
TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.1

Middleware Organization
and System Architectures

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.2

OBJECTIVES – 1/19

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.3

ONLINE DAILY FEEDBACK SURVEY

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L6.4

 Please classify your perspective on material covered in today’s

class (29 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.16 (- previous 6.00)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.45 (- previous 5.15)

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.5

MATERIAL / PACE

I'm vague about the concept of "stateless"

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.6

FEEDBACK FROM 1/17

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.2

Stateless Server

 Save current state of

process

 Anticipates future

communication w/ client

 Design is more complex –

data must be stored

 Server tracks user session

data and information

 Server and client depend on

each other

Stateful Server

 State of process not saved

 Server only responds to

client’s immediate request

 Design is simplified –

no data is stored

 Server does not track and

store user session data

 Server and client do not

dependent on each other

STATELESS VS STATEFUL

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma L6.7

Stateless Server

 Implementation of the
server design is more
dif ficult

 Data can’t be recovered
when a crash occurs

 Requests depend on the
server side

 Scaling is more challenging
and complex

 Examples: Telnet and FTP
(both application)

Stateful Server

 Implementation of the
server design is easier

 If server crashes, there’s no
state data to recover

 Requests are independent
of the server side and self -
contained

 Scaling is less dif ficult

 Examples: HTTP, DNS
(application), UDP
(transport)

STATELESS VS. STATEFUL - 2

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma L6.8

 Can you use diagrams to explain the dif ference between

stateless and stateful?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.9

STATELESS VS STATEFUL - 3

eCommerce
website
example

 Stateful webservices often have requirement

to store user session information local to the server

processing the request

 Gateway/load

balancer needs

to be aware of

this

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.10

STATELESS VS STATEFUL - 4

 There is a sentence on page 65 of the book:

The s implicity of RESTful architectures can easily prohibit

easy solutions to intricate communication schemes.

What does it mean?

 An intricate communicate scheme is a more complex one

 RESTful architectures are restricted to the simple HTTP

inter face

 This prohibits design a more detailed inter face that may

better suit an intricate (more complex) communication

scheme

October 7, 2016
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.11

FEEDBACK - 2

 There is a sentence on page 65 of the book:

The s implicity of RESTful architectures can easily prohibit

easy solutions to intricate communication schemes.

What does it mean?

 Alternatively, SOAP allows a custom API to be defined

 Not sure GET, POST, PUT, DELETE

 With RESTful services we create more services with specific

names and functions vs. define uniquely named actions within

a service

 RESTful services therefore don’t map directly to OO schemes

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.12

FEEDBACK - 3

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.3

 How are service-oriented systems dif ferent f rom REST?

 Service oriented applications do not mandate RESTful services

 Services could be SOAP-based or other protocols

 GraphQL – is a data query and manipulation service protocol

alternative to REST developed by Facebook

 GraphQL is specifically for querying specific fields of objects

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.13

FEEDBACK - 4

query result

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.14

GRAPH QL

query result

query result

Variable
in query

client passes
a variable

 What is meant by "Messages to/from a service are ful ly
described" (s lide L5.23 about REST services)? How are they
described?

 “Fully described” implies that REST supports
Self-Describing Messages
Services interact by exchanging request and response
messages, which contain both the data (or the representations
of resources) and the corresponding meta -data.
Representations can vary according to the client context,
interests, and abilities.

 Self-describing means there is no need for a definition file
(WSDL) or any other messages to support the web service
transaction

 Everything is complete and contained in the single client-to-
server request (everything is self contained)

 Nothing else is required

 The structureless next of JSON objects help enable this

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.15

FEEDBACK - 5

 Mobile client can retrieve a low -bandwidth representation of a

resource (ASCII text)

 Web browser can request a representation of a Web page in a

particular language based on user preferences (HTML5)

 Flexibility of the response output format (text vs html) greatly

enhances interoperability of REST architectures

 Client can dynamically negotiate the most appropriate data

response format (also called media type) with the service

 All clients are not forced to use the same format

 Request and response messages contain explicit meta -data

describing the data representation so services do not need to

assume or try to interpret the data format

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.16

EXAMPLE:

SELF DESCRIBING REST ARCHITECTURE

 What is i t about other protocols, l ike SOAP, that are unsafe,
such that they may be blocked by f irewalls, whereas REST
of ten is not?

