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APPLIED DISTRIBUTED COMPUTING

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/19

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (29 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.16  ( - previous 6.00)  

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.45  ( - previous 5.15)
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MATERIAL / PACE

I'm vague about the concept of "stateless"
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FEEDBACK FROM 1/17
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3 4

5 6
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Stateless Server

 Save current state of 

process

 Anticipates future 

communication w/ client

 Design is more complex –

data must be stored

 Server tracks user session 

data and information

 Server and client depend on 

each other

Stateful Server

 State of process not saved

 Server only responds to 

client’s immediate request

 Design is simplified –

no data is stored

 Server does not track and 

store user session data

 Server and client do not 

dependent on each other

STATELESS VS STATEFUL
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Stateless Server

 Implementation of the
server design is more
dif ficult

 Data can’t be recovered
when a crash occurs

 Requests depend on the 
server side

 Scaling is more challenging
and complex

 Examples: Telnet and FTP 
(both application)

Stateful Server

 Implementation of the 
server design is easier

 If server crashes, there’s no
state data to recover

 Requests are independent 
of the server side and self -
contained

 Scaling is less dif ficult

 Examples: HTTP, DNS 
(application), UDP 
(transport)

STATELESS VS. STATEFUL - 2
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 Can you use diagrams to explain the dif ference between 

stateless and stateful?
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STATELESS VS STATEFUL - 3

eCommerce
website 
example

 Stateful webservices often have requirement 

to store user session information local to the server

processing the request

 Gateway/load 

balancer needs 

to be aware of 

this
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STATELESS VS STATEFUL - 4

 There is  a  sentence on page 65 of  the book: 

The s implicity of  RESTful architectures can easily prohibit 

easy solutions to intricate communication schemes. 

What does it  mean?

 An intricate communicate scheme is a more complex one

 RESTful architectures are restricted to the simple HTTP 

inter face

 This prohibits design a more detailed inter face that may 

better suit an intricate (more complex) communication 

scheme

October 7, 2016
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FEEDBACK - 2

 There is  a  sentence on page 65 of  the book: 

The s implicity of  RESTful architectures can easily prohibit 

easy solutions to intricate communication schemes. 

What does it  mean?

 Alternatively, SOAP allows a custom API to be defined

 Not sure GET, POST, PUT, DELETE

 With RESTful services we create more services with specific 

names and functions vs. define uniquely named actions within 

a service

 RESTful services therefore don’t map directly to OO schemes
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FEEDBACK - 3
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 How are service-oriented systems dif ferent f rom REST?

 Service oriented applications do not mandate RESTful services

 Services could be SOAP-based or other protocols

 GraphQL – is a data query and manipulation service protocol 

alternative to REST developed by Facebook

 GraphQL is specifically for querying specific fields of objects 
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FEEDBACK - 4

query result
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GRAPH QL

query result

query result

Variable
in query

client passes 
a variable

 What is  meant by "Messages to/from a service are ful ly 
described" (s lide L5.23 about REST services)? How are they 
described?

 “Fully described” implies that REST supports 
Self-Describing Messages 
Services interact by exchanging request and response 
messages, which contain both the data (or the representations 
of resources) and the corresponding meta -data. 
Representations can vary according to the client context, 
interests, and abilities.

 Self-describing means there is no need for a definition file
(WSDL) or any other messages to support the web service 
transaction

 Everything is complete and contained in the single client-to-
server request (everything is self contained)

 Nothing else is required

 The structureless next of JSON objects help enable this
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FEEDBACK - 5

 Mobile client can retrieve a low -bandwidth representation of a 

resource (ASCII text)

 Web browser can request a representation of a Web page in a 

particular language based on user preferences (HTML5)

 Flexibility of the response output format (text vs html) greatly 

enhances interoperability of REST architectures

 Client can dynamically negotiate the most appropriate data 

response format (also called media type) with the service 

 All clients are not forced to use the same format

 Request and response messages contain explicit meta -data 

describing the data representation so services do not need to 

assume or try to interpret the data format  
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EXAMPLE: 

SELF DESCRIBING REST ARCHITECTURE 

 What is  i t  about other protocols, l ike SOAP, that are unsafe, 
such that they may be blocked by f irewalls, whereas REST 
of ten is  not?

 Because many organizations host webservers which 
communicate using TCP port 80, port 80 is open allowing 
traffic to flow 

▪ Common practice then is to map your protocol over port 80

 Connection-oriented (TCP) application protocols often 
communicate on distinct ports, for example:
SSH 22, SMTP 25, TCP 25, VNC 5900, TELNET 23

▪ SOAP in fact is most often implemented on top of HTTP 

▪ I had wrongly assumed SOAP defined its own communication 
protocol 

▪ SOAP just defines a messaging scheme (i.e. with XML, WSDL, etc.) 
that is carried over HTTP
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SOAP & FIREWALLS

 What is  the TCP port for HTTPS ?

