TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
| |

Middleware Organization
and System Architectures

oy Comected B

Wes J. Lloyd , EEasN

School of Engineering
& Technology (SET)

University of Washington - Tacoma

Lire
- .

OBJECTIVES - 1/19

| = Questions from 1/17 |

® Assignment O: Cloud Computing Infrastructure Tutorial

® Class Activity: Architectural Styles

= Chapter 2.2: Middleware Organization
= Wrappers
= |[nterceptors

= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2023] | 6.2 |

(ELLETRY 2, 20 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

January 19, 2023

L6.1

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 10p

= Thursday surveys: due ~ Mon @ 10p

— TCSS 558 A > Assignments

Winter 2021

Home

Announcements

e

* Upcoming Assignments

Zoom TCSS 558 - Online Daily Feedback Survey - 1/5
b

Chat Not available until Jan 5 at 1:30pm | Due Jan é at 10pm | -/1 pts

TCSS558: Applied Distributed Computing [Winter 2023]

January|19,2023 School of Engineering and Technology, University of Washington - Tacoma

| 16.3 |

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan 6 at 10pm Points 1 Questions 4

Available Jan 5 at 1:30pm - Jan 6 at 11:59pm 1 day Time Limit None

[| Question1 0.5 pts

On a scale of 1 to 10, please classify your perspective on material covered in today’s

class:
1 2 3 4 5 6 7 8 9 1e
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts

Please rate the pace of today’s class:

1 2 3 4 5 6 7 8 9 1e

Slow Just Right Fast

TCSS558: Applied Distributed Computing [Winter 2023]

FanuanviiD 2022 School of Engineering and Technology, University of Washington - Tacoma L6.4

Slides by Wes J. Lloyd

January 19, 2023

L6.2

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (29 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.16 (T - previous 6.00)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.45 (T - previous 5.15)

January 19, 2023

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

| L6.5 |

FEEDBACK FROM 1/17

"|'m vague about the concept of "stateless"”

January 19, 2023

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

| 16.6 |

Slides by Wes J. Lloyd

January 19, 2023

L6.3

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

Stateless Server

= Save current state of
process

= Anticipates future
communication w/ client

= Design is more complex -
data must be stored

® Server tracks user session
data and information

® Server and client depend on
each other

STATELESS VS STATEFUL

Stateful Server
m State of process not saved

m Server only responds to
client’s immediate request

= Design is simplified -
no data is stored

®m Server does not track and
store user session data

m Server and client do not
dependent on each other

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L6.7

January 19, 2023

STATELESS VS. STATEFUL - 2

Stateless Server

= Implementation of the
server design is more
difficult

® Data can’t be recovered
when a crash occurs

® Requests depend on the
server side

® Scaling is more challenging
and complex

= Examples: Telnet and FTP
(both application)

Stateful Server

= Implementation of the
server design is easier

= |f server crashes, there’s no
state data to recover

= Requests are independent
of the server side and self-
contained

® Scaling is less difficult

= Examples: HTTP, DNS
(application), UDP
(transport)

January 19, 2023

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L6.8

Slides by Wes J. Lloyd

January 19, 2023

L6.4

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

STATELESS VS STATEFUL - 3

= Can you use diagrams to explain the difference between

stateless and stateful?

eCommerce
website
example
Stateless Stateful
No session Session
No Login Login
No Basket Basket =
Static Content Dynamic Content
TCSS558: Applied Distributed C ting [Winter 2023]
(EAER et School of Eggirl'nieri:g:nl; 'T'ech?\rt;z;yl,ngnivel:]sif\: of Washington - Tacoma | 169 |

STATELESS VS STATEFUL - 4

= Stateful webservices often have requirement
to store user session information local to the server
processing the request

= Gateway/load
balancer needs

Stateful and Stateless Applications

Stateless
to.be aware of Servi Microservice A
th IS 8 eEs Stateless Service
Stateful Stateful
X Service Microservice B
Services) Partitions
Gateway Service -
TCSS558: Applied Distributed Computing [Winter 2023]
(ELLETRY 2, 20 School of Engineering and Technology, University of Washington - Tacoma | 1610 |

10

Slides by Wes J. Lloyd

January 19, 2023

L6.5

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

FEEDBACK - 2

= There is a sentence on page 65 of the book:
The simplicity of RESTful architectures can easily prohibit
easy solutions to intricate communication schemes.
What does it mean?

® An intricate communicate scheme is a more complex one

m RESTful architectures are restricted to the simple HTTP
interface

= This prohibits design a more detailed interface that may
better suit an intricate (more complex) communication
scheme

October 7, 2016 TCSS558: Applied Distributed Computing [Winter 2023] | 611 |

School of Engineering and Technology, University of Washington - Tacoma

11

FEEDBACK - 3

= There is a sentence on page 65 of the book:
The simplicity of RESTful architectures can easily prohibit
easy solutions to intricate communication schemes.
What does it mean?