 Because many organizations host webservers which
communicate using TCP port 80, port 80 is open allowing
traffic to flow

▪ Common practice then is to map your protocol over port 80

 Connection-oriented (TCP) application protocols often
communicate on distinct ports, for example:
SSH 22, SMTP 25, TCP 25, VNC 5900, TELNET 23

▪ SOAP in fact is most often implemented on top of HTTP

▪ I had wrongly assumed SOAP defined its own communication
protocol

▪ SOAP just defines a messaging scheme (i.e. with XML, WSDL, etc.)
that is carried over HTTP

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.17

SOAP & FIREWALLS

 What is the TCP port for HTTPS ?

 A TCP port number is specified in a URI/URL by using a

colon and a number after the resource name

 Example:

 Server hosting climate API exposes service on port 8083:

 http://csip.engr.colostate.edu:8083/csip -erosion/d/rusle2/climate/

 (Assignment 0)

Default web service port in Apache Tomcat is 8080

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.18

BONUS

13 14

15 16

17 18

http://csip.engr.colostate.edu:8083/csip-erosion/d/rusle2/climate/

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.4

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.19

OBJECTIVES – 1/19

 Preparing for Assignment 0:

▪ Establish AWS Account

▪ Standard account

▪ Complete AWS Cloud Credits Survey and provide AWS account ID

▪ Credits will be automatically loaded by Amazon into accounts

 Tasks:

▪ Task 1 - Establish local Linux/Ubuntu environment

▪ Task 2 –AWS account setup, obtain user credentials

▪ Task 3 – Intro to: Amazon EC2 & Docker: create Dockerfile for
Apache Tomcat

▪ Task 4 – Create Dockerfile for haproxy

▪ Task 5 – Working with Docker-Machine

▪ Task 6 - Config 3 multiple server configs to load balance
requests for RESTful Fibonacci web service

▪ Task 7 – Test configs and submit results

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.20

ASSIGNMENT 0

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.21

OBJECTIVES – 1/19

IN-CLASS ACTIVITY:

ARCHITECTURAL

STYLES

L6.22

 We will form groups of ~2-3

▪ On Zoom breakout rooms will be created

 Each group will complete a MS Doc worksheet

 Add names to MS Doc as they appear in Canvas

 Once completed, one person submits a PDF of the MS Doc to
Canvas

 Instructor will score all group members based on the uploaded
PDF file

 To get star ted:

▪ Log into your *** UW Google Account ***

▪ Link to shared Google Drive

▪ Follow link:

https://canvas.uw.edu/courses/1621385/files/100858747

October 7, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

CLASS ACTIVITY 2

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.24

DISTRIBUTED SYSTEM GOALS

TO CONSIDER

19 20

21 22

23 24

https://canvas.uw.edu/courses/1621385/files/100858747

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.5

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.25

OBJECTIVES – 1/19

CH 2.2: MIDDLEWARE

ORGANIZATION

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L6.26

Relies on two important design patterns:

▪Wrappers

▪ Interceptors

Both help achieve the goal of openness

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.27

MIDDLEWARE ORGANIZATION

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.28

OBJECTIVES – 1/19

 Wrappers (also called adapters)

▪ WHY?: Interfaces available from legacy software may not be
sufficient for all new applications to use

▪ WHAT: Special “frontend” components that provide interfaces for
clients

▪ Interface wrappers transform client requests to “implementation”
(i.e. legacy software) at the component-level

▪ Can then provide modern service interfaces for legacy code/systems

▪ Components encapsulate (i.e. abstract) dependencies to meet all
preconditions to operate and host legacy code

▪ Interfaces parameterize legacy functions, abstract environment
configuration (i.e. make into black box)

 Contributes towards system OPENNESS

 Example: Amazon S3: S3 HTTP REST inter face

 GET/PUT/DELETE/POST: requests handed off for fulfillment

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.29

MIDDLEWARE: WRAPPERS

 Inter-application communication

▪ Applications may provide unique interface for

every client application

 Scalability suffers

▪ N applications → O(N2) wrappers

 ALTERNATE: Use a Broker

▪ Provide a common intermediary

▪ Broker knows how to communicate with

every application

▪ Applications only know how to communicate

with the broker

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.30

MIDDLEWARE: WRAPPERS - 2

clients

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.6

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.31

OBJECTIVES – 1/19

 Interceptor

Software construct, breaks flow of control, allows

other application code to be executed

 Interceptors send calls to other servers, or to ALL

servers that replicate an object while abstracting

the distribution and/or replication

▪ Used to enable remote procedure calls (RPC), remote

method invocation (RMI)

