
TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.1

Distributed Systems
Architectures and
Middleware Organization

Wes J. Lloyd

School of Engineering
& Technology (SET)
University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.2

OBJECTIVES – 1/17

1

2

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by Wed @ 10p

 Thursday surveys: due Mon @ 10p

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.3

ONLINE DAILY FEEDBACK SURVEY

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L5.4

3

4

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.3

 Please classify your perspective on material covered in today’s

class (34 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.00 (- previous 5.94)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.15 (- previous 5.30)

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.5

MATERIAL / PACE

PACE: Pretty good,

considering about
~67 slides were covered !

 I would like more of an outline before going into the material.

For example, when you posed the question to the class about

which of the f ive distributed technologies a system was an

example of, I didn't even realize that you were distinguishing

these f ive things in the slides before.

▪ Coverage on the types of distributed systems (ch. 1.3) started in

lecture 3, and spanned over to lecture 4

▪ Each lecture continues from the previous one

▪ Can refer to the previous lecture slides for context before class

▪ I will often rephrase and repeat some content from the prior class

▪ I did spend time re-discussing distributed information systems at the

start of lecture 4…

▪ I should have quickly re-capped by reshowing the outline

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.6

FEEDBACK FROM 1/12

5

6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.4

 From Chapter 1.3

 HPC, Cluster, Grid, Cloud

 Distributed information systems

▪ Transactions

▪ Application integration: Shared files, DBs, RPC, RMI, Message-

oriented middleware

 Pervasive Systems

▪ Ubiquitous computing systems

▪ Mobile systems

▪ Sensor networks

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.7

TYPES OF DISTRIBUTED SYSTEMS

 Proxies provide an object interface which transfers method
invocation over the network to the remote host." (Slide 64)
Could you please elaborate a little more on that?

▪ With distributed objects, the separation between object interfaces
and the objects implementing the interface allows the object to exist
locally or remotely

▪ When a client binds to a distributed object, an implementation of the
object’s interface called a proxy is loaded into the client’s address
space

▪ Only a local interface (address) can be loaded into client’s memory

▪ Remote implementations can’t be directly loaded because memory is out
of scope - on another computer

▪ The object proxy features the identical object interface, but instead
marshals method invocations into messages sent over the network

▪ The proxy unmarshals reply messages received from the remote
object on the local computer

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.8

FEEDBACK - 2

7

8

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.5

 Object proxy – resides on the client machine

 Object implementation – resides on remote server

 Both feature the same object interface

 Method invocation is first passed to a stub interface in

the object proxy

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.9

OBJECT PROXY

January 12, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

DISTRIBUTED OBJECTS

9

10

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.6

 Why are object-based distributed systems language

dependent?

 Some early systems used legacy distributed object

technologies that were language specific

 Java RMI

 .NET remoting (technically multiple languages, but MS ones)

 CORBA – Common Object Request Broker Architecture

▪ General standard for distributed objects that supported multiple

languages and operating systems

▪ Suffers from criticism from poor implementations of the standard

▪ Performance issue: calls to objects in local address space are

treated same as remote objects which increases complexity for

invoking local methods

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.11

FEEDBACK - 3

 The smart home sensor network is a ubiquitous system, but

the earthquake sensor system is a sensor network. Why?

 The smart home system aggregates a heterogeneous array of

devices (some with sensors) to provide smart home

functionality

 The seismic (earthquake) monitoring system captures seismic

data from remote sensors which is aggregated to enable real -

time monitoring and modeling of earth quake (and tsunami)

risk

 Purple air is a sensor network of low-cost air quality sensors

that collects data from ‘citizen’ scientists regarding

particulate matter pollution to augment that available from

the Environmental Protection Agency

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.12

FEEDBACK - 4

11

12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.7

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.13

 For pervasive, I am not clear about the dif ferences between

Ubiquitous computing systems and Sensor networks.