= Alternatively, SOAP allows a custom API to be defined
® Not sure GET, POST, PUT, DELETE

= With RESTful services we create more services with specific
names and functions vs. define uniquely named actions within
a service

= RESTful services therefore don’t map directly to 00 schemes

January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 612 |

School of Engineering and Technology, University of Washington - Tacoma

12

Slides by Wes J. Lloyd

January 19, 2023

L6.6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

FEEDBACK - 4

= How are service-oriented systems different from REST?
m Service oriented applications do not mandate RESTful services
m Services could be SOAP-based or other protocols

= GraphQL - is a data query and manipulation service protocol
alternative to REST developed by Facebook

® GraphQL is specifically for querying specific fields of objects

School of Engineering and Technology, University of Washington - Tacoma

{ {
hero { "data": {
name "hero": {
e "name": "R2-D2"
i }
}
i
query result
January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 613 |

13

GRAPH QL

"episode”: "JEDI'

client passes
a variable

"name" :

" name”

1

query HeroNameAndFriends { {
hero { "data": {
name "hero": {
friends { query “name”: "R2-D2", result
name "friends": [
} {
} "name": "Luke Skywalker"
} +
{
"name”: "Han Solo"
query HeroNameAndFriends($episode: Epi e) {
hero(episode: $episode) { . "data": {
name Variable "hero": {
friends { i "name": "R2-D2",
name In query "friends": [
} "name”: "Luke Skywalker"
} query result

"Han Solo"

"Leia Organa”

January 19, 2023

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

| 16.14 |

14

Slides by Wes J. Lloyd

January 19, 2023

L6.7

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

FEEDBACK -5

= What is meant by "Messages to/from a service are fully
described" (slide L5.23 about REST services)? How are they
described?

= “Fully described” implies that REST supports
Self-Describing Messages
Services interact by exchanging request and response
messages, which contain both the data (or the representations
of resources) and the corresponding meta-data.
Representations can vary according to the client context,
interests, and abilities.

= Self-describing means there is no need for a definition file
(WSDL) or any other messages to support the web service
transaction

= Everything is complete and contained in the single client-to-
server request (everything is self contained)

= Nothing else is required
® The structureless next of JSON objects help enable this

TCSS558: Applied Distributed Computing [Winter 2023]

January|19,2023 School of Engineering and Technology, University of Washington - Tacoma

| 16.15

15

EXAMPLE:

SELF DESCRIBING REST ARCHITECTURE

= Mobile client can retrieve a low-bandwidth representation of a
resource (ASCII text)

= Web browser can request a representation of a Web page in a
particular language based on user preferences (HTMLD5)

= Flexibility of the response output format (text vs html) greatly
enhances interoperability of REST architectures

® Client can dynamically negotiate the most appropriate data
response format (also called media type) with the service

m All clients are not forced to use the same format

® Request and response messages contain explicit meta-data
describing the data representation so services do not need to
assume or try to interpret the data format

TCSS558: Applied Distributed Computing [Winter 2023]

(ELLETRY 2, 20 School of Engineering and Technology, University of Washington - Tacoma

| 16.16

16

Slides by Wes J. Lloyd

January 19, 2023

L6.8

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

SOAP & FIREWALLS

= What is it about other protocols, like SOAP, that are unsafe,
such that they may be blocked by firewalls, whereas REST
often is not?

m Because many organizations host webservers which
communicate using TCP port 80, port 80 is open allowing
traffic to flow

= Common practice then is to map your protocol over port 80
® Connection-oriented (TCP) application protocols often
communicate on distinct ports, for example:
SSH 22, SMTP 25, TCP 25, VNC 5900, TELNET 23
= SOAP in fact is most often implemented on top of HTTP
= | had wrongly assumed SOAP defined its own communication
protocol
= SOAP just defines a messaging scheme (i.e. with XML, WSDL, etc.)
that is carried over HTTP

January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 617 |

School of Engineering and Technology, University of Washington - Tacoma

17

BONUS

= What is the TCP port for HTTPS ?

= A TCP port number is specified in a URI/URL by using a
colon and a number after the resource name

= Example:
m Server hosting climate APl exposes service on port 8083:
= http://csip.engr.colostate.edu:8083/csip-erosion/d/rusle2/climate/

® (Assignment 0)
Default web service port in Apache Tomcat is 8080

January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 618 |

School of Engineering and Technology, University of Washington - Tacoma

18

Slides by Wes J. Lloyd

January 19, 2023

L6.9

http://csip.engr.colostate.edu:8083/csip-erosion/d/rusle2/climate/

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 1/19

® Questions from 1/17

= Assignment 0: Cloud Computing Infrastructure Tutorial |

® Class Activity: Architectural Styles

= Chapter 2.2: Middleware Organization
= Wrappers
= |Interceptors

= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 619 |

School of Engineering and Technology, University of Washington - Tacoma

19

ASSIGNMENT O

= Preparing for Assignment 0:
= Establish AWS Account
Standard account
= Complete AWS Cloud Credits Survey and provide AWS account ID
= Credits will be automatically loaded by Amazon into accounts