Object A calls method belonging to object B

▪ Interceptors route calls to object B regardless of location

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.32

MIDDLEWARE: INTERCEPTORS

Request-level
interceptor
transforms:
B.doit(val)

into generic call:
invoke(B,&doit,val)

Message-level
interceptor in
middleware
sends message
through OS
(TCP/IP socket)
to transfer data:
send(B,”doit”,val)

Non-intercepted:

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.33

MIDDLEWARE: INTERCEPTORS - 2

If object is local

 MIDDLEWARE: Provides local inter face matching Object B to
Object A

 Object A calls Object B’s method provided by local inter face

 A’s call is transformed into a “generic object invocation” by
request-level interceptor

 “Generic object invocation” is transformed into a message by
message-level interceptor and sent over Object A’s network to
Object B

 Interception automatically routes calls to all object replicas

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.34

MIDDLEWARE INTERCEPTION - METHOD

 GOAL: It should be possible to modify middleware without loss

of availability

▪ Software components can be replaced at runtime

 Component-based design

▪ Modifiability through composition

▪ Systems may have static or dynamic configuration of components

▪ Dynamic configuration requires late binding

▪ Components can be changed at runtime

 Component based software supports modifiability at runtime

by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support

modifiability at runtime ?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.35

MODIFIABLE MIDDLEWARE

WE WILL RETURN AT

2:36PM

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.7

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.37

OBJECTIVES – 1/19

CH 2.3: SYSTEM

ARCHITECTURES

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L6.38

 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring

system design problems

 Expressed as a logical organization of components

and connectors

 Deciding on the system components, their

interactions, and placement is a “realization” of an

architectural style

 System architectures represent designs used in

practice

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.39

SYSTEM ARCHITECTURES

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.40

OBJECTIVES – 1/19

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.41

TYPES OF SYSTEM ARCHITECTURES

 Clients request services

 Servers provide services

 Request-reply behavior

 Connectionless protocols (UDP)

 Assume stable network communication with no failures

 Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received

 But what is the server doing?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.42

CENTRALIZED:

SIMPLE CLIENT-SERVER ARCHITECTURE

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.8

 Connectionless cont’d

 Is resending the client request a good idea?

 Examples:

Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide -area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.43

CLIENT-SERVER PROTOCOLS

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections

▪ Example: database connections often retained

 Ongoing debate:

 How do you dif ferentiate between a client and server?

 Roles are blurred

 Blurred Roles Example: Distributed databases

 DB nodes both service client requests, *and* submit new

requests to other DB nodes for replication, synchronization, etc.

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.44

CLIENT-SERVER PROTOCOLS - 2

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.45

TCP/UDP

Connectionless (UDP)

stateless

Connection-oriented (TCP)

stateful

Advantages

Disadvantages

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.46

CONNECTIONLESS VS

CONNECTION ORIENTED

Connectionless (UDP)

stateless

Connection-oriented (TCP)

stateful

Advantages • Fast to communicate (no

connection overhead)

• Broadcast to an audience

• Network bandwidth savings

• Message delivery confirmation

• Idempotence not required

• Messages automatically resent

- if client (or network) is

temporarily unavailable

• Message sequences

guaranteed

Disadvantages • Cannot tell difference of

request vs. response failure

• Requires idempotence

• Clients must be online and

ready to receive messages

• Connection setup is time-

consuming

• More bandwidth is required

(protocol, retries, multinode-

communication)

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.47

CONNECTIONLESS VS

CONNECTION ORIENTED

 Where should functionality be distributed?

▪ At the client?

▪ At the server?

 Why should we consider component composition?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.48

MULTITIERED ARCHITECTURES

43 44

45 46

47 48

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.9

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways
n components can be
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14

7

n . . .