 Pervasive Computing Systems consists of systems that have

hardware “everywhere”

 We covered three types:

▪ Ubiquitous Systems, Mobile Systems, Sensor Networks

 A major distinguishing factor with Ubiquitous Systems is that

they consist of many heterogeneous devices

▪ processors in day-to-day objects → think Home Automation

 Sensor networks

▪ Can have heterogeneous devices, but in general many sensor nodes

are uniform / similar in nature (homogeneous)

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.14

FEEDBACK - 5

13

14

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.8

 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.15

OBJECTIVES – 1/17

 Preparing for Assignment 0:

▪ Establish AWS Account

▪ Standard account – ** request cloud credits from instructor **

▪ Specify “AWS CREDIT REQUEST” as subject of email

▪ Include email address of AWS account

▪ AWS Educate Starter account – some account limitations

▪ https://awseducate-starter-account-services.s3.amazonaws.com/

AWS_Educate_Starter_Account_Services_Supported.pdf

▪ Establish local Linux/Ubuntu environment

 Task 1 – AWS account setup

 Task 2 – Working w/ Docker, creating Dockerfile for Apache Tomcat

 Task 3 – Creating a Dockerfile for haproxy

 Task 4 – Working with Docker -Machine

 Task 5 – For Submission: Testing Alternate Server Configurations

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.16

ASSIGNMENT 0

15

16

https://awseducate-starter-account-services.s3.amazonaws.com/AWS_Educate_Starter_Account_Services_Supported.pdf

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.9

 Preparing for Assignment 0:

▪ Establish AWS Account

▪ Standard account

▪ Complete AWS Cloud Credits Survey and provide AWS account ID

▪ Credits will be automatically loaded by Amazon into accounts

 Tasks:

▪ Task 1 - Establish local Linux/Ubuntu environment

▪ Task 2 –AWS account setup, obtain user credentials

▪ Task 3 – Intro to: Amazon EC2 & Docker: create Dockerfile for
Apache Tomcat

▪ Task 4 – Create Dockerfile for haproxy

▪ Task 5 – Working with Docker-Machine

▪ Task 6 - Config 3 multiple server configs to load balance
requests for RESTful Fibonacci web service

▪ Task 7 – Test configs and submit results

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.17

ASSIGNMENT 0

Layered

Object-based

▪ Service oriented architecture (SOA)

Resource-centered architectures

▪ Representational state transfer (REST)

Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.18

CH 2.1 - ARCHITECTURAL STYLES

Lecture 4

17

18

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.10

 Services provide always-on encapsulated functions over

the internet/web

 Leverage redundant cloud computing infrastructure

 Services may:

▪ Aggregate multiple languages, libraries, operating

systems

▪ Include (wrap) legacy code

 Many software components may be involved in the

implementation

▪ Application server(s), relational database(s), key -value

stores, in memory-cache, queue/messaging services

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.19

SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independently and shared

vs. systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the

system

 An error calling a service (e.g. mismatching the interface)

generally does not result in a system crash

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.20

SERVICE ORIENTED ARCHITECTURE - 2

19

20

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.11

 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.21

OBJECTIVES – 1/17

 Motivation:

▪ Increasing number of services available online

▪ Each with specific protocol(s), methods of interfacing

▪ Connecting services w/ different TCP/IP protocols
→ integration nightmare

▪ Need for specialized client for each service that speaks the
application protocol “language”…

 Need standardization of interfaces

▪ Make services/components more pluggable

▪ Easier to adopt and
integrate

▪ Common
architecture

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.22

RESOURCE BASED ARCHITECTURES

21

22

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.12

Representational State Transfer (REST)

Built on HTTP

Four key characteristics:

1. Resources identified through single naming scheme

2. Services offer the same interface

▪ Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client

▪ Stateless execution

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.23

REST SERVICES

 An ASCII-based request/reply protocol for transferring

information on the web

 HTTP request includes:

▪ request method (GET, POST, etc.)

