SCALING - 2

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.23

OBJECTIVES – 1/24

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.24

TYPES OF SYSTEM ARCHITECTURES

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.5

 Client/server:

▪ Nodes have specific roles

 Peer-to-peer:

▪ Nodes are seen as all equal…

 How should nodes be organized for communication?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.25

DECENTRALIZED PEER-TO-PEER

ARCHITECTURES

 Nodes organized using specific topology

(e.g. ring, binary -tree, grid, etc.)

▪ Organization assists in data lookups

 Data indexed using “semantic -free” indexing

▪ Key / value storage systems

▪ Key used to look-up data

 Nodes store data associated with a subset of keys

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.26

STRUCTURED PEER-TO-PEER

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.27

DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number

of varying bits between neighboring nodes and destination

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.28

FIXED HYPERCUBE EXAMPLE

 Example: fixed hypercube

node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.29

FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does it matter which node is selected for the f irst hop?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.30

WHICH CONNECTOR LEADS TO THE

SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent– bad path)

0101 (3 bits dif ferent– bad path)

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.6

 Fixed hypercube requires static topology

▪ Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

▪ Dynamic topology

▪ Nodes organized in ring

▪ Every node has unique ID

▪ Each node connected with other nodes (shortcuts)

▪ Shortest path between any pair of nodes is ~ order O(log N)

▪ N is the total number of nodes

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.31

DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains f inger table of successor nodes

 Client sends key/value

lookup to any node

 Node forwards cl ient

request to node with

m-bit ID closest to, but

not greater than key k

 Nodes must continually

refresh finger tables by

communicating with

adjacent nodes to

incorporate node

joins/depar tures

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.32

CHORD SYSTEM

Queries
go

clock-wise

 Consider a 5 node Chord system with a 4 -bit hash

 A query is sent to an arbitrary node

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.33

5-NODE CHORD SYSTEM

1000

Lookup item
with hash key
k=8

Send query to
arbitrary node

 CHORD SYSTEM: How is the shortest path O(log N)?

(N is the number of nodes)

 Chord provides an alternative to implement a DHT but

without a fixed size such as with the four -dimensional

hypercube

 Each node keeps a finger table containing m entries

▪m is the number of bits in the hash key

 A query is sent to an arbitrary node

 The node will look up the hash k in the finger table

 The finger table identifies the node to send the query to

 Nodes in the chord system are responsible for

maintaining up-to-date finger tables

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.34

CHORD SYSTEM - 2

 i th entry in FT at peer with id n is f irst node >= (n+2 i)(mod 2m)

 For our example hash has 4 bits (m=4)

▪ Will index storage location of 16 items (0-15)

 Consider that we have 5 nodes

 Let’s compute the finger table for n3

 Everytime a node wants to lookup a key it will
pass the query to the f irst node which is the closest successor
(going clockwise) of k in it’s finger table

 N3 Finger Table
i f t[i]

4 (3+20)(mod 24) hash i=0
5 (3+21)(mod 24) hash i=1
7 (3+22)(mod 24) hash i=2
11 (3+23)(mod 24) hash i=3

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.35

HOW TO COMPUTE FINGER TABLE (FT)

n0
n3

n6
n10

n13
clockwise

n6

n6

n10

n13

 Consider a 5 node Chord system with a 4 -bit hash

 A query is sent to an arbitrary node

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.36

5-NODE CHORD SYSTEM

1000

Lookup item
with hash key
k=8

Send query to
arbitrary node

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.7

 To lookup a item with hash key k , the node will pass the query

to the closest successor of k in the finger table (the node with

the highest ID in the circle whose ID is smaller than k)

 If k =8 and the query first goes to node n3

 Query is passed to node n10

 Data each node is responsible for storing in this 5 -node chord:

n0 k={14,15,0}

n3 k= {1,2,3}

n6 k= {4,5,6}

n10 k= {7,8,9,10}

n13 k= {11,12,13}

 Path to data n3 → n10 (data found) – 1 hop O(log n)

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.37

TO FIND THE DATA

 Consider a 5 node Chord system with a 4 -bit hash

 A query is sent to an arbitrary node

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.38

5-NODE CHORD SYSTEM

1000

Lookup item
with hash key
k=8

Send query to
arbitrary node

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed

▪ Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible

▪ How would you calculate the route algorithmically?