SC15
SC14

SC13
SC12

SC11
SC10
SC9

SC8
SC7

SC6
SC5
SC4

SC3
SC2

SC1

CPU time disk reads disk writes network reads network writes

∆ Resource Utilization Change
Min to Max Utilization

m-bound d-bound

CPU time: 6.5% 5.5%

Disk sector reads: 14.8% 819.6%

Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%

Network bytes sent: 143.7% 143.9%

Resource utilization profile changes

from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean

• Shows relative magnitude of performance variance

Two application variants tested

• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

51

PERFORMANCE IMPLICATIONS OF

COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆ Performance Change:
Min to max performance

M-bound: 14%

D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D),

f ileserver (F), and logging server (L)

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.52

MULTITIERED ARCHITECTURES - 2

M

D F L

client
Server as a client

 Vertical d istribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers

▪ M – The application server

▪ D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.53

MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

▪ Sharding: portions of a database map” to a specific server

▪ Distributed hash table

▪ Or replica servers

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.54

MULTITIERED RESOURCE SCALING - 2

49 50

51 52

53 54

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.10

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.55

OBJECTIVES – 1/19

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.56

TYPES OF SYSTEM ARCHITECTURES

 Client/server:

▪ Nodes have specific roles

 Peer-to-peer:

▪ Nodes are seen as all equal…

 How should nodes be organized for communication?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.57

DECENTRALIZED PEER-TO-PEER

ARCHITECTURES

 Nodes organized using specific topology

(e.g. ring, binary -tree, grid, etc.)

▪ Organization assists in data lookups

 Data indexed using “semantic -free” indexing

▪ Key / value storage systems

▪ Key used to look-up data

 Nodes store data associated with a subset of keys

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.58

STRUCTURED PEER-TO-PEER

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.59

DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number

of varying bits between neighboring nodes and destination

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.60

FIXED HYPERCUBE EXAMPLE

55 56

57 58

59 60

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.11

 Example: fixed hypercube

node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.61

FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does it matter which node is selected for the f irst hop?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.62

WHICH CONNECTOR LEADS TO THE

SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent– bad path)

0101 (3 bits dif ferent– bad path)

 Fixed hypercube requires static topology

▪ Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

▪ Dynamic topology

▪ Nodes organized in ring

▪ Every node has unique ID

▪ Each node connected with other nodes (shortcuts)

▪ Shortest path between any pair of nodes is ~ order O(log N)

▪ N is the total number of nodes

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.63

DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains f inger table of successor nodes

 Client sends key/value

lookup to any node

 Node forwards cl ient

request to node with

m-bit ID closest to, but

not greater than key k

 Nodes must continual ly

refresh finger tables by

communicating with

adjacent nodes to

incorporate node

joins/depar tures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.64

CHORD SYSTEM

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed

▪ Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible

▪ How would you calculate the route algorithmically?

 Routes must be discovered

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.65

UNSTRUCTURED PEER-TO-PEER

 Flooding

 [Node u] sends request for data item to all neighbors

 [Node v]

▪ Searches locally, responds to u (or forwarder) if having data

▪ Forwards request to ALL neighbors

▪ Ignores repeated requests

 Features

▪ High network traffic

▪ Fast search results by saturating the network with requests

▪ Variable # of hops

▪ Max number of hops or time-to-live (TTL) often specified

▪ Requests can “retry” by gradually increasing TTL/max hops until

data is found

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.66

SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

61 62

63 64

65 66

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.12

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]

 If [node v] does not have data, forwards request to a
random neighbor

 Features

▪ Low network traffic

▪ Akin to sequential search

▪ Longer search time

▪ [node u] can start “n” random walks simultaneously to
reduce search time

▪ As few as n=16..64 random walks sufficient to reduce search
time (LV et al. 2002)

▪ Timeout required - need to coordinate stopping network-wide
walk when data is found…

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.67

SEARCHING FOR DATA - 2

 Policy-based search methods

 Incorporate history and knowledge about the adhoc

network at the node-level to enhance effectiveness of

queries

 Nodes maintain lists of preferred neighbors which often

succeed at resolving queries

 Favor neighbors having highest number of neighbors

▪ Can help minimize hops

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.68

SEARCHING FOR DATA - 3

 Problem:

Adhoc system search performance does not scale well as

system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs) (video streaming)

▪ Store (cache) data at nodes local to the requester (client)

▪ Broker node – tracks resource usage and node availability

▪ Track where data is needed

▪ Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

▪ Super peer –Broker node, routes client requests to storage

nodes

▪ Weak peer – Store data

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.69

HIERARCHICAL

PEER-TO-PEER NETWORKS

 Super peers

▪ Head node of local centralized network

▪ Interconnected via overlay network with other super peers

▪ May have replicas for fault tolerance

 Weak peers

▪ Rely on super peers to find data

 Leader-election problem:

▪ Who can become a
super peer?