▪ Uniform Resource Identifier (URI)

▪ HTTP protocol version understood by the client

▪ headers—extra info regarding transfer request

 HTTP response from server

▪ Protocol version & status code →

▪ Response headers

▪ Response body

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.24

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

23

24

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.13

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.25

REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST interfaces enable ubiquitous “so many” clients

Operation Description

PUT Create a new resource (C)reate

GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate

DELETE Delete a resource (D)elete

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing

authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards

deprecation

 Python boto ~50 operations

(SDK for Python)

 SDKs for other languages

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.26

EXAMPLE: AMAZON S3

25

26

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.14

 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

▪ SOAP – application protocol specific to web services

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text,
XML, no real limits as long as text -based

 curl – generic command-line REST client:
https://curl.haxx.se/

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.27

REST - 2

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L11.28

// SOAP REQUEST – Book Store – Query Price

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

<m:GetBookPrice>

<m:BookName>The Fleamarket</m:BookName>

</m:GetBookPrice>

</soap:Body>

</soap:Envelope>

27

28

https://curl.haxx.se/

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.15

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L11.29

// SOAP RESPONSE – Book Store – Query Price

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.bookshop.org/prices">

<m:GetBookPriceResponse>

<m: Price>10.95</m: Price>

</m:GetBookPriceResponse>

</soap:Body>

</soap:Envelope>

L5.30

// Web Service Definition Language (WSDL)

// Service Definition – Day of Week Service

<?xml version="1.0" encoding="UTF-8"?>

<definitions name ="DayOfWeek"

targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="DayOfWeekInput">

<part name="date" type="xsd:date"/>

</message>

<message name="DayOfWeekResponse">

<part name="dayOfWeek" type="xsd:string"/>

</message>

<portType name="DayOfWeekPortType">

<operation name="GetDayOfWeek">

<input message="tns:DayOfWeekInput"/>

<output message="tns:DayOfWeekResponse"/>

</operation>

</portType>

<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">

<soap:operation soapAction="getdayofweek"/>

<input>

<soap:body use="encoded"

namespace="http://www.roguewave.com/soapworx/examples"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body use="encoded"

namespace="http://www.roguewave.com/soapworx/examples"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

<service name="DayOfWeekService" >

<documentation>

Returns the day-of-week name for a given date

</documentation>

<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">

<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>

</service>

</definitions>

29

30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.16

USDA

Lat/Long

Climate

Service

Demo

 Just provide

a Lat/Long

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.31

REST CLIMATE SERVICES EXAMPLE

// REST/JSON

// Request climate data for Washington

{

"parameter": [

{

"name": "latitude",

"value":47.2529

},

{

"name": "longitude",

"value":-122.4443

}

]

}

 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.32

OBJECTIVES – 1/17

31

32

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.17

 Enables separation between processing and coordination

 Types of coordination:

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.33

PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled

(at the same time)

Temporally decoupled

(at different times)

Referentially coupled

(dependent on name)

Direct

Explicit synchronous

service call

Mailbox

Asynchronous by

name (address)

Referentially

decoupled

(name not required)

Event-based

Event notices

published to shared

bus, w/o addressing

Shared data space

Processes write tuples

to a shared data

space

Publish and subscribe architectures

 Event-based coordination

 Processes do not know

about each other explicitly

 Processes:

▪Publish: a notification

describing an event

▪Subscribe: to receive

notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

 Subscribers must actively MONITOR event bus

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.34

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

33

34

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.18

 Shared data space

 Full decoupling (name and time)

 Processes publish “tuples” to shared dataspace (publish)

 Processes provide search pattern to find tuples
(subscribe)

 Subscribers are notified of
matches (both existing and
newly published tuples)

 Key characteristic:
Processes have no explicit
reference to each other

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.35

PUBLISH SUBSCRIBE ARCHITECTURES - 3

Tuple space

 Subscriber describes events interested in

 Complex descriptions are intensive to evaluate and fulfil

 Middleware will:

 Publish matching notification and data to subscribers

▪ Common if middleware lacks storage

 Publish only matching notification

▪ Common if middleware provides storage facility

▪ Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish -and-
subscribe system?