 Routes must be discovered

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.39

UNSTRUCTURED PEER-TO-PEER

 Flooding

 [Node u] sends request for data item to all neighbors

 [Node v]

▪ Searches locally, responds to u (or forwarder) if having data

▪ Forwards request to ALL neighbors

▪ Ignores repeated requests

 Features

▪ High network traffic

▪ Fast search results by saturating the network with requests

▪ Variable # of hops

▪ Max number of hops or time-to-live (TTL) often specified

▪ Requests can “retry” by gradually increasing TTL/max hops until

data is found

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.40

SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]

 If [node v] does not have data, forwards request to a
random neighbor

 Features

▪ Low network traffic

▪ Akin to sequential search

▪ Longer search time

▪ [node u] can start “n” random walks simultaneously to
reduce search time

▪ As few as n=16..64 random walks sufficient to reduce search
time (LV et al. 2002)

▪ Timeout required - need to coordinate stopping network-wide
walk when data is found…

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.41

SEARCHING FOR DATA - 2

 Policy -based search methods

 Incorporate history and knowledge about the adhoc

network at the node-level to enhance effectiveness of

queries

 Nodes maintain lists of preferred neighbors which often

succeed at resolving queries

 Favor neighbors having highest number of neighbors

▪ Can help minimize hops

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.42

SEARCHING FOR DATA - 3

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.8

 Problem:

Adhoc system search performance does not scale well as

system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs) (video streaming)

▪ Store (cache) data at nodes local to the requester (client)

▪ Broker node – tracks resource usage and node availability

▪ Track where data is needed

▪ Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

▪ Super peer –Broker node, routes client requests to storage

nodes

▪ Weak peer – Store data

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.43

HIERARCHICAL

PEER-TO-PEER NETWORKS

 Super peers

▪ Head node of local centralized network

▪ Interconnected via overlay network with other super peers

▪ May have replicas for fault tolerance

 Weak peers

▪ Rely on super peers to find data

 Leader-election problem:

▪ Who can become a
super peer?

▪ What requirements
must be met to become
a super peer?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.44

HIERARCHICAL

PEER-TO-PEER NETWORKS - 2

WE WILL RETURN AT

2:40PM

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.46

OBJECTIVES – 1/24

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.47

TYPES OF SYSTEM ARCHITECTURES

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:

 Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

 Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

 Example:

 AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws -lambda-at-edge

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.48

HYBRID

ARCHITECTURES

43 44

45 46

47 48

https://www.infoq.com/news/2017/07/aws-lambda-at-edge

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.9

 Fog computing:

 Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

 End-user devices become part of the overall system

 Middleware extended to incorporate managing edge
devices as participants in the distributed system

 Cloud → in the sky

▪ compute/resource capacity is huge, but far away…

 Fog → (devices) on the ground

▪ compute/resource capacity is constrained and local…

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.49

HYBRID

ARCHITECTURES - 2

 BitTorrent Example:

File sharing system – users must contribute as a file host to

be eligible to download file resources

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well

known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then

participates to reserve downloaded content or network

bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.50

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE

 What is dif ference in finding/disseminating data in

unstructured vs. structured peer -to-peer networks?

▪ Spreading/finding data

▪ Flooding, Random walk

 What are some advantages of a decentralized structured peer -

to-peer architecture?

 What are some disadvantages?

 What are some advantages of a decentralized unstructured

peer-to-peer architecture?

 What are some disadvantages?

REVIEW QUESTIONS

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.51

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.52

OBJECTIVES – 1/24

CH. 3: PROCESSES
CH. 3.1: THREADS

L7.53

 Chapter 3 titled “processes”

 Covers variety of distributed system implementation

details

 “Grab bag” of topics

 Processes/threads

 Virtualization

 Clients

 Servers

 Code migration

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.54

CHAPTER 3

49 50

51 52

53 54

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.10

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.55

OBJECTIVES – 1/24

 For implementing a server (or client) threads offer many

advantages vs. heavy weight processes

 What is the dif ference between a process and a thread?

▪ (review?) from Operating Systems

 Key dif ference : what do threads share amongst each other

that processes do not…. ?

 What are the segments of a program stored in memory?

▪ Heap segment (dynamic shared memory)

▪ Code segment

▪ Stack segment

▪ Data segment (global variables)

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.56

CH. 3.1 - THREADS

 Do several processes on an operating system share…

▪ Heap segment?