▪ What requirements
must be met to become
a super peer?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.70

HIERARCHICAL

PEER-TO-PEER NETWORKS - 2

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.71

OBJECTIVES – 1/19

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.72

TYPES OF SYSTEM ARCHITECTURES

67 68

69 70

71 72

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.13

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:

 Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

 Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

 Example:

 AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws -lambda-at-edge

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.73

HYBRID

ARCHITECTURES

 Fog computing:

 Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

 End-user devices become part of the overall system

 Middleware extended to incorporate managing edge
devices as participants in the distributed system

 Cloud → in the sky

▪ compute/resource capacity is huge, but far away…

 Fog → (devices) on the ground

▪ compute/resource capacity is constrained and local…

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.74

HYBRID

ARCHITECTURES - 2

 BitTorrent Example:

File sharing system – users must contribute as a file host to

be eligible to download file resources

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well

known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then

participates to reserve downloaded content or network

bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.75

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE QUESTIONS

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L6.76

73 74

75 76

https://www.infoq.com/news/2017/07/aws-lambda-at-edge

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/19
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/17
	Slide 7: Stateless vs statefuL
	Slide 8: Stateless vs. stateful - 2
	Slide 9: Stateless vs stateful - 3
	Slide 10: Stateless vs stateful - 4
	Slide 11: Feedback - 2
	Slide 12: Feedback - 3
	Slide 13: Feedback - 4
	Slide 14: Graph ql
	Slide 15: Feedback - 5
	Slide 16: Example: self describing rest architecture
	Slide 17: Soap & firewalls
	Slide 18: bonus
	Slide 19: OBJECTIVES – 1/19
	Slide 20: Assignment 0
	Slide 21: OBJECTIVES – 1/19
	Slide 22: In-class activity: architectural styles
	Slide 23: Class activity 2
	Slide 24: Distributed system goals to consider
	Slide 25: OBJECTIVES – 1/19
	Slide 26: Ch 2.2: Middleware organization
	Slide 27: Middleware organization
	Slide 28: OBJECTIVES – 1/19
	Slide 29: Middleware: Wrappers
	Slide 30: Middleware: wrappers - 2
	Slide 31: OBJECTIVES – 1/19
	Slide 32: Middleware: interceptors
	Slide 33: Middleware: interceptors - 2
	Slide 34: Middleware interception - method
	Slide 35: Modifiable middleware
	Slide 36: We will return at 2:36pm
	Slide 37: OBJECTIVES – 1/19
	Slide 38: Ch 2.3: System architectures
	Slide 39: System architectures
	Slide 40: OBJECTIVES – 1/19
	Slide 41: Types of System architectures
	Slide 42: Centralized: simple client-server architecture
	Slide 43: Client-server protocols
	Slide 44: Client-server protocols - 2
	Slide 45: Tcp/udp
	Slide 46: Connectionless vs connection oriented
	Slide 47: Connectionless vs connection oriented
	Slide 48: Multitiered architectures
	Slide 49
	Slide 50
	Slide 51: Performance implications of component deployments
	Slide 52: Multitiered architectures - 2
	Slide 53: Multitiered resource scaling
	Slide 54: Multitiered resource scaling - 2
	Slide 55: OBJECTIVES – 1/19
	Slide 56: Types of System architectures
	Slide 57: Decentralized Peer-to-peer architectures
	Slide 58: Structured peer-to-peer
	Slide 59: Distributed hash table (DHT)
	Slide 60: Fixed hypercube example
	Slide 61: Fixed Hypercube example - 2
	Slide 62: Which connector leads to the shortest path?
	Slide 63: Dynamic topology
	Slide 64: Chord system
	Slide 65: unstructured peer-to-peer
	Slide 66: Searching for data: unstructured peer-to-peer systems
	Slide 67: Searching for data - 2
	Slide 68: Searching for data - 3
	Slide 69: Hierarchical peer-to-peer networks
	Slide 70: Hierarchical peer-to-peer networks - 2
	Slide 71: OBJECTIVES – 1/19
	Slide 72: Types of System architectures
	Slide 73: Hybrid architectures
	Slide 74: Hybrid architectures - 2
	Slide 75: Collaborative distributed system example
	Slide 76: Questions