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.36

PUBLISH SUBSCRIBE ARCHITECTURES - 4

35

36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.19

WE WILL RETURN AT

2:40PM

 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.38

OBJECTIVES – 1/17

37

38

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.20

IN-CLASS ACTIVITY:

ARCHITECTURAL

STYLES

L5.39

 We will form groups of ~2-3

▪ On Zoom breakout rooms will be created

 Each group will complete a MS Doc worksheet

 Add names to the Doc as they appear in Canvas

 Once completed, one person submits a PDF to Canvas

 Instructor will score all group members based on the uploaded

PDF file

 To get started – link is under Class Activity 2 in Canvas:

▪ Log into your *** UW NET ID ***

▪ Link to shared doc file on Canvas

▪ Follow link:

https://canvas.uw.edu/courses/1621385/files/100858747

October 7, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

CLASS ACTIVITY 2

39

40

https://canvas.uw.edu/courses/1621385/files/100858747

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.21

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.41

DISTRIBUTED SYSTEM GOALS

TO CONSIDER

CH 2.2: MIDDLEWARE

ORGANIZATION

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L5.42

41

42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.22

 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.43

OBJECTIVES – 1/17

Relies on two important design patterns:

▪Wrappers

▪ Interceptors

Both help achieve the goal of openness

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.44

MIDDLEWARE ORGANIZATION

43

44

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.23

 Wrappers (also called adapters)

▪ WHY?: Interfaces available from legacy software may not be
sufficient for all new applications to use

▪ WHAT: Special “frontend” components that provide interfaces for
clients

▪ Interface wrappers transform client requests to “implementation”
(i.e. legacy software) at the component-level

▪ Can then provide modern service interfaces for legacy code/systems

▪ Components encapsulate (i.e. abstract) dependencies to meet all
preconditions to operate and host legacy code

▪ Interfaces parameterize legacy functions, abstract environment
configuration (i.e. make into black box)

 Contributes towards system OPENNESS

 Example: Amazon S3: S3 HTTP REST interface

 GET/PUT/DELETE/POST: requests handed off for fulfillment

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.45

MIDDLEWARE: WRAPPERS

 Inter-application communication

▪ Applications may provide unique interface for

every client application

 Scalability suffers

▪ N applications → O(N2) wrappers

 ALTERNATE: Use a Broker

▪ Provide a common intermediary

▪ Broker knows how to communicate with

every application

▪ Applications only know how to communicate

with the broker

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.46

MIDDLEWARE: WRAPPERS - 2

clients

45

46

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.24

 Interceptor

Software construct, breaks flow of control, allows

other application code to be executed

 Interceptors send calls to other servers, or to ALL

servers that replicate an object while abstracting

the distribution and/or replication

▪ Used to enable remote procedure calls (RPC), remote

method invocation (RMI)

Object A calls method belonging to object B

▪ Interceptors route calls to object B regardless of location

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.47

MIDDLEWARE: INTERCEPTORS

Request-level
interceptor
transforms:
B.doit(val)

into generic call:
invoke(B,&doit,val)

Message-level
interceptor in
middleware
sends message
through OS
(TCP/IP socket)
to transfer data:
send(B,”doit”,val)

Non-intercepted:

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.48

MIDDLEWARE: INTERCEPTORS - 2

If object is local

47

48

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.25

 MIDDLEWARE: Provides local interface matching Object B to
Object A

 Object A calls Object B’s method provided by local interface

 A’s call is transformed into a “generic object invocation” by
request-level interceptor

 “Generic object invocation” is transformed into a message by
message-level interceptor and sent over Object A’s network to
Object B

 Interception automatically routes calls to all object replicas

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.49

MIDDLEWARE INTERCEPTION - METHOD

 GOAL: It should be possible to modify middleware without loss

of availability

▪ Software components can be replaced at runtime

 Component-based design

▪ Modifiability through composition

▪ Systems may have static or dynamic configuration of components

▪ Dynamic configuration requires late binding

▪ Components can be changed at runtime

 Component based software supports modifiability at runtime

by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support

modifiabil ity at runtime ?