▪ Stack segment?

▪ Code segment?

 Can we run multiple copies of the same code?

 These may be managed as shared pages (across processes) in

memory

 Processes are isolated from each other by the OS

▪ Each has a separate heap, stack, code segment

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.57

THREADS - 2

 Threads avoid the overhead of process creation

 No new heap or code segments required

 What is a context switch?

 Context switching among threads is considered to be more

efficient than context switching processes

 Less elements to swap-in and swap-out

 Unikernel: specialized single process OS for the cloud

 Example: Osv, Clive, MirageOS (see : h t tp ://unikernel .org/projects/)

 Single process operating system with many threads

 Developed for the cloud to run only one application at a time

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.58

THREADS - 3

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.59

OSV: ONE PROCESS, MANY THREADS

 Important implications with threads:

 (1) multi-threading should lead to performance gains

 (2) thread programming requires additional effort when

threads share memory

▪ Known as thread synchronization, or enabling concurrency

 Access to cr itical sections of code which modify shared

variables must be mutually exclusive

▪ No more than one thread can execute at any given time

▪ Critical sections must run atomically on the CPU

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.60

THREADS - 4

55 56

57 58

59 60

http://unikernel.org/projects/

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.11

 Example: spreadsheet with formula to compute sum of column

 User modifies values in column

 Multiple threads:

1. Supports interaction (UI) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

 Single core CPU

▪ Tasks appear as if they are performed simultaneously

 Multi core CPU

▪ Tasks execute simultaneously

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.61

BLOCKING THREADS

 IPC – mechanism using pipes, message queues, and shared

memory segments

 IPC mechanisms incur context switching

▪ Process I/O must execute in kernel mode

 How many context switches are required for process A to

send a message to process B using IPC?

 #1 C/S:

Proc A→kernel thread

#2 C/S:
Kernel thread→Proc B

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.62

INTERPROCESS COMMUNICATION

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.63

OBJECTIVES – 1/24

 Direct overhead

▪ Time spent not executing program code (user or kernel)

▪ Time spent executing interrupt routines to swap memory segments

of different processes (or threads) in the CPU

▪ Stack, code, heap, registers, code pointers, stack pointers

▪ Memory page cache invalidation

 Indirect overhead

▪ Overhead not directly attributed to the physical actions of the

context switch

▪ Captures performance degradation related to the side effects of

context switching (e.g. rewriting of memory caches, etc.)

▪ Primarily cache perturbation

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.64

CONTEXT SWITCHING

 Refers to cache reorganization that occurs as a result of a

context switch

 Cache is not clear, but elements from cache are removed as a

result of another program running in the CPU

 80% performance overhead from context switching results

from this “cache perturbation”

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.65

CONTEXT SWITCH –

CACHE PERTURBATION

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.66

OBJECTIVES – 1/24

61 62

63 64

65 66

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.12

 Many-to-one threading: multiple user -level threads per process

 Thread operations (create, delete, locks) run in user mode

 Multithreaded process mapped to single schedulable entity

 Only run thread per process runs at any given time

 Key take-away: thread management handled by user processes

 What are some advantages of many -to-one threading?

 What are some disadvantages?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.67

THREADING MODELS

 One-to-one threading: use of separate kernel threads for each
user process - also called kernel-level threads

 The kernel API calls (e.g. I/O, locking) are farmed out to an
existing kernel level thread

 Thread operations (create, delete, locks) run in kernel mode

 Threads scheduled individually by the OS

 System calls required, context switches as expensive as
process context switching

 Idea is to have preinitialized kernel threads for user processes

 Linux uses this model…

 What are some advantages of one-to-one threading?

 What are some disadvantages?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.68

THREADING MODELS - 2

 Google chrome: processes

 Apache tomcat webserver: threads

 Multiprocess programming avoids synchronization of

concurrent access to shared data, by providing coordination

and data sharing via interprocess communication (IPC)

 Each process maintains its own private memory

 While this approach avoids synchronizing concurrent access to

shared memory, what is the tradeoff(s) ??

▪ Replication instead of synchronization – must synchronize multiple

copies of the data

 Do distributed objects share memory?