= Tasks:
= Task 1 - Establish local Linux/Ubuntu environment
= Task 2 -AWS account setup, obtain user credentials

= Task 3 - Intro to: Amazon EC2 & Docker: create Dockerfile for
Apache Tomcat

= Task 4 - Create Dockerfile for haproxy
= Task 5 - Working with Docker-Machine

= Task 6 - Config 3 multiple server configs to load balance
requests for RESTful Fibonacci web service

= Task 7 - Test configs and submit results

TCSS558: Applied Distributed Computing [Winter 2023] | 15.20 |

LELLETRY Er7, 2P School of Engineering and Technology, University of Washington - Tacoma

20

Slides by Wes J. Lloyd

January 19, 2023

L6.10

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 1/19

® Questions from 1/17

® Assignment 0: Cloud Computing Infrastructure Tutorial

| = Class Activity: Architectural Styles |

= Chapter 2.2: Middleware Organization
= Wrappers
= Interceptors

= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2023]

January|19,2023 School of Engineering and Technology, University of Washington - Tacoma

16.21

21

IN-CLASS ACTIVITY:

ARCHITECTURAL
STYLES

22

Slides by Wes J. Lloyd

January 19, 2023

L6.11

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

CLASS ACTIVITY 2

= We will form groups of ~2-3
= On Zoom breakout rooms will be created

= Each group will complete a MS Doc worksheet

= Add names to MS Doc as they appear in Canvas

® Once completed, one person submits a PDF of the MS Doc to
Canvas

= |nstructor will score all group members based on the uploaded
PDF file

= To get started:
= Log into your *** UW Google Account ***
= Link to shared Google Drive
= Follow link:

https://canvas.uw.edu/courses/1621385/files/100858747

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020] | 1323 |

School of Engineering and Technology, University of Washington - Tacoma

23

DISTRIBUTED SYSTEM GOALS

TO CONSIDER

= Consider how the architectural change may impact:
= Availability

® Accessibility

® Responsiveness

m Scalability

®Openness

® Distribution transparency

ESupporting resource sharing

® Other factors...

(ELLETRY 2, 20 School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2023] | 16.24 |

24

Slides by Wes J. Lloyd

January 19, 2023

L6.12

https://canvas.uw.edu/courses/1621385/files/100858747

TCSS 558: Applied Distributed Computing January 19, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 1/19

® Questions from 1/17
® Assignment 0: Cloud Computing Infrastructure Tutorial

m Class Activity: Architectural Styles
| = Chapter 2.2: Middleware Organization |

= Wrappers
= Interceptors

= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 1625 |

School of Engineering and Technology, University of Washington - Tacoma

25

To object B

CH 2.2: MIDDLEWARE

ORGANIZATION

TCSS558: Applied Distributed Computing [Winter 2023]

EantaAL20 28 School of Engineering and Technology, University of Washington -

26

Slides by Wes J. Lloyd L6.13

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

MIDDLEWARE ORGANIZATION

= Relies on two important design patterns:
=Wrappers
=|Interceptors

= Both help achieve the goal of openness

TCSS558: Applied Distributed Computing [Winter 2023]

January|19,2023 School of Engineering and Technology, University of Washington - Tacoma

16.27

27

OBJECTIVES - 1/19

® Questions from 1/17
® Assignment O: Cloud Computing Infrastructure Tutorial

® Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization

= Wrappers |

= |[nterceptors
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2023

16.28

28

Slides by Wes J. Lloyd

January 19, 2023

L6.14

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

MIDDLEWARE: WRAPPERS

= Wrappers (also called adapters)

= WHY?: Interfaces available from legacy software may not be
sufficient for all new applications to use

= WHAT: Special “frontend” components that provide interfaces for
clients

= Interface wrappers transform client requests to “implementation”
(i.e. legacy software) at the component-level

= Can then provide modern service interfaces for legacy code/systems

= Components encapsulate (i.e. abstract) dependencies to meet all
preconditions to operate and host legacy code

= Interfaces parameterize legacy functions, abstract environment
configuration (i.e. make into black box)

= Contributes towards system OPENNESS
= Example: Amazon S3: S3 HTTP REST interface
= GET/PUT/DELETE/POST: requests handed off for fulfillment

January 19, 2023

TCSS558: Applied Distributed Computing [Winter 2023] 16.26
School of Engineering and Technology, University of Washington - Tacoma :

29

MIDDLEWARE: WRAPPERS - 2

Wrapper
= |nter-application communication
/

= Applications may provide unique interface for clients :UPCQ
every client application
= Scalability suffers Application
= N applications > O(N2) wrappers \.C>

= ALTERNATE: Use a Broker

= Provide a common intermediary Q
= Broker knows how to communicate with Q /
every application N
= Applications only know how to communicate Broker 4@
with the broker O/ \O

TCSS558: Applied Distributed Computing [Winter 2023] | 16.30 |

(ELLETRY 2, 20 School of Engineering and Technology, University of Washington - Tacoma