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.50

MODIFIABLE MIDDLEWARE

49

50

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.26

CH 2.3: SYSTEM

ARCHITECTURES

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L5.51

 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.52

OBJECTIVES – 1/17

51

52

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.27

 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring

system design problems

 Expressed as a logical organization of components

and connectors

 Deciding on the system components, their

interactions, and placement is a “realization” of an

architectural style

 System architectures represent designs used in

practice

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.53

SYSTEM ARCHITECTURES

 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.54

OBJECTIVES – 1/17

53

54

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.28

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.55

TYPES OF SYSTEM ARCHITECTURES

 Clients request services

 Servers provide services

 Request-reply behavior

 Connectionless protocols (UDP)

 Assume stable network communication with no failures

 Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received

 But what is the server doing?

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.56

CENTRALIZED:

SIMPLE CLIENT-SERVER ARCHITECTURE

55

56

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.29

 Connectionless cont’d

 Is resending the client request a good idea?

 Examples:

Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide -area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.57

CLIENT-SERVER PROTOCOLS

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections

▪ Example: database connections often retained

 Ongoing debate:

 How do you dif ferentiate between a client and server?

 Roles are blurred

 Blurred Roles Example: Distributed databases

 DB nodes both service client requests, *and* submit new

requests to other DB nodes for replication, synchronization, etc.

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.58

CLIENT-SERVER PROTOCOLS - 2

57

58

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.30

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.59

TCP/UDP

Connectionless (UDP)

stateless

Connection-oriented (TCP)

stateful

Advantages

Disadvantages

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.60

CONNECTIONLESS VS

CONNECTION ORIENTED

59

60

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.31

Connectionless (UDP)

stateless

Connection-oriented (TCP)

stateful

Advantages • Fast to communicate (no

connection overhead)

• Broadcast to an audience

• Network bandwidth savings

• Message delivery confirmation

• Idempotence not required

• Messages automatically resent

- if client (or network) is

temporarily unavailable

• Message sequences

guaranteed

Disadvantages • Cannot tell difference of

request vs. response failure

• Requires idempotence

• Clients must be online and

ready to receive messages

• Connection setup is time-

consuming

• More bandwidth is required

(protocol, retries, multinode-

communication)

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.61

CONNECTIONLESS VS

CONNECTION ORIENTED

 Where should functionality be distributed?

▪ At the client?

▪ At the server?

 Why should we consider component composition?

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.62

MULTITIERED ARCHITECTURES

61

62

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.32

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions

• One or more component(s) deployed to each VM

• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways
n components can be
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14

7

n . . .

SC15
SC14

SC13
SC12

SC11
SC10

SC9
SC8

SC7
SC6
SC5

SC4

SC3

SC2
SC1

CPU time disk reads disk writes network reads network writes

∆ Resource Utilization Change
Min to Max Utilization

m-bound d-bound

CPU time: 6.5% 5.5%

Disk sector reads: 14.8% 819.6%
Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%

Network bytes sent: 143.7% 143.9%

Resource utilization profile changes

from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice

• Box size shows absolute deviation (+/-) from mean

• Shows relative magnitude of performance variance

Two application variants tested

• M-bound: Standard service, M is compute bound

• D-bound: Modified service, D is compute bound

63

64

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.33

65

PERFORMANCE IMPLICATIONS OF

COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆ Performance Change:
Min to max performance

M-bound: 14%

D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D),

fileserver (F), and logging server (L)

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.66

MULTITIERED ARCHITECTURES - 2

M

D F L

client
Server as a client

65

66

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.34

 Vertical distribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers

▪ M – The application server

▪ D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.67

MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

▪ Sharding: portions of a database map” to a specific server

▪ Distributed hash table

▪ Or replica servers

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.68

MULTITIERED RESOURCE SCALING - 2

67

68

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.35

 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.69

OBJECTIVES – 1/17

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.70

TYPES OF SYSTEM ARCHITECTURES

69

70

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.36

 Client/server:

▪ Nodes have specific roles

 Peer-to-peer:

▪ Nodes are seen as all equal…

 How should nodes be organized for communication?

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.71

DECENTRALIZED PEER-TO-PEER

ARCHITECTURES

 Nodes organized using specific topology

(e.g. ring, binary -tree, grid, etc.)