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.69

APPLICATION EXAMPLES

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.70

OBJECTIVES – 1/24

 Web browser

 Uses threads to load and render portions of a web page to the
user in parallel

 A client could have dozens of concurrent connections all
loading in parallel

 testFibPar.sh

 Assignment 0 client script (GNU parallel)

 Important benefits:

 Several connections can be opened simultaneously

 Client: dozens of concurrent connections to the webserver all
loading data in parallel

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.71

MULTITHREADED CLIENTS

 In Linux, threads also receive a process ID (PID)

 To display threads of a process in Linux:

 Identify parent process explicitly:

 top –H –p <pid>

 htop –p <pid>

 ps – iT <pid>

 Vir tualbox process ~ 44 threads

 No mapping to guest # of processes/threads

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.72

MULTIPLE THREADS

67 68

69 70

71 72

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.13

PROCESS METRICS

CPU
- cpuUsr: CPU time in user mode

- cpuKrn: CPU time in kernel mode
- cpuIdle: CPU idle time

- cpuIoWait: CPU time waiting for I/O
- cpuIntSrvc:CPU time serving interrupts

- cpuSftIntSrvc: CPU time serving soft interrupts
- cpuNice: CPU time executing prioritized

processes
- cpuSteal: CPU ticks lost to virtualized guests

- contextsw: # of context switches
- loadavg: (avg # proc / 60 secs)

Disk
- dsr: disk sector reads

- dsreads: disk sector reads completed

- drm: merged adjacent disk reads
- readtime: time spent reading from

disk

- dsw: disk sector writes

- dswrites: disk sector writes completed
- dwm: merged adjacent disk writes

- writetime: time spent writing to disk

Network
- nbs: network bytes sent
- nbr: network bytes received

 Reported by: top , htop , w , uptime , and /proc/loadavg

 Updated every 5 seconds

 Average number of processes using or waiting for the CPU

 Three numbers show exponentially decaying usage

for 1 minute, 5 minutes, and 15 minutes

 One minute average: exponentially decaying average

 Load average = 1 ▪ (avg last minute load) – 1/e ▪ (avg load s ince boot)

 1.0 = 1-CPU core fully loaded

 2.0 = 2-CPU cores

 3.0 = 3-CPU cores . . .

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.74

LOAD AVERAGE

 Metric – measures degree of parallelism realized by running

system, by calculating average utilization:

 Ci – fraction of time that exactly I threads are executed

 N – maximum threads that can execute at any one time

 Web browsers found to have TLP from 1.5 to 2.5

 Clients for web browsing can utilize from 2 to 3 CPU cores

 Any more cores are redundant, and potentially wasteful

 Measure TLP to understand how many CPUs to provision

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.75

THREAD-LEVEL PARALLELISM

 Multiple threads essential for servers in distributed systems

 Even on single-core machines greatly improves performance

 Take advantage of idle/blocking time

 Two designs:

▪ Generate new thread for every request

▪ Thread pool – pre-initialize set of threads to service requests

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.76

MULTITHREADED SERVERS

 Single thread server

▪ A single thread handles all client requests

▪ BLOCKS for I/O

▪ All waiting requests are queued until thread is available

 Finite state machine

▪ Server has a single thread of execution

▪ I/O performing asynchronously (non-BLOCKing)

▪ Server handles other requests while waiting for I/O

▪ Interrupt fired with I/O completes

▪ Single thread “jumps” back into context to finish request

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.77

SINGLE THREAD & FSM SERVERS

 A blocking system call implies that a thread servicing a

request synchronously performs I/O

 The thread BLOCKS to wait on disk/network I/O before

proceeding with request processing

 Consider the implications of these designs for responsiveness,

availability, scalability. . .

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.78

SERVER DESIGN ALTERNATIVES

Model Characteristics

Multithreading Parallelism, blocking I/O

Single-thread No parallelism, blocking I/O

Finite-state machine Parallelism, non-blocking I/O

73 74

75 76

77 78

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.14

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

▪ testFibPar.sh and testFibService.sh scripts

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

 Chapter 3: Processes

▪ Chapter 3.1: Threads

▪ Context Switches

▪ Threading Models

▪ Multithreaded clients/servers

▪ Chapter 3.2: Virtualization

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.79

OBJECTIVES – 1/24

CH. 3.2:

VIRTUALIZATION

L7.80

 Initially introduced in the 1970s

on IBM mainframe computers

 Legacy operating systems run in mainframe -based VMs

 Legacy software could be sustained by virtualizing legacy OSes

 1970s virtualization went away as desktop/rack -based

hardware became inexpensive

 Virtualization reappears in 2000s to leverage multi -core,

multi -CPU processor systems

 VM-Ware virtual machines enable companies to host many

virtual servers with mixed OSes on private clusters

 Cloud computing: Amazon offers VMs as -a-service (IaaS)

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.81

VIRTUALIZATION

 Levels of instructions:

 Hardware: CPU

▪ Privileged instructions

KERNEL MODE

▪ General instructions

USER MODE

 Operating system: system calls

 Library: programming APIs: e.g. C/C++,C#, Java libraries

 Application:

 Goal of vir tualization:

mimic these inter face to provide a vir tual computer

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.82

TYPES OF VIRTUALIZATION

 Process vir tual machine

▪ Interpret instructions: (interpreters)
(JavaVM) byte code → HW instructions

▪ Emulate instructions: (emulators)
(Wine) windows code → Linux code

 Native vir tual machine monitor (VMM)

▪ Hypervisor (XEN): small OS with its own kernel

▪ Provides an interface for multiple guest OSes

▪ Facilitates sharing/scheduling of
CPU, device I/O among many guests

▪ Guest OSes require special kernel to interface w/ VMM

▪ Supports Paravirtualization for performance boost to run code
directly on the CPU

▪ Type 1 hypervisor

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.83

TYPES OF VIRTUALIZATION - 2

 Hosted vir tual machine monitor (VMM)

▪ Runs atop of hosted operating system

▪ Uses host OS facilities for CPU scheduling, I/O

▪ Full virtualization

▪ Type 2 hypervisor

▪ Virtualbox

 Textbook: note 3.5–good explanation of full vs. paravir tualization

 GOAL: run all user mode instructions directly on the CPU

 x86 instruction set has ~17 privileged user mode instructions

 Full v ir tualization: scan the EXE, insert code around privileged
instructions to divert control to the VMM

 Paravirtualization: special OS kernel eliminates side effects of
privileged instructions

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.84

TYPES OF VIRTUALIZATION - 3

79 80

81 82

83 84

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 24, 2023

Slides by Wes J. Lloyd L7.15

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.85

EVOLUTION OF AWS VIRTUALIZATION

Fr o m ht tp : //www. brendangr egg.c om/bl og/2017 - 11-2 9/aws- ec2- v ir tua l izat io n -2017.html

VS :

V i r tual izat ion

I n s o f tware

P :

P aravi r tual

VH :

V i r tual izat ion

I n H ar dware

H :

H ar dware

 Full V i r tualization - Ful ly Emulated

▪ Never used on EC2, before CPU extensions for virtualization

▪ Can boot any unmodified OS

▪ Support via slow emulation, performance 2x-10x slower

 Paravir tualization: Xen PV 3.0

▪ Software: Interrupts, timers

▪ Paravirtual: CPU, Network I/O, Local+Network Storage

▪ Requires special OS kernels, interfaces with hypervisor for I/O

▪ Performance 1.1x – 1.5x slower than “bare metal”

▪ Instance store instances: 1ST & 2nd generation- m1.large, m2.xlarge

 Xen HVM 3.0

▪ Hardware virtualization: CPU, memory (CPU VT-x required)

▪ Paravirtual: network, storage

▪ Software: interrupts, timers

▪ EBS backed instances

▪ m1, c1 instances

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.86

AWS VIRTUALIZATION - 2

 XEN HVM 4.0.1

▪ Hardware virtualization: CPU, memory (CPU VT-x required)

▪ Paravirtual: network, storage, interrupts, timers

 XEN AWS 2013 (diverges from opensource XEN)

▪ Provides hardware virtualization for CPU, memory, network

▪ Paravirtual: storage, interrupts, timers

▪ Called Single root I/O Virtualization (SR-IOV)

▪ Allows sharing single physical PCI Express device (i.e. network adapter)
with multiple VMs

▪ Improves VM network performance

▪ 3rd & 4th generation instances (c3 family)

▪ Network speeds up to 10 Gbps and 25 Gbps

 XEN AWS 2017

▪ Provides hardware virtualization for CPU, memory, network, local disk

▪ Paravirtual: remote storage, interrupts, timers

▪ Introduces hardware virtualization for EBS volumes (c4 instances)