30

Slides by Wes J. Lloyd

January 19, 2023

L6.15

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 1/19

® Questions from 1/17
®m Assighment O: Cloud Computing Infrastructure Tutorial

® Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Wrappers

= Interceptors |

= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2023]

January|19,2023 School of Engineering and Technology, University of Washington - Tacoma

16.31

31

MIDDLEWARE: INTERCEPTORS

= Interceptor
m Software construct, breaks flow of control, allows
other application code to be executed

= |Interceptors send calls to other servers, or to ALL
servers that replicate an object while abstracting
the distribution and/or replication

= Used to enable remote procedure calls (RPC), remote
method invocation (RMI)

mQObject A calls method belonging to object B
= Interceptors route calls to object B regardless of location

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma 1632

January 19, 2023

32

Slides by Wes J. Lloyd

January 19, 2023

L6.16

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

MIDDLEWARE: INTERCEPTORS - 2

Client application

|—| B.doit (val) }—|

Application stub

Request-level interceptor

e @

T A

E— Nonintercepted cal

' J

-~

¥ ¥
invoke (B, &doit, wal)

Object middleware

Y .

Message-level interceptor

If object is local

i

| j.ﬂ

Request-level
interceptor
transforms:
B.doit (val)

into generic call:

invoke (B, &doit,val)

Message-level
interceptor in
middleware
sends message
through OS
(TCP/IP socket)

L send (B, "doit”, wal) I—l
i to transfer data:
Local OS send (B, ”doit” ,val)
¥ ToobjectB Non-intercepted:
TCSS558: Applied Distributed Computing [Winter 2023]
January 19, 2023 School of Engineering and Technology, University of Washington - Tacoma | 1633 |

33

MIDDLEWARE INTERCEPTION - METHOD

= MIDDLEWARE: Provides local interface matching Object B to

Object A

= Object A calls Object B’'s method provided by local interface

= A’s call is transformed into a “generic object invocation” by

request-level interceptor

® “Generic object invocation” is transformed into a message by
message-level interceptor and sent over Object A’s network to

Object B

= |[nterception automatically routes calls to all object replicas

January 19, 2023

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

| 16.34 |

34

Slides by Wes J. Lloyd

January 19, 2023

L6.17

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

MODIFIABLE MIDDLEWARE

® GOAL: It should be possible to modify middleware without loss
of availability

= Software components can be replaced at runtime

= Component-based design
= Modifiability through composition
= Systems may have static or dynamic configuration of components
= Dynamic configuration requires late binding
= Components can be changed at runtime

= Component based software supports modifiability at runtime
by enabling components to be swapped out.

= Does a microservices architecture (e.g. AWS Lambda) support
modifiability at runtime ?

TCSS558: Applied Distributed Computing [Winter 2023]

January|19,2023 School of Engineering and Technology, University of Washington - Tacoma

| L6.35 |

35

WE WILL RETURN AT

2:36PM

36

Slides by Wes J. Lloyd

January 19, 2023

L6.18

TCSS 558: Applied Distributed Computing January 19, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 1/19

® Questions from 1/17
® Assignment 0: Cloud Computing Infrastructure Tutorial

m Class Activity: Architectural Styles

= Chapter 2.2: Middleware Organization
= Wrappers
= Interceptors

| = Chapter 2.3: System Architectures |

= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2023]

January|19,2023 School of Engineering and Technology, University of Washington - Tacoma

| L6.37 |

37

To object B

CH 2.3: SYSTEM

ARCHITECTURES

TCSS558: Applied Distributed Computing [Winter 2023]

EantaAL20 28 School of Engineering and Technology, University of Washington -

38

Slides by Wes J. Lloyd L6.19

TCSS 558: Applied Distributed Computing January 19, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

SYSTEM ARCHITECTURES

® Architectural styles (or patterns)
® General, reusable solutions to commonly occurring
system designh problems

m Expressed as a logical organization of components
and connectors

® Deciding on the system components, their
interactions, and placement is a “realization” of an
architectural style

m System architectures represent designs used in
practice

TCSS558: Applied Distributed Computing [Winter 2023]

January|19,2023 School of Engineering and Technology, University of Washington - Tacoma

| 16.39

39

OBJECTIVES - 1/19

® Questions from 1/17
® Assignment O: Cloud Computing Infrastructure Tutorial

® Class Activity: Architectural Styles

= Chapter 2.2: Middleware Organization
= Wrappers
= |[nterceptors

= Chapter 2.3: System Architectures

| = Centralized system architectures |

= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2023]

(ELLETRY 2, 20 School of Engineering and Technology, University of Washington - Tacoma

| 16.40

40

Slides by Wes J. Lloyd L6.20

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

TYPES OF SYSTEM ARCHITECTURES

® Centralized system architectures
= Client-server
= Multitiered

®m Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2023]

January|19,2023 School of Engineering and Technology, University of Washington - Tacoma

| 16.41

41

CENTRALIZED:

SIMPLE CLIENT-SERVER ARCHITECTURE

Client Server

= Clients request services | Roquest |

= Servers provide services |
= Request-reply behavior At Provide service

= Connectionless protocols (UDP)
® Assume stable network communication with no failures

m Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

= Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

® Clients can resend the request when no reply is received
= But what is the server doing?

