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APPLIED DISTRIBUTED COMPUTING

 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures: 

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by Wed @ 10p

 Thursday surveys: due Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (34 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.00  ( - previous 5.94)  

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.15  ( - previous 5.30)
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MATERIAL / PACE

PACE: Pretty good, 

considering about 
~67 slides were covered !

 I  would like more of an outline before going into the material. 

For example, when you posed the question to the class about 

which of the f ive distributed technologies a system was an 

example of,  I  didn't even realize that you were distinguishing 

these f ive things in the slides before.

▪ Coverage on the types of distributed systems (ch. 1.3) started in 

lecture 3, and spanned over to lecture 4

▪ Each lecture continues from the previous one

▪ Can refer to the previous lecture slides for context before class

▪ I will often rephrase and repeat some content from the prior class 

▪ I did spend time re-discussing distributed information systems at the 

start of lecture 4…

▪ I should have quickly re-capped by reshowing the outline
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 From Chapter 1.3

 HPC, Cluster, Grid, Cloud

 Distributed information systems

▪ Transactions

▪ Application integration: Shared files, DBs, RPC, RMI, Message-

oriented middleware

 Pervasive Systems

▪ Ubiquitous computing systems

▪ Mobile systems

▪ Sensor networks
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TYPES OF DISTRIBUTED SYSTEMS

 Proxies provide an object interface which transfers method 
invocation over the network to the remote host." (Slide 64) 
Could you please elaborate a little more on that?

▪ With distributed objects, the separation between object interfaces 
and the objects implementing the interface allows the object to exist 
locally or remotely

▪ When a client binds to a distributed object, an implementation of the
object’s interface called a proxy is loaded into the client’s address 
space

▪ Only a local interface (address) can be loaded into client’s memory

▪ Remote implementations can’t be directly loaded because memory is out 
of scope - on another computer

▪ The object proxy features the identical object interface, but instead 
marshals method invocations into messages sent over the network

▪ The proxy unmarshals reply messages received from the remote 
object on the local computer
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 Object proxy – resides on the client machine

 Object implementation – resides on remote server

 Both feature the same object interface

 Method invocation is first passed to a stub interface in 

the object proxy
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OBJECT PROXY
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DISTRIBUTED OBJECTS
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 Why are object-based distributed systems language 

dependent?

 Some early systems used legacy distributed object 

technologies that were language specific

 Java RMI

 .NET remoting (technically multiple languages, but MS ones)

 CORBA – Common Object Request Broker Architecture

▪ General standard for distributed objects that supported multiple 

languages and operating systems

▪ Suffers from criticism from poor implementations of the standard

▪ Performance issue: calls to objects in local address space are 

treated same as remote objects which increases complexity for 

invoking local methods
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FEEDBACK - 3

 The smart home sensor network is a ubiquitous system, but 

the earthquake sensor system is a sensor network.  Why?

 The smart home system aggregates a heterogeneous array of 

devices (some with sensors) to provide smart home 

functionality

 The seismic (earthquake) monitoring system captures seismic 

data from remote sensors which is aggregated to enable real -

time monitoring and modeling of earth quake (and tsunami) 

risk

 Purple air is a sensor network of low-cost air quality sensors 

that collects data from ‘citizen’ scientists regarding 

particulate matter pollution to augment that available from 

the Environmental Protection Agency
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 For pervasive, I  am not clear about the dif ferences between 

Ubiquitous computing systems and Sensor networks.

 Pervasive Computing Systems consists of systems that have 

hardware “everywhere”

 We covered three types:

▪ Ubiquitous Systems, Mobile Systems, Sensor Networks

 A major distinguishing factor with Ubiquitous Systems is that 

they consist of many heterogeneous devices

▪ processors in day-to-day objects  → think Home Automation

 Sensor networks

▪ Can have heterogeneous devices, but in general many sensor nodes 

are uniform / similar in nature  (homogeneous)
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 Questions from 1/12

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures: 

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/17

 Preparing for Assignment 0:

▪ Establish AWS Account

▪ Standard account – ** request cloud credits from instructor **

▪ Specify “AWS CREDIT REQUEST” as subject of email

▪ Include email address of AWS account

▪ AWS Educate Starter account – some account limitations

▪ https://awseducate-starter-account-services.s3.amazonaws.com/ 

AWS_Educate_Starter_Account_Services_Supported.pdf

▪ Establish local Linux/Ubuntu environment

 Task 1 – AWS account setup

 Task 2 – Working w/ Docker, creating Dockerfile for Apache Tomcat

 Task 3 – Creating a Dockerfile for haproxy

 Task 4 – Working with Docker -Machine

 Task 5 – For Submission: Testing Alternate Server Configurations
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ASSIGNMENT 0
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 Preparing for Assignment 0:

▪ Establish AWS Account

▪ Standard account

▪ Complete AWS Cloud Credits Survey and provide AWS account ID

▪ Credits will be automatically loaded by Amazon into accounts

 Tasks:

▪ Task 1 - Establish local Linux/Ubuntu environment

▪ Task 2 –AWS account setup, obtain user credentials

▪ Task 3 – Intro to: Amazon EC2 & Docker: create Dockerfile for 
Apache Tomcat

▪ Task 4 – Create Dockerfile for haproxy

▪ Task 5 – Working with Docker-Machine

▪ Task 6 - Config 3 multiple server configs to load balance 
requests for RESTful Fibonacci web service

▪ Task 7 – Test configs and submit results
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ASSIGNMENT 0

Layered 

Object-based

▪ Service oriented architecture (SOA)

Resource-centered architectures

▪ Representational state transfer (REST)

Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)
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CH 2.1 - ARCHITECTURAL STYLES

Lecture 4
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 Services provide always-on encapsulated functions over 

the internet/web 

 Leverage redundant cloud computing infrastructure

 Services may:

▪ Aggregate multiple languages, libraries, operating 

systems

▪ Include (wrap) legacy code

 Many software components may be involved in the 

implementation

▪ Application server(s), relational database(s), key -value 

stores, in memory-cache, queue/messaging services
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SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independently and shared 

vs. systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the 

system

 An error calling a service (e.g. mismatching the interface) 

generally does not result in a system crash
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SERVICE ORIENTED ARCHITECTURE - 2
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 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures: 

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/17

 Motivation:

▪ Increasing number of services available online

▪ Each with specific protocol(s), methods of interfacing

▪ Connecting services w/ different TCP/IP protocols 
→ integration nightmare

▪ Need for specialized client for each service that speaks the 
application protocol “language”…

 Need standardization of interfaces

▪ Make services/components more pluggable

▪ Easier to adopt and
integrate 

▪ Common 
architecture
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RESOURCE BASED ARCHITECTURES
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Representational State Transfer (REST)

Built on HTTP 

Four key characteristics:

1. Resources identified through single naming scheme

2. Services offer the same interface

▪ Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client

▪ Stateless execution
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REST SERVICES

 An ASCII-based request/reply protocol for transferring 

information on the web

 HTTP request includes:

▪ request method (GET, POST, etc.)

▪ Uniform Resource Identifier (URI)

▪ HTTP protocol version understood by the client

▪ headers—extra info regarding transfer request

 HTTP response from server

▪ Protocol version & status code →

▪ Response headers

▪ Response body
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HYPERTEXT TRANSPORT PROTOCOL (HTTP)
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REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST interfaces enable ubiquitous “so many” clients

Operation Description

PUT Create a new resource (C)reate

GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate

DELETE Delete a resource (D)elete

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing 

authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards

deprecation

 Python boto ~50 operations 

(SDK for Python)

 SDKs for other languages
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EXAMPLE: AMAZON S3
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 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

▪ SOAP – application protocol specific to web services

 Access and manipulate web resources with a predefined 
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text, 
XML, no real limits as long as text -based

 curl – generic command-line REST client:
https://curl.haxx.se/

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.27

REST - 2
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// SOAP REQUEST – Book Store – Query Price

POST /InStock HTTP/1.1 

Host: www.bookshop.org 

Content-Type: application/soap+xml; charset=utf-8 

Content-Length: nnn

<?xml version="1.0"?> 

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope" 

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding"> 

<soap:Body xmlns:m="http://www.bookshop.org/prices"> 

<m:GetBookPrice