
TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.1

Middleware Organization
and System Architectures

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.2

OBJECTIVES – 1/19

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.3

ONLINE DAILY FEEDBACK SURVEY

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L6.4

 Please classify your perspective on material covered in today’s

class (29 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.16 ( - previous 6.00)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.45 ( - previous 5.15)

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.5

MATERIAL / PACE

I'm vague about the concept of "stateless"

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.6

FEEDBACK FROM 1/17

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.2

Stateless Server

 Save current state of

process

 Anticipates future

communication w/ client

 Design is more complex –

data must be stored

 Server tracks user session

data and information

 Server and client depend on

each other

Stateful Server

 State of process not saved

 Server only responds to

client’s immediate request

 Design is simplified –

no data is stored

 Server does not track and

store user session data

 Server and client do not

dependent on each other

STATELESS VS STATEFUL

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma L6.7

Stateless Server

 Implementation of the
server design is more
dif ficult

 Data can’t be recovered
when a crash occurs

 Requests depend on the
server side

 Scaling is more challenging
and complex

 Examples: Telnet and FTP
(both application)

Stateful Server

 Implementation of the
server design is easier

 If server crashes, there’s no
state data to recover

 Requests are independent
of the server side and self -
contained

 Scaling is less dif ficult

 Examples: HTTP, DNS
(application), UDP
(transport)

STATELESS VS. STATEFUL - 2

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma L6.8

 Can you use diagrams to explain the dif ference between

stateless and stateful?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.9

STATELESS VS STATEFUL - 3

eCommerce
website
example

 Stateful webservices often have requirement

to store user session information local to the server

processing the request

 Gateway/load

balancer needs

to be aware of

this

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.10

STATELESS VS STATEFUL - 4

 There is a sentence on page 65 of the book:

The s implicity of RESTful architectures can easily prohibit

easy solutions to intricate communication schemes.

What does it mean?

 An intricate communicate scheme is a more complex one

 RESTful architectures are restricted to the simple HTTP

inter face

 This prohibits design a more detailed inter face that may

better suit an intricate (more complex) communication

scheme

October 7, 2016
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.11

FEEDBACK - 2

 There is a sentence on page 65 of the book:

The s implicity of RESTful architectures can easily prohibit

easy solutions to intricate communication schemes.

What does it mean?

 Alternatively, SOAP allows a custom API to be defined

 Not sure GET, POST, PUT, DELETE

 With RESTful services we create more services with specific

names and functions vs. define uniquely named actions within

a service

 RESTful services therefore don’t map directly to OO schemes

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.12

FEEDBACK - 3

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.3

 How are service-oriented systems dif ferent f rom REST?

 Service oriented applications do not mandate RESTful services

 Services could be SOAP-based or other protocols

 GraphQL – is a data query and manipulation service protocol

alternative to REST developed by Facebook

 GraphQL is specifically for querying specific fields of objects

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.13

FEEDBACK - 4

query result

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.14

GRAPH QL

query result

query result

Variable
in query

client passes
a variable

 What is meant by "Messages to/from a service are ful ly
described" (s lide L5.23 about REST services)? How are they
described?

 “Fully described” implies that REST supports
Self-Describing Messages
Services interact by exchanging request and response
messages, which contain both the data (or the representations
of resources) and the corresponding meta -data.
Representations can vary according to the client context,
interests, and abilities.

 Self-describing means there is no need for a definition file
(WSDL) or any other messages to support the web service
transaction

 Everything is complete and contained in the single client-to-
server request (everything is self contained)

 Nothing else is required

 The structureless next of JSON objects help enable this

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.15

FEEDBACK - 5

 Mobile client can retrieve a low -bandwidth representation of a

resource (ASCII text)

 Web browser can request a representation of a Web page in a

particular language based on user preferences (HTML5)

 Flexibility of the response output format (text vs html) greatly

enhances interoperability of REST architectures

 Client can dynamically negotiate the most appropriate data

response format (also called media type) with the service

 All clients are not forced to use the same format

 Request and response messages contain explicit meta -data

describing the data representation so services do not need to

assume or try to interpret the data format

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.16

EXAMPLE:

SELF DESCRIBING REST ARCHITECTURE

 What is i t about other protocols, l ike SOAP, that are unsafe,
such that they may be blocked by f irewalls, whereas REST
of ten is not?