TCSS558: Applied Distributed Computing [Winter 2023]

(ELLETRY 2, 20 School of Engineering and Technology, University of Washington - Tacoma

| 16.42

42

Slides by Wes J. Lloyd

January 19, 2023

L6.21

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

CLIENT-SERVER PROTOCOLS

= Connectionless cont’d
m |s resending the client request a good idea?

= Examples:
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money | have left”

= |dempotent - repeating requests is safe

= Connection-oriented (TCP)
m Client/server communication over wide-area networks (WANSs)

® When communication is inherently reliable
m | everage “reliable” TCP/IP connections

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma | 1643

January 19, 2023

43

CLIENT-SERVER PROTOCOLS - 2

= Connection-oriented cont’d
m Set up and tear down of connections is relatively expensive
= Overhead can be amortized with longer lived connections

= Example: database connections often retained

® Ongoing debate:
= How do you differentiate between a client and server?
= Roles are blurred

Blurred Roles Example: Distributed databases
DB nodes both service client requests, *and* submit new

requests to other DB nodes for replication, synchronization, etc.

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma | o

January 19, 2023

44

Slides by Wes J. Lloyd

January 19, 2023

L6.22

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

TCP/UDP

Reliable Unreliable
Connection-oriented Connectionless
Segment retransmission ; : :
and flow control through ":_:t::m;:l%;"

windawing ra
Segment sequencing No sequencing
Acknowledge segments No acknowledgement

January 19, 2023

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

| 16.45 |

45

Advantages

Disadvantages

CONNECTIONLESS VS
CONNECTION ORIENTED

Connectionless (UDP)
stateless

Connection-oriented (TCP)
stateful

January 19, 2023

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

| 16.46 |

46

Slides by Wes J. Lloyd

January 19, 2023

L6.23

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

CONNECTIONLESS VS
CONNECTION ORIENTED

Connectionless (UDP) Connection-oriented (TCP)
stateless stateful
Advantages °* Fasttocommunicate (no * Message delivery confirmation
connection overhead) * ldempotence not required
* Broadcast to an audience * Messages automatically resent
* Network bandwidth savings - if client (or network) is

temporarily unavailable
* Message sequences

School of Engineering and Technology, University of Washington - Tacoma

guaranteed
Disadvantages ° Cannot tell difference of * Connection setup is time-
request vs. response failure consuming
* Requires idempotence * More bandwidth is required
¢ Clients must be online and (protocol, retries, multinode-
ready to receive messages communication)
January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 647 |

47

MULTITIERED ARCHITECTURES

= Where should functionality be distributed?
= At the client?
= At the server?

Client machine

‘ User interface | User interface‘ User interface User interface User interface

-

N 3 Application Application Application

N B -$,, __,,/i Database
User interface - 7_3_ === .

‘ Application ‘ | Application ‘ ‘\L}i;’););ication ‘ T
‘ Database ‘ | Database ‘ ‘ Database ‘ | Database ‘ ‘ ’ Database ‘
Server machine

= Why should we consider component composition?

TCSS558: Applied Distributed Computing [Winter 2023] | 16.48 |

| (ELLETRY 2, 20 School of Engineering and Technology, University of Washington - Tacoma

48

Slides by Wes J. Lloyd

January 19, 2023

L6.24

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

Bell’'s Number:

5 52
k: number of ways
n components can be 6 203
distributed across containers 7 877
8 4,140
9 21,14

=1

/

Tomcat ApplicationServer
Postgresql DB
nginx file server

%ﬁ

MD
L

rmo=

Logging server (high O/H)

49

~

/ Resource utilization profile changes
from component composition

M-bound RUSLE2 - Soil Erosion Model Webservice
* Box size shows absolute deviation (+/-) from mean
* Shows relative magnitude of performance variance

Two application variants tested o
* M-bound: Standard service, M is compute bound 1

* D-bound: Modified service, D is compute bound

111.1%
145%
143.9%

Resource footprint

Disk sector writes: 21.8%
Network bytes received: 144.9%
Network bytes sent: 143.7%

10%
E—
0% .

disk reads

network writes

CPU time disk writes network reads

50

Slides by Wes J. Lloyd

January 19, 2023

L6.25

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

15 |

Min to max performance

Sl¢

M-bound: 14%
D-bound: 25.7%

|_|IJ|J

-15

4 A Performance Change Y

1 »

.
scl sc2 sc3 scd4 sc5 sc6 sc7 sc8 sc9 sclOscllscl2scl3scldscls

Service Configurations

51

51

MULTITIERED ARCHITECTURES - 2

"= MDFL architecture
= M - is the application server

" M - is also a client to the database (D),
fileserver (F), and logging server (L)

Server as a client

Client Application Database
server server
Request
operation
> Request
data
Wait for Wait for
reply data
Return