▪ Instance storage hardware virtualization (x1.32xlarge, i3 family)

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.87

AWS VIRTUALIZATION - 3

 AWS Nitro 2017

▪ Provides hardware virtualization for CPU, memory, network, local

disk, remote disk, interrupts, timers

▪ All aspects of virtualization enhanced with HW-level support

▪ November 2017

▪ Goal: provide performance indistinguishable from “bare metal”

▪ 5th generation instances – c5 instances (also c5d, c5n)

▪ Based on KVM hypervisor

▪ Overhead around ~1%

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.88

AWS VIRTUALIZATION - 4

QUESTIONS

January 24, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L7.135

85 86

87 88

135

http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-2017.html

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/24
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/19
	Slide 7: Feedback - 2
	Slide 8: Feedback - 3
	Slide 9: Feedback - 4
	Slide 10: OBJECTIVES – 1/24
	Slide 11: Assignment 0
	Slide 12: Testing connectivity to server
	Slide 13: Ch 2.3: System architectures
	Slide 14: OBJECTIVES – 1/24
	Slide 15: Types of System architectures
	Slide 16: Multitiered architectures
	Slide 17
	Slide 18
	Slide 19: Performance implications of component deployments
	Slide 20: Multitiered architectures - 2
	Slide 21: Multitiered resource scaling
	Slide 22: Multitiered resource scaling - 2
	Slide 23: OBJECTIVES – 1/24
	Slide 24: Types of System architectures
	Slide 25: Decentralized Peer-to-peer architectures
	Slide 26: Structured peer-to-peer
	Slide 27: Distributed hash table (DHT)
	Slide 28: Fixed hypercube example
	Slide 29: Fixed Hypercube example - 2
	Slide 30: Which connector leads to the shortest path?
	Slide 31: Dynamic topology
	Slide 32: Chord system
	Slide 33: 5-node chord system
	Slide 34: Chord system - 2
	Slide 35: How to compute finger table (ft)
	Slide 36: 5-node chord system
	Slide 37: To find the data
	Slide 38: 5-node chord system
	Slide 39: unstructured peer-to-peer
	Slide 40: Searching for data: unstructured peer-to-peer systems
	Slide 41: Searching for data - 2
	Slide 42: Searching for data - 3
	Slide 43: Hierarchical peer-to-peer networks
	Slide 44: Hierarchical peer-to-peer networks - 2
	Slide 45: We will return at 2:40pm
	Slide 46: OBJECTIVES – 1/24
	Slide 47: Types of System architectures
	Slide 48: Hybrid architectures
	Slide 49: Hybrid architectures - 2
	Slide 50: Collaborative distributed system example
	Slide 51: Review questions
	Slide 52: OBJECTIVES – 1/24
	Slide 53: Ch. 3: processes Ch. 3.1: threads
	Slide 54: Chapter 3
	Slide 55: OBJECTIVES – 1/24
	Slide 56: Ch. 3.1 - threads
	Slide 57: Threads - 2
	Slide 58: Threads - 3
	Slide 59: Osv: one process, many threads
	Slide 60: Threads - 4
	Slide 61: blocking threads
	Slide 62: Interprocess communication
	Slide 63: OBJECTIVES – 1/24
	Slide 64: Context switching
	Slide 65: Context switch – cache perturbation
	Slide 66: OBJECTIVES – 1/24
	Slide 67: Threading models
	Slide 68: Threading models - 2
	Slide 69: Application examples
	Slide 70: OBJECTIVES – 1/24
	Slide 71: Multithreaded clients
	Slide 72: Multiple threads
	Slide 73: Process metrics
	Slide 74: Load average
	Slide 75: Thread-level parallelism
	Slide 76: Multithreaded servers
	Slide 77: Single thread & fsm servers
	Slide 78: Server design alternatives
	Slide 79: OBJECTIVES – 1/24
	Slide 80: Ch. 3.2: virtualization
	Slide 81: virtualization
	Slide 82: Types of virtualization
	Slide 83: Types of virtualization - 2
	Slide 84: Types of virtualization - 3
	Slide 85: Evolution of Aws virtualization
	Slide 86: Aws virtualization - 2
	Slide 87: Aws virtualization - 3
	Slide 88: Aws virtualization - 4
	Slide 135: Questions