 Because many organizations host webservers which
communicate using TCP port 80, port 80 is open allowing
traffic to flow

▪ Common practice then is to map your protocol over port 80

 Connection-oriented (TCP) application protocols often
communicate on distinct ports, for example:
SSH 22, SMTP 25, TCP 25, VNC 5900, TELNET 23

▪ SOAP in fact is most often implemented on top of HTTP

▪ I had wrongly assumed SOAP defined its own communication
protocol

▪ SOAP just defines a messaging scheme (i.e. with XML, WSDL, etc.)
that is carried over HTTP

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.17

SOAP & FIREWALLS

 What is the TCP port for HTTPS ?

 A TCP port number is specified in a URI/URL by using a

colon and a number after the resource name

 Example:

 Server hosting climate API exposes service on port 8083:

 http://csip.engr.colostate.edu:8083/csip -erosion/d/rusle2/climate/

 (Assignment 0)

Default web service port in Apache Tomcat is 8080

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.18

BONUS

13 14

15 16

17 18

http://csip.engr.colostate.edu:8083/csip-erosion/d/rusle2/climate/

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.4

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.19

OBJECTIVES – 1/19

 Preparing for Assignment 0:

▪ Establish AWS Account

▪ Standard account

▪ Complete AWS Cloud Credits Survey and provide AWS account ID

▪ Credits will be automatically loaded by Amazon into accounts

 Tasks:

▪ Task 1 - Establish local Linux/Ubuntu environment

▪ Task 2 –AWS account setup, obtain user credentials

▪ Task 3 – Intro to: Amazon EC2 & Docker: create Dockerfile for
Apache Tomcat

▪ Task 4 – Create Dockerfile for haproxy

▪ Task 5 – Working with Docker-Machine

▪ Task 6 - Config 3 multiple server configs to load balance
requests for RESTful Fibonacci web service

▪ Task 7 – Test configs and submit results

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.20

ASSIGNMENT 0

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.21

OBJECTIVES – 1/19

IN-CLASS ACTIVITY:

ARCHITECTURAL

STYLES

L6.22

 We will form groups of ~2-3

▪ On Zoom breakout rooms will be created

 Each group will complete a MS Doc worksheet

 Add names to MS Doc as they appear in Canvas

 Once completed, one person submits a PDF of the MS Doc to
Canvas

 Instructor will score all group members based on the uploaded
PDF file

 To get star ted:

▪ Log into your *** UW Google Account ***

▪ Link to shared Google Drive

▪ Follow link:

https://canvas.uw.edu/courses/1621385/files/100858747

October 7, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

CLASS ACTIVITY 2

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.24

DISTRIBUTED SYSTEM GOALS

TO CONSIDER

19 20

21 22

23 24

https://canvas.uw.edu/courses/1621385/files/100858747

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.5

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.25

OBJECTIVES – 1/19

CH 2.2: MIDDLEWARE

ORGANIZATION

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L6.26

Relies on two important design patterns:

▪Wrappers

▪ Interceptors

Both help achieve the goal of openness

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.27

MIDDLEWARE ORGANIZATION

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.28

OBJECTIVES – 1/19

 Wrappers (also called adapters)

▪ WHY?: Interfaces available from legacy software may not be
sufficient for all new applications to use

▪ WHAT: Special “frontend” components that provide interfaces for
clients

▪ Interface wrappers transform client requests to “implementation”
(i.e. legacy software) at the component-level

▪ Can then provide modern service interfaces for legacy code/systems

▪ Components encapsulate (i.e. abstract) dependencies to meet all
preconditions to operate and host legacy code

▪ Interfaces parameterize legacy functions, abstract environment
configuration (i.e. make into black box)

 Contributes towards system OPENNESS

 Example: Amazon S3: S3 HTTP REST inter face

 GET/PUT/DELETE/POST: requests handed off for fulfillment

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.29

MIDDLEWARE: WRAPPERS

 Inter-application communication

▪ Applications may provide unique interface for

every client application

 Scalability suffers

▪ N applications → O(N2) wrappers

 ALTERNATE: Use a Broker

▪ Provide a common intermediary

▪ Broker knows how to communicate with

every application

▪ Applications only know how to communicate

with the broker

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.30

MIDDLEWARE: WRAPPERS - 2

clients

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.6

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.31

OBJECTIVES – 1/19

 Interceptor

Software construct, breaks flow of control, allows

other application code to be executed

 Interceptors send calls to other servers, or to ALL

servers that replicate an object while abstracting

the distribution and/or replication

▪ Used to enable remote procedure calls (RPC), remote

method invocation (RMI)