< data

Return
reply

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma 1652

January 19, 2023

52

Slides by Wes J. Lloyd

January 19, 2023

L6.26

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

MULTITIERED RESOURCE SCALING

= Vertical distribution

= The distribution of “M D F L~

®m Application is scaled by placing “tiers” on separate servers
= M - The application server
= D - The database server

m Vertical distribution impacts “network footprint” of application
m Service isolation: each component is isolated on its own HW

= Horizontal distribution

® Scaling an individual tier

= Add multiple machines and distribute load
= L oad balancing

January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 16.53 |

School of Engineering and Technology, University of Washington - Tacoma

53

MULTITIERED RESOURCE SCALING - 2

= Horizontal distribution cont’d
= Sharding: portions of a database map” to a specific server
= Distributed hash table
= Or replica servers

January 19, 2023

TCSS558: Applied Distributed Computing [Winter 2023] 650
School of Engineering and Technology, University of Washington - Tacoma :

54

Slides by Wes J. Lloyd

January 19, 2023

L6.27

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 1/19

® Questions from 1/17
®m Assighment O: Cloud Computing Infrastructure Tutorial

® Class Activity: Architectural Styles

= Chapter 2.2: Middleware Organization
= Wrappers
= |Interceptors

= Chapter 2.3: System Architectures
= Centralized system architectures

= Decentralized peer-to-peer architectures I

= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2023]

January|19,2023 School of Engineering and Technology, University of Washington - Tacoma

| L6.55

55

TYPES OF SYSTEM ARCHITECTURES

® Centralized system architectures
= Client-server
= Multitiered

® Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2023]

(ELLETRY 2, 20 School of Engineering and Technology, University of Washington - Tacoma

| 16.56

56

Slides by Wes J. Lloyd

January 19, 2023

L6.28

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

DECENTRALIZED PEER-TO-PEER

ARCHITECTURES

® Client/server:
= Nodes have specific roles

® Peer-to-peer:
= Nodes are seen as all equal...

= How should nodes be organized for communication?

TCSS558: Applied Distributed Computing [Winter 2023]

January|19,2023 School of Engineering and Technology, University of Washington - Tacoma

16.57

57

STRUCTURED PEER-TO-PEER

= Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)
= Organization assists in data lookups

® Data indexed using “semantic-free” indexing
= Key / value storage systems

= Key used to look-up data

= Nodes store data associated with a subset of keys

TCSS558: Applied Distributed Computing [Winter 2023]

(ELLETRY 2, 20 School of Engineering and Technology, University of Washington - Tacoma

16.58

58

Slides by Wes J. Lloyd

January 19, 2023

L6.29

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

DISTRIBUTED HASH TABLE (DHT)

® Distributed hash table (DHT) (ch. 5)
Hash function

key (data item) = hash(data item’s value)

® Hash function “generates” a unique key based on the data
= No two data elements will have the same key (hash)

m System supports data lookup via key

= Any node can receive and resolve the request

® | ookup function determines which node stores the key

existing node = lookup (key)

= Node forwards request to node with the data

January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 16.59 |

School of Engineering and Technology, University of Washington - Tacoma

59

FIXED HYPERCUBE EXAMPLE

= Example where topology helps route data lookup request

m Statically sized 4-D hypercube, every node has 4 connectors
= 2 x 3-D cubes, 8 vertices, 12 edges

Node IDs represented as 4-bit code (0000 to 1111)

Hash data items to 4-bit key (1 of 16 slots)

Distance (number of hops) determined by identifying number
of varying bits between neighboring nodes and destination

TCSS558: Applied Distributed Computing [Winter 2023] | 16.60 |

(ELLETRY 2, 20 School of Engineering and Technology, University of Washington - Tacoma

60

Slides by Wes J. Lloyd

January 19, 2023

L6.30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

FIXED HYPERCUBE EXAMPLE - 2

= Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

® Node 1110 is not a neighbor to 0111

= Which connector leads to the shortest path?

TCSS558: Applied Distributed Computing [Winter 2023] 1661
School of Engineering and Technology, University of Washington - Tacoma :

January 19, 2023

61

WHICH CONNECTOR LEADS TO THE
SHORTEST PATH?

= Example: node 0111 (7) retrieves data from node 1110 (14)
= Node 1110 is not a neighbor to 0111

[0111] Neighbors:
1111 (1 bit different than 1110) 0011 (3 bits different- bad path)
0110 (1 bit different than 1110) 01041 (3 bits different- bad path)

= Does it matter which node is selected for the first hop?