▪ Organization assists in data lookups

 Data indexed using “semantic -free” indexing

▪ Key / value storage systems

▪ Key used to look-up data

 Nodes store data associated with a subset of keys

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.72

STRUCTURED PEER-TO-PEER

71

72

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.37

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.73

DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number

of varying bits between neighboring nodes and destination

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.74

FIXED HYPERCUBE EXAMPLE

73

74

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.38

 Example: fixed hypercube

node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.75

FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does it matter which node is selected for the first hop?

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.76

WHICH CONNECTOR LEADS TO THE

SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent– bad path)

0101 (3 bits dif ferent– bad path)

75

76

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.39

 Fixed hypercube requires static topology

▪ Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

▪ Dynamic topology

▪ Nodes organized in ring

▪ Every node has unique ID

▪ Each node connected with other nodes (shortcuts)

▪ Shortest path between any pair of nodes is ~ order O(log N)

▪ N is the total number of nodes

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.77

DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains finger table of successor nodes

 Client sends key/value

lookup to any node

 Node forwards client

request to node with

m-bit ID closest to, but

not greater than key k

 Nodes must continually

refresh finger tables by

communicating with

adjacent nodes to

incorporate node

joins/departures

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.78

CHORD SYSTEM

77

78

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.40

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed

▪ Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible

▪ How would you calculate the route algorithmically?

 Routes must be discovered

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.79

UNSTRUCTURED PEER-TO-PEER

 Flooding

 [Node u] sends request for data item to all neighbors

 [Node v]

▪ Searches locally, responds to u (or forwarder) if having data

▪ Forwards request to ALL neighbors

▪ Ignores repeated requests

 Features

▪ High network traffic

▪ Fast search results by saturating the network with requests

▪ Variable # of hops

▪ Max number of hops or time-to-live (TTL) often specified

▪ Requests can “retry” by gradually increasing TTL/max hops until

data is found

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.80

SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

79

80

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.41

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]

 If [node v] does not have data, forwards request to a
random neighbor

 Features

▪ Low network traffic

▪ Akin to sequential search

▪ Longer search time

▪ [node u] can start “n” random walks simultaneously to
reduce search time

▪ As few as n=16..64 random walks sufficient to reduce search
time (LV et al. 2002)

▪ Timeout required - need to coordinate stopping network-wide
walk when data is found…

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.81

SEARCHING FOR DATA - 2

 Policy-based search methods

 Incorporate history and knowledge about the adhoc

network at the node-level to enhance effectiveness of

queries

 Nodes maintain lists of preferred neighbors which often

succeed at resolving queries

 Favor neighbors having highest number of neighbors

▪ Can help minimize hops

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.82

SEARCHING FOR DATA - 3

81

82

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.42

 Problem:

Adhoc system search performance does not scale well as

system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs) (video streaming)

▪ Store (cache) data at nodes local to the requester (client)

▪ Broker node – tracks resource usage and node availability

▪ Track where data is needed

▪ Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

▪ Super peer –Broker node, routes client requests to storage

nodes

▪ Weak peer – Store data

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.83

HIERARCHICAL

PEER-TO-PEER NETWORKS

 Super peers

▪ Head node of local centralized network

▪ Interconnected via overlay network with other super peers

▪ May have replicas for fault tolerance

 Weak peers

▪ Rely on super peers to find data

 Leader-election problem:

▪ Who can become a
super peer?

▪ What requirements
must be met to become
a super peer?

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.84

HIERARCHICAL

PEER-TO-PEER NETWORKS - 2

83

84

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.43

 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures:

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.85

OBJECTIVES – 1/17

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.86

TYPES OF SYSTEM ARCHITECTURES

85

86

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.44

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:

 Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

 Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

 Example:

 AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws -lambda-at-edge

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.87

HYBRID

ARCHITECTURES

 Fog computing:

 Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

 End-user devices become part of the overall system

 Middleware extended to incorporate managing edge
devices as participants in the distributed system

 Cloud → in the sky

▪ compute/resource capacity is huge, but far away…

 Fog → (devices) on the ground

▪ compute/resource capacity is constrained and local…

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.88

HYBRID

ARCHITECTURES - 2

87

88

https://www.infoq.com/news/2017/07/aws-lambda-at-edge

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

Slides by Wes J. Lloyd L5.45

 BitTorrent Example:

File sharing system – users must contribute as a file host to

be eligible to download file resources

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well

known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then

participates to reserve downloaded content or network

bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.89

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE

QUESTIONS

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L5.90

89

90

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/17
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/12
	Slide 7: Types of distributed systems
	Slide 8: Feedback - 2
	Slide 9: Object proxy
	Slide 10: Distributed objects
	Slide 11: Feedback - 3
	Slide 12: Feedback - 4
	Slide 13
	Slide 14: Feedback - 5
	Slide 15: OBJECTIVES – 1/17
	Slide 16: Assignment 0
	Slide 17: Assignment 0
	Slide 18: Ch 2.1 - Architectural styles
	Slide 19: Service oriented architecture
	Slide 20: Service oriented architecture - 2
	Slide 21: OBJECTIVES – 1/17
	Slide 22: Resource based architectures
	Slide 23: Rest services
	Slide 24: Hypertext transport protocol (http)
	Slide 25: REST-ful operations
	Slide 26: Example: Amazon s3
	Slide 27: Rest - 2
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Rest climate services example
	Slide 32: OBJECTIVES – 1/17
	Slide 33: Publish-subscribe architectures
	Slide 34: Publish-subscribe architectures - 2
	Slide 35: Publish subscribe architectures - 3
	Slide 36: Publish subscribe architectures - 4
	Slide 37: We will return at 2:40pm
	Slide 38: OBJECTIVES – 1/17
	Slide 39: In-class activity: architectural styles
	Slide 40: Class activity 2
	Slide 41: Distributed system goals to consider
	Slide 42: Ch 2.2: Middleware organization
	Slide 43: OBJECTIVES – 1/17
	Slide 44: Middleware organization
	Slide 45: Middleware: Wrappers
	Slide 46: Middleware: wrappers - 2
	Slide 47: Middleware: interceptors
	Slide 48: Middleware: interceptors - 2
	Slide 49: Middleware interception - method
	Slide 50: Modifiable middleware
	Slide 51: Ch 2.3: System architectures
	Slide 52: OBJECTIVES – 1/17
	Slide 53: System architectures
	Slide 54: OBJECTIVES – 1/17
	Slide 55: Types of System architectures
	Slide 56: Centralized: simple client-server architecture
	Slide 57: Client-server protocols
	Slide 58: Client-server protocols - 2
	Slide 59: Tcp/udp
	Slide 60: Connectionless vs connection oriented
	Slide 61: Connectionless vs connection oriented
	Slide 62: Multitiered architectures
	Slide 63
	Slide 64
	Slide 65: Performance implications of component deployments
	Slide 66: Multitiered architectures - 2
	Slide 67: Multitiered resource scaling
	Slide 68: Multitiered resource scaling - 2
	Slide 69: OBJECTIVES – 1/17
	Slide 70: Types of System architectures
	Slide 71: Decentralized Peer-to-peer architectures
	Slide 72: Structured peer-to-peer
	Slide 73: Distributed hash table (DHT)
	Slide 74: Fixed hypercube example
	Slide 75: Fixed Hypercube example - 2
	Slide 76: Which connector leads to the shortest path?
	Slide 77: Dynamic topology
	Slide 78: Chord system
	Slide 79: unstructured peer-to-peer
	Slide 80: Searching for data: unstructured peer-to-peer systems
	Slide 81: Searching for data - 2
	Slide 82: Searching for data - 3
	Slide 83: Hierarchical peer-to-peer networks
	Slide 84: Hierarchical peer-to-peer networks - 2
	Slide 85: OBJECTIVES – 1/17
	Slide 86: Types of System architectures
	Slide 87: Hybrid architectures
	Slide 88: Hybrid architectures - 2
	Slide 89: Collaborative distributed system example
	Slide 90: Questions