Object A calls method belonging to object B

▪ Interceptors route calls to object B regardless of location

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.32

MIDDLEWARE: INTERCEPTORS

Request-level
interceptor
transforms:
B.doit(val)

into generic call:
invoke(B,&doit,val)

Message-level
interceptor in
middleware
sends message
through OS
(TCP/IP socket)
to transfer data:
send(B,”doit”,val)

Non-intercepted:

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.33

MIDDLEWARE: INTERCEPTORS - 2

If object is local

 MIDDLEWARE: Provides local inter face matching Object B to
Object A

 Object A calls Object B’s method provided by local inter face

 A’s call is transformed into a “generic object invocation” by
request-level interceptor

 “Generic object invocation” is transformed into a message by
message-level interceptor and sent over Object A’s network to
Object B

 Interception automatically routes calls to all object replicas

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.34

MIDDLEWARE INTERCEPTION - METHOD

 GOAL: It should be possible to modify middleware without loss

of availability

▪ Software components can be replaced at runtime

 Component-based design

▪ Modifiability through composition

▪ Systems may have static or dynamic configuration of components

▪ Dynamic configuration requires late binding

▪ Components can be changed at runtime

 Component based software supports modifiability at runtime

by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support

modifiability at runtime ?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.35

MODIFIABLE MIDDLEWARE

WE WILL RETURN AT

2:36PM

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.7

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.37

OBJECTIVES – 1/19

CH 2.3: SYSTEM

ARCHITECTURES

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L6.38

 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring

system design problems

 Expressed as a logical organization of components

and connectors

 Deciding on the system components, their

interactions, and placement is a “realization” of an

architectural style

 System architectures represent designs used in

practice

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.39

SYSTEM ARCHITECTURES

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.40

OBJECTIVES – 1/19

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.41

TYPES OF SYSTEM ARCHITECTURES

 Clients request services

 Servers provide services

 Request-reply behavior

 Connectionless protocols (UDP)

 Assume stable network communication with no failures

 Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received

 But what is the server doing?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.42

CENTRALIZED:

SIMPLE CLIENT-SERVER ARCHITECTURE

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.8

 Connectionless cont’d

 Is resending the client request a good idea?

 Examples:

Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide -area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.43

CLIENT-SERVER PROTOCOLS

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections

▪ Example: database connections often retained

 Ongoing debate:

 How do you dif ferentiate between a client and server?

 Roles are blurred

 Blurred Roles Example: Distributed databases

 DB nodes both service client requests, *and* submit new

requests to other DB nodes for replication, synchronization, etc.

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.44

CLIENT-SERVER PROTOCOLS - 2

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.45

TCP/UDP

Connectionless (UDP)

stateless

Connection-oriented (TCP)

stateful

Advantages

Disadvantages

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.46

CONNECTIONLESS VS

CONNECTION ORIENTED

Connectionless (UDP)

stateless

Connection-oriented (TCP)

stateful

Advantages • Fast to communicate (no

connection overhead)

• Broadcast to an audience

• Network bandwidth savings

• Message delivery confirmation

• Idempotence not required

• Messages automatically resent

- if client (or network) is

temporarily unavailable

• Message sequences

guaranteed

Disadvantages • Cannot tell difference of

request vs. response failure

• Requires idempotence

• Clients must be online and

ready to receive messages

• Connection setup is time-

consuming

• More bandwidth is required

(protocol, retries, multinode-

communication)

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.47

CONNECTIONLESS VS

CONNECTION ORIENTED

 Where should functionality be distributed?

▪ At the client?

▪ At the server?

 Why should we consider component composition?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.48

MULTITIERED ARCHITECTURES

43 44

45 46

47 48

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.9

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways
n components can be
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14

7

n . . .