January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 662

School of Engineering and Technology, University of Washington - Tacoma

62

Slides by Wes J. Lloyd

January 19, 2023

L6.31

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

DYNAMIC TOPOLOGY

= Fixed hypercube requires static topology

= Nodes cannot join or leave

m Relies on symmetry of number of nodes
= Can force the DHT to a certain size

= Chord system - DHT (again in ch.5)

= Dynamic topology
= Nodes organized in ring
= Every node has unique ID

= Each node connected with other nodes (shortcuts)

= Shortest path between any pair of nodes is ~ order O(log N)

= N is the total number of nodes

January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma

| 16.63 |

63

CHORD SYSTEM

Data items have m-bit key

Data item is stored at closest “successor” node with ID 2 key k

Each node maintains finger table of successor nodes

Client sends key/value
lookup to any node

Node forwards client
request to node with
m-bit ID closest to, but
not greater than key k

Nodes must continually
refresh finger tables by
communicating with
adjacent nodes to
incorporate node
joins/departures

2|

AN

26 | |

[Nonexisting ". ‘
node 2%

24

2

Node responsible for
keys {5,6,7.8,9)

January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma

| 16.64 |

64

Slides by Wes J. Lloyd

January 19, 2023

L6.32

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

UNSTRUCTURED PEER-TO-PEER

= No topology: How do nodes find out about each other?
® Each node maintains adhoc list of neighbors
® Facilitates nodes frequently joining, leaving, adhoc systems

Neighbor: node reachable from another via a network path

Neighbor lists constantly refreshed

= Nodes query each other, remove unresponsive neighbors
® Forms a “random graph”

= Predetermining network routes not possible

= How would you calculate the route algorithmically?

® Routes must be discovered

January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 16.65 |

School of Engineering and Technology, University of Washington - Tacoma

65

SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

= Flooding
B [Node u] sends request for data item to all neighbors
E [Node v]
= Searches locally, responds to u (or forwarder) if having data
= Forwards request to ALL neighbors
= I[gnores repeated requests
= Features
= High network traffic
= Fast search results by saturating the network with requests
= Variable # of hops
= Max number of hops or time-to-live (TTL) often specified

= Requests can “retry” by gradually increasing TTL/max hops until
data is found

January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | L6.66 |

School of Engineering and Technology, University of Washington - Tacoma

66

Slides by Wes J. Lloyd

January 19, 2023

L6.33

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

SEARCHING FOR DATA - 2

= Random walks
B [Node u] asks a randomly chosen neighbor [node v]

= |f [node v] does not have data, forwards request to a
random neighbor

= Features

= Low network traffic

= AKin to sequential search

= Longer search time

= [node u] can start “n” random walks simultaneously to
reduce search time

= As few as n=16..64 random walks sufficient to reduce search
time (LV et al. 2002)

= Timeout required - need to coordinate stopping network-wide
walk when data is found...

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma | 1667

January 19, 2023

67

SEARCHING FOR DATA - 3

® Policy-based search methods

® |[ncorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of
queries

= Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

® Favor neighbors having highest number of neighbors
= Can help minimize hops

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma | 1658

January 19, 2023

68

Slides by Wes J. Lloyd

January 19, 2023

L6.34

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

HIERARCHICAL

PEER-TO-PEER NETWORKS

= Problem:
Adhoc system search performance does not scale well as
system grows

= Allow nodes to assume ROLES to improve search
= Content delivery networks (CDNs) (video streaming)
= Store (cache) data at nodes local to the requester (client)
= Broker node - tracks resource usage and node availability
Track where data is needed
Track which nodes have capacity (disk/CPU resources) to host data
= Node roles
= Super peer -Broker node, routes client requests to storage
nodes

= Weak peer - Store data

January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 16.69 |

School of Engineering and Technology, University of Washington - Tacoma

69

HIERARCHICAL

PEER-TO-PEER NETWORKS - 2

® Super peers
= Head node of local centralized network
= [nterconnected via overlay network with other super peers
= May have replicas for fault tolerance

= Weak peers
= Rely on super peers to find data

= | eader-election problem:
= Who can become a i .

super peer? "
= What requirements \Dfsumrpeers

must be met to become ~
a super peer? T

January 19, 2023 TCSS558: Applied Distributed Computing [Winter 2023] | 670 |

School of Engineering and Technology, University of Washington - Tacoma

70

Slides by Wes J. Lloyd

January 19, 2023

L6.35

TCSS 558: Applied Distributed Computing January 19, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 1/19

® Questions from 1/17
®m Assighment O: Cloud Computing Infrastructure Tutorial

® Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Wrappers
= |Interceptors
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures

I = Hybrid architectures I
TCSS558: Applied Distributed Computing [Winter 2023]
| January|19,2023 School of Engineering and Technology, University of Washington - Tacoma | 7

71

TYPES OF SYSTEM ARCHITECTURES

® Centralized system architectures
= Client-server
= Multitiered

® Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

| = Hybrid architectures |

TCSS558: Applied Distributed Computing [Winter 2023]

(ELLETRY 2, 20 School of Engineering and Technology, University of Washington - Tacoma

| 16.72

72

Slides by Wes J. Lloyd L6.36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