 A TCP port number is specified in a URI/URL by using a 

colon and a number after the resource name

 Example:

 Server hosting climate API exposes service on port 8083:

 http://csip.engr.colostate.edu:8083/csip -erosion/d/rusle2/climate/

 (Assignment 0) 

Default web service port in Apache Tomcat is 8080
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BONUS

13 14

15 16

17 18
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 Questions from 1/17

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/19

 Preparing for Assignment 0:

▪ Establish AWS Account

▪ Standard account

▪ Complete AWS Cloud Credits Survey and provide AWS account ID

▪ Credits will be automatically loaded by Amazon into accounts

 Tasks:

▪ Task 1 - Establish local Linux/Ubuntu environment

▪ Task 2 –AWS account setup, obtain user credentials

▪ Task 3 – Intro to: Amazon EC2 & Docker: create Dockerfile for 
Apache Tomcat

▪ Task 4 – Create Dockerfile for haproxy

▪ Task 5 – Working with Docker-Machine

▪ Task 6 - Config 3 multiple server configs to load balance 
requests for RESTful Fibonacci web service

▪ Task 7 – Test configs and submit results
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ASSIGNMENT 0

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/19

IN-CLASS ACTIVITY:

ARCHITECTURAL 

STYLES

L6.22

 We will form groups of ~2-3 

▪ On Zoom breakout rooms will be created

 Each group will complete a MS Doc worksheet

 Add names to MS Doc as they appear in Canvas

 Once completed, one person submits a PDF of the MS Doc to 
Canvas

 Instructor will score all group members based on the uploaded 
PDF file

 To get star ted:

▪ Log into your *** UW Google Account ***

▪ Link to shared Google Drive

▪ Follow link:

https://canvas.uw.edu/courses/1621385/files/100858747

October 7, 2020
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CLASS ACTIVITY 2

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…
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DISTRIBUTED SYSTEM GOALS 

TO CONSIDER
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 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/19

CH 2.2: MIDDLEWARE

ORGANIZATION
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Relies on two important design patterns:

▪Wrappers

▪ Interceptors

Both help achieve the goal of openness
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MIDDLEWARE ORGANIZATION

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/19

 Wrappers (also called adapters)

▪ WHY?: Interfaces available from legacy software may not be 
sufficient for all new applications to use

▪ WHAT: Special “frontend” components that provide interfaces for 
clients

▪ Interface wrappers transform client requests to “implementation”
(i.e. legacy software) at the component-level

▪ Can then provide modern service interfaces for legacy code/systems

▪ Components encapsulate (i.e. abstract) dependencies to meet all 
preconditions to operate and host legacy code

▪ Interfaces parameterize legacy functions, abstract environment 
configuration (i.e. make into black box)

 Contributes towards system OPENNESS

 Example: Amazon S3: S3 HTTP REST inter face

 GET/PUT/DELETE/POST: requests handed off for fulfillment
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MIDDLEWARE: WRAPPERS

 Inter-application communication

▪ Applications may provide unique interface for

every client application

 Scalability suffers

▪ N applications → O(N2) wrappers

 ALTERNATE: Use a Broker

▪ Provide a common intermediary

▪ Broker knows how to communicate with

every application

▪ Applications only know how to communicate 

with the broker
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MIDDLEWARE: WRAPPERS - 2

clients

25 26

27 28

29 30
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 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/19

 Interceptor

Software construct, breaks flow of control, allows 

other application code to be executed

 Interceptors send calls to other servers, or to ALL 

servers that replicate an object while abstracting 

the distribution and/or replication

▪ Used to enable remote procedure calls (RPC), remote 

method invocation (RMI)

Object A calls method belonging to object B

▪ Interceptors route calls to object B regardless of location
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MIDDLEWARE: INTERCEPTORS

Request-level 
interceptor 
transforms: 
B.doit(val)

into generic call:
invoke(B,&doit,val)

Message-level 
interceptor in 
middleware 
sends message 
through OS 
(TCP/IP socket) 
to transfer data: 
send(B,”doit”,val)

Non-intercepted:
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MIDDLEWARE: INTERCEPTORS - 2

If object is local

 MIDDLEWARE: Provides local inter face matching Object B to 
Object A

 Object A calls Object B’s method provided by local inter face

 A’s call is transformed into a “generic object invocation” by 
request-level interceptor

 “Generic object invocation” is transformed into a message by 
message-level interceptor and sent over Object A’s network to 
Object B

 Interception automatically routes calls to all object replicas
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MIDDLEWARE INTERCEPTION - METHOD

 GOAL: It should be possible to modify middleware without loss 

of availability

▪ Software components can be replaced at runtime

 Component-based design

▪ Modifiability through composition

▪ Systems may have static or dynamic configuration of components

▪ Dynamic configuration requires late binding

▪ Components can be changed at runtime

 Component based software supports modifiability at runtime 

by enabling components to be swapped out.