SC15
SC14

SC13
SC12

SC11
SC10
SC9

SC8
SC7

SC6
SC5
SC4

SC3
SC2

SC1

CPU time disk reads disk writes network reads network writes

∆ Resource Utilization Change
Min to Max Utilization

m-bound d-bound

CPU time: 6.5% 5.5%

Disk sector reads: 14.8% 819.6%

Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%

Network bytes sent: 143.7% 143.9%

Resource utilization profile changes

from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean

• Shows relative magnitude of performance variance

Two application variants tested

• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

51

PERFORMANCE IMPLICATIONS OF

COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆ Performance Change:
Min to max performance

M-bound: 14%

D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D),

f ileserver (F), and logging server (L)

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.52

MULTITIERED ARCHITECTURES - 2

M

D F L

client
Server as a client

 Vertical d istribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers

▪ M – The application server

▪ D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.53

MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

▪ Sharding: portions of a database map” to a specific server

▪ Distributed hash table

▪ Or replica servers

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.54

MULTITIERED RESOURCE SCALING - 2

49 50

51 52

53 54

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.10

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.55

OBJECTIVES – 1/19

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.56

TYPES OF SYSTEM ARCHITECTURES

 Client/server:

▪ Nodes have specific roles

 Peer-to-peer:

▪ Nodes are seen as all equal…

 How should nodes be organized for communication?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.57

DECENTRALIZED PEER-TO-PEER

ARCHITECTURES

 Nodes organized using specific topology

(e.g. ring, binary -tree, grid, etc.)

▪ Organization assists in data lookups

 Data indexed using “semantic -free” indexing

▪ Key / value storage systems

▪ Key used to look-up data

 Nodes store data associated with a subset of keys

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.58

STRUCTURED PEER-TO-PEER

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.59

DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number

of varying bits between neighboring nodes and destination

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.60

FIXED HYPERCUBE EXAMPLE

55 56

57 58

59 60

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.11

 Example: fixed hypercube

node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.61

FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does it matter which node is selected for the f irst hop?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.62

WHICH CONNECTOR LEADS TO THE

SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent– bad path)

0101 (3 bits dif ferent– bad path)

 Fixed hypercube requires static topology

▪ Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

▪ Dynamic topology

▪ Nodes organized in ring

▪ Every node has unique ID

▪ Each node connected with other nodes (shortcuts)

▪ Shortest path between any pair of nodes is ~ order O(log N)

▪ N is the total number of nodes

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.63

DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains f inger table of successor nodes

 Client sends key/value

lookup to any node

 Node forwards cl ient

request to node with

m-bit ID closest to, but

not greater than key k

 Nodes must continual ly

refresh finger tables by

communicating with

adjacent nodes to

incorporate node

joins/depar tures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.64

CHORD SYSTEM

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed

▪ Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible

▪ How would you calculate the route algorithmically?

 Routes must be discovered

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.65

UNSTRUCTURED PEER-TO-PEER

 Flooding

 [Node u] sends request for data item to all neighbors

 [Node v]

▪ Searches locally, responds to u (or forwarder) if having data

▪ Forwards request to ALL neighbors

▪ Ignores repeated requests

 Features

▪ High network traffic

▪ Fast search results by saturating the network with requests

▪ Variable # of hops

▪ Max number of hops or time-to-live (TTL) often specified

▪ Requests can “retry” by gradually increasing TTL/max hops until

data is found

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.66

SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

61 62

63 64

65 66

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.12

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]

 If [node v] does not have data, forwards request to a
random neighbor

 Features

▪ Low network traffic

▪ Akin to sequential search

▪ Longer search time

▪ [node u] can start “n” random walks simultaneously to
reduce search time

▪ As few as n=16..64 random walks sufficient to reduce search
time (LV et al. 2002)

▪ Timeout required - need to coordinate stopping network-wide
walk when data is found…

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.67

SEARCHING FOR DATA - 2

 Policy-based search methods

 Incorporate history and knowledge about the adhoc

network at the node-level to enhance effectiveness of

queries

 Nodes maintain lists of preferred neighbors which often

succeed at resolving queries

 Favor neighbors having highest number of neighbors

▪ Can help minimize hops

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.68

SEARCHING FOR DATA - 3

 Problem:

Adhoc system search performance does not scale well as

system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs) (video streaming)

▪ Store (cache) data at nodes local to the requester (client)

▪ Broker node – tracks resource usage and node availability

▪ Track where data is needed

▪ Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

▪ Super peer –Broker node, routes client requests to storage

nodes

▪ Weak peer – Store data

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.69

HIERARCHICAL

PEER-TO-PEER NETWORKS

 Super peers

▪ Head node of local centralized network

▪ Interconnected via overlay network with other super peers

▪ May have replicas for fault tolerance

 Weak peers

▪ Rely on super peers to find data

 Leader-election problem:

▪ Who can become a
super peer?