£ 01 et Content provider _EH
HYBRID 3T AP
S \ = '
ARCHITECTURES B Ay
< . > < :>En|erpnsenemrk
= Combine centralized server concepts with decentralized
peer-to-peer models
= Edge-server systems:
m Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)
= Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge
= Example:
= AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers
= https://www.infoq.com/news/2017/07/aws-lambda-at-edge
January|19,2023 gg:csagfs;:ggilri;igri'nsgtZzztigcﬁzzzzangn[i‘cg;tif\; tz)?\zl\ﬂshington-Tacoma | 673 |
73
Q7
HYBRID o G- M@
— = - Y T — —
|
ARCHITECTURES -2 &

— ¢ ¢>Emmmwk

® Fog computing:

= Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

® End-user devices become part of the overall system

= Middleware extended to incorporate managing edge
devices as participants in the distributed system

= Cloud - in the sky
= compute/resource capacity is huge, but far away...
® Fog > (devices) on the ground

= compute/resource capacity is constrained and local...

TCSS558: Applied Distributed Computing [Winter 2023] 672
School of Engineering and Technology, University of Washington - Tacoma :

January 19, 2023

74

Slides by Wes J. Lloyd

January 19, 2023

L6.37

https://www.infoq.com/news/2017/07/aws-lambda-at-edge

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE

= BitTorrent Example:
File sharing system - users must contribute as a file host to
be eligible to download file resources

= Original implementation features hybrid architecture
= | everages idle client network capacity in the background
® User joins the system by interacting with a central server

= Client accesses global directory from a tracker server at well
known address to access torrent file

= Torrent file tracks nodes having chunks of requested file

= Client begins downloading file chunks and immediately then
participates to reserve downloaded content or network
bandwidth is reduced!!

® Chunks can be downloaded in parallel from distributed nodes

TCSS558: Applied Distributed Computing [Winter 2023]

January|19,2023 School of Engineering and Technology, University of Washington - Tacoma

| L6.75 |

75

QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington -

January 19, 2023

76

Slides by Wes J. Lloyd

January 19, 2023

L6.38

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/19
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/17
	Slide 7: Stateless vs statefuL
	Slide 8: Stateless vs. stateful - 2
	Slide 9: Stateless vs stateful - 3
	Slide 10: Stateless vs stateful - 4
	Slide 11: Feedback - 2
	Slide 12: Feedback - 3
	Slide 13: Feedback - 4
	Slide 14: Graph ql
	Slide 15: Feedback - 5
	Slide 16: Example: self describing rest architecture
	Slide 17: Soap & firewalls
	Slide 18: bonus
	Slide 19: OBJECTIVES – 1/19
	Slide 20: Assignment 0
	Slide 21: OBJECTIVES – 1/19
	Slide 22: In-class activity: architectural styles
	Slide 23: Class activity 2
	Slide 24: Distributed system goals to consider
	Slide 25: OBJECTIVES – 1/19
	Slide 26: Ch 2.2: Middleware organization
	Slide 27: Middleware organization
	Slide 28: OBJECTIVES – 1/19
	Slide 29: Middleware: Wrappers
	Slide 30: Middleware: wrappers - 2
	Slide 31: OBJECTIVES – 1/19
	Slide 32: Middleware: interceptors
	Slide 33: Middleware: interceptors - 2
	Slide 34: Middleware interception - method
	Slide 35: Modifiable middleware
	Slide 36: We will return at 2:36pm
	Slide 37: OBJECTIVES – 1/19
	Slide 38: Ch 2.3: System architectures
	Slide 39: System architectures
	Slide 40: OBJECTIVES – 1/19
	Slide 41: Types of System architectures
	Slide 42: Centralized: simple client-server architecture
	Slide 43: Client-server protocols
	Slide 44: Client-server protocols - 2
	Slide 45: Tcp/udp
	Slide 46: Connectionless vs connection oriented
	Slide 47: Connectionless vs connection oriented
	Slide 48: Multitiered architectures
	Slide 49
	Slide 50
	Slide 51: Performance implications of component deployments
	Slide 52: Multitiered architectures - 2
	Slide 53: Multitiered resource scaling
	Slide 54: Multitiered resource scaling - 2
	Slide 55: OBJECTIVES – 1/19
	Slide 56: Types of System architectures
	Slide 57: Decentralized Peer-to-peer architectures
	Slide 58: Structured peer-to-peer
	Slide 59: Distributed hash table (DHT)
	Slide 60: Fixed hypercube example
	Slide 61: Fixed Hypercube example - 2
	Slide 62: Which connector leads to the shortest path?
	Slide 63: Dynamic topology
	Slide 64: Chord system
	Slide 65: unstructured peer-to-peer
	Slide 66: Searching for data: unstructured peer-to-peer systems
	Slide 67: Searching for data - 2
	Slide 68: Searching for data - 3
	Slide 69: Hierarchical peer-to-peer networks
	Slide 70: Hierarchical peer-to-peer networks - 2
	Slide 71: OBJECTIVES – 1/19
	Slide 72: Types of System architectures
	Slide 73: Hybrid architectures
	Slide 74: Hybrid architectures - 2
	Slide 75: Collaborative distributed system example
	Slide 76: Questions