 Does a microservices architecture ( e.g. AWS Lambda) support 

modifiability at  runtime ?
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MODIFIABLE MIDDLEWARE

WE WILL RETURN AT 

2:36PM

31 32

33 34
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 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/19

CH 2.3: SYSTEM 

ARCHITECTURES

January 19, 2023
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 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring 

system design problems

 Expressed as a logical organization of components

and connectors

 Deciding on the system components, their 

interactions, and placement is a “realization” of an 

architectural style

 System architectures represent designs used in 

practice
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TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.39

SYSTEM ARCHITECTURES

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/19

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured 

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Clients request services

 Servers provide services

 Request-reply behavior

 Connectionless protocols (UDP)

 Assume stable network communication with no failures

 Best effort communication: No guarantee of message 
arrival without errors, duplication, delays, or in sequence. 
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request 
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received

 But what is the server doing?

January 19, 2023
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CENTRALIZED: 

SIMPLE CLIENT-SERVER ARCHITECTURE

37 38

39 40

41 42
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 Connectionless cont’d

 Is resending the client request a good idea?

 Examples: 

Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide -area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections
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CLIENT-SERVER PROTOCOLS

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections

▪ Example: database connections often retained

 Ongoing debate:

 How do you dif ferentiate between a client and server?

 Roles are blurred

 Blurred Roles Example: Distributed databases

 DB nodes both service client requests, *and* submit new 

requests to other DB nodes for replication, synchronization, etc.
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CLIENT-SERVER PROTOCOLS - 2
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TCP/UDP

Connectionless (UDP) 

stateless

Connection-oriented (TCP)

stateful

Advantages

Disadvantages
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CONNECTIONLESS VS 

CONNECTION ORIENTED

Connectionless (UDP) 

stateless

Connection-oriented (TCP)

stateful

Advantages • Fast to communicate (no 

connection overhead)

• Broadcast to an audience

• Network bandwidth savings

• Message delivery confirmation

• Idempotence not required

• Messages automatically resent 

- if client (or network) is 

temporarily unavailable

• Message sequences 

guaranteed

Disadvantages • Cannot tell difference of 

request vs. response failure

• Requires idempotence

• Clients must be online and 

ready to receive messages

• Connection setup is time-

consuming

• More bandwidth is required 

(protocol, retries, multinode-

communication)
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CONNECTIONLESS VS 

CONNECTION ORIENTED

 Where should functionality be distributed?

▪ At the client?

▪ At the server? 

 Why should we consider component composition?
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MULTITIERED ARCHITECTURES
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M D
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Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM 
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways 
n components can be 
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14

7

n . . .

SC15
SC14

SC13
SC12

SC11
SC10
SC9

SC8
SC7

SC6
SC5
SC4

SC3
SC2

SC1

CPU time        disk reads   disk writes  network reads     network writes

∆  Resource Utilization Change
Min to Max Utilization

m-bound d-bound       

CPU time: 6.5% 5.5%

Disk sector reads: 14.8% 819.6%

Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%

Network bytes sent: 143.7% 143.9%

Resource utilization profile changes 

from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean

• Shows relative magnitude of performance variance

Two application variants tested

• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

51

PERFORMANCE IMPLICATIONS OF

COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆  Performance Change:
Min to max performance

M-bound: 14%

D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D), 

f ileserver (F), and logging server (L)
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MULTITIERED ARCHITECTURES - 2

M

D F L

client
Server as a client

 Vertical d istribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers

▪ M – The application server

▪ D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing
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MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

▪ Sharding: portions of a database map” to a specific server

▪ Distributed hash table

▪ Or replica servers

January 19, 2023
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MULTITIERED RESOURCE SCALING - 2

49 50

51 52
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 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/19

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured 

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Client/server:

▪ Nodes have specific roles

 Peer-to-peer:

▪ Nodes are seen as all equal…

 How should nodes be organized for communication?
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DECENTRALIZED PEER-TO-PEER 

ARCHITECTURES

 Nodes organized using specific topology 

(e.g. ring, binary -tree, grid, etc.)