▪ What requirements
must be met to become
a super peer?

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.70

HIERARCHICAL

PEER-TO-PEER NETWORKS - 2

 Questions from 1/17

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

▪ Wrappers

▪ Interceptors

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.71

OBJECTIVES – 1/19

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.72

TYPES OF SYSTEM ARCHITECTURES

67 68

69 70

71 72

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 19, 2023

Slides by Wes J. Lloyd L6.13

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:

 Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

 Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

 Example:

 AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws -lambda-at-edge

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.73

HYBRID

ARCHITECTURES

 Fog computing:

 Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

 End-user devices become part of the overall system

 Middleware extended to incorporate managing edge
devices as participants in the distributed system

 Cloud → in the sky

▪ compute/resource capacity is huge, but far away…

 Fog → (devices) on the ground

▪ compute/resource capacity is constrained and local…

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.74

HYBRID

ARCHITECTURES - 2

 BitTorrent Example:

File sharing system – users must contribute as a file host to

be eligible to download file resources

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well

known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then

participates to reserve downloaded content or network

bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.75

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE QUESTIONS

January 19, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L6.76

73 74

75 76

https://www.infoq.com/news/2017/07/aws-lambda-at-edge

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/19
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/17
	Slide 7: Stateless vs statefuL
	Slide 8: Stateless vs. stateful - 2
	Slide 9: Stateless vs stateful - 3
	Slide 10: Stateless vs stateful - 4
	Slide 11: Feedback - 2
	Slide 12: Feedback - 3
	Slide 13: Feedback - 4
	Slide 14: Graph ql
	Slide 15: Feedback - 5
	Slide 16: Example: self describing rest architecture
	Slide 17: Soap & firewalls
	Slide 18: bonus
	Slide 19: OBJECTIVES – 1/19
	Slide 20: Assignment 0
	Slide 21: OBJECTIVES – 1/19
	Slide 22: In-class activity: architectural styles
	Slide 23: Class activity 2
	Slide 24: Distributed system goals to consider
	Slide 25: OBJECTIVES – 1/19
	Slide 26: Ch 2.2: Middleware organization
	Slide 27: Middleware organization
	Slide 28: OBJECTIVES – 1/19
	Slide 29: Middleware: Wrappers
	Slide 30: Middleware: wrappers - 2
	Slide 31: OBJECTIVES – 1/19
	Slide 32: Middleware: interceptors
	Slide 33: Middleware: interceptors - 2
	Slide 34: Middleware interception - method
	Slide 35: Modifiable middleware
	Slide 36: We will return at 2:36pm
	Slide 37: OBJECTIVES – 1/19
	Slide 38: Ch 2.3: System architectures
	Slide 39: System architectures
	Slide 40: OBJECTIVES – 1/19
	Slide 41: Types of System architectures
	Slide 42: Centralized: simple client-server architecture
	Slide 43: Client-server protocols
	Slide 44: Client-server protocols - 2
	Slide 45: Tcp/udp
	Slide 46: Connectionless vs connection oriented
	Slide 47: Connectionless vs connection oriented
	Slide 48: Multitiered architectures
	Slide 49
	Slide 50
	Slide 51: Performance implications of component deployments
	Slide 52: Multitiered architectures - 2
	Slide 53: Multitiered resource scaling
	Slide 54: Multitiered resource scaling - 2
	Slide 55: OBJECTIVES – 1/19
	Slide 56: Types of System architectures
	Slide 57: Decentralized Peer-to-peer architectures
	Slide 58: Structured peer-to-peer
	Slide 59: Distributed hash table (DHT)
	Slide 60: Fixed hypercube example
	Slide 61: Fixed Hypercube example - 2
	Slide 62: Which connector leads to the shortest path?
	Slide 63: Dynamic topology
	Slide 64: Chord system
	Slide 65: unstructured peer-to-peer
	Slide 66: Searching for data: unstructured peer-to-peer systems
	Slide 67: Searching for data - 2
	Slide 68: Searching for data - 3
	Slide 69: Hierarchical peer-to-peer networks
	Slide 70: Hierarchical peer-to-peer networks - 2
	Slide 71: OBJECTIVES – 1/19
	Slide 72: Types of System architectures
	Slide 73: Hybrid architectures
	Slide 74: Hybrid architectures - 2
	Slide 75: Collaborative distributed system example
	Slide 76: Questions