▪ Organization assists in data lookups

 Data indexed using “semantic -free” indexing

▪ Key / value storage systems

▪ Key used to look-up data

 Nodes store data associated with a subset of keys
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STRUCTURED PEER-TO-PEER

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data
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DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number 

of varying bits between neighboring nodes and destination
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FIXED HYPERCUBE EXAMPLE
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 Example: fixed hypercube

node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?
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FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does it  matter which node is  selected for the f irst hop?
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WHICH CONNECTOR LEADS TO THE 

SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent– bad path)

0101 (3 bits dif ferent– bad path)

 Fixed hypercube requires static topology

▪ Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

▪ Dynamic topology

▪ Nodes organized in ring

▪ Every node has unique ID

▪ Each node connected with other nodes (shortcuts)

▪ Shortest path between any pair of nodes is ~ order O(log N)

▪ N is the total number of nodes
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DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains f inger table of successor nodes

 Client sends key/value 

lookup to any node

 Node forwards cl ient 

request to node with 

m-bit ID closest to, but 

not greater than key k 

 Nodes must continual ly 

refresh finger tables by 

communicating with 

adjacent nodes to 

incorporate node 

joins/depar tures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.64

CHORD SYSTEM

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed

▪ Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible

▪ How would you calculate the route algorithmically?

 Routes must be discovered
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UNSTRUCTURED PEER-TO-PEER

 Flooding

 [Node u] sends request for data item to all neighbors

 [Node v]

▪ Searches locally, responds to u (or forwarder) if having data

▪ Forwards request to ALL neighbors

▪ Ignores repeated requests

 Features

▪ High network traffic

▪ Fast search results by saturating the network with requests

▪ Variable # of hops

▪ Max number of hops or time-to-live (TTL) often specified

▪ Requests can “retry” by gradually increasing TTL/max hops until 

data is found
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SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS
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 Random walks
 [Node u] asks a randomly chosen neighbor [node v]

 If  [node v] does not have data, forwards request to a 
random neighbor

 Features

▪ Low network traffic

▪ Akin to sequential search

▪ Longer search time

▪ [node u] can start “n” random walks simultaneously to 
reduce search time

▪ As few as n=16..64 random walks sufficient to reduce search 
time  (LV et al. 2002)

▪ Timeout required - need to coordinate stopping network-wide 
walk when data is found…
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SEARCHING FOR DATA - 2

 Policy-based search methods

 Incorporate history and knowledge about the adhoc

network at the node-level to enhance effectiveness of 

queries

 Nodes maintain lists of preferred neighbors which often 

succeed at resolving queries

 Favor neighbors having highest number of neighbors

▪ Can help minimize hops
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SEARCHING FOR DATA - 3

 Problem:

Adhoc system search performance does not scale well as 

system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs)   (video streaming)

▪ Store (cache) data at nodes local to the requester (client)

▪ Broker node – tracks resource usage and node availability

▪ Track where data is needed

▪ Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

▪ Super peer –Broker node, routes client requests to storage 

nodes

▪ Weak peer – Store data
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HIERARCHICAL

PEER-TO-PEER NETWORKS

 Super peers

▪ Head node of local centralized network

▪ Interconnected via overlay network with other super peers

▪ May have replicas for fault tolerance

 Weak peers

▪ Rely on super peers to find data

 Leader-election problem:

▪ Who can become a
super peer?

▪ What requirements 
must be met to become 
a super peer?
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HIERARCHICAL 

PEER-TO-PEER NETWORKS - 2

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/19

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured 

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES
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 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:

 Adhoc peer-to-peer devices connect to the internet through an 
edge server (origin server) 

 Edge servers (provided by an ISP) can optimize content and 
application distribution by storing assets near the edge

 Example:

 AWS Lambda@Edge: Enables Node.js Lambda Functions to 
execute “at the edge” harnessing existing CloudFront Content 
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws -lambda-at-edge
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HYBRID 

ARCHITECTURES

 Fog computing:

 Extend the scope of managed resources beyond the 
cloud to leverage compute and storage capacity of 
end-user devices  

 End-user devices become part of the overall system 

 Middleware extended to incorporate managing edge 
devices as participants in the distributed system  

 Cloud → in the sky   

▪ compute/resource capacity is huge, but far away…

 Fog → (devices) on the ground   

▪ compute/resource capacity is constrained and local…
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HYBRID 

ARCHITECTURES - 2

 BitTorrent Example:

File sharing system – users must contribute as a file host to 

be eligible to download file resources 

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well 

known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then 

participates to reserve downloaded content or  network 

bandwidth is  reduced!!

 Chunks can be downloaded in parallel from distributed nodes
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COLLABORATIVE DISTRIBUTED 

SYSTEM EXAMPLE QUESTIONS
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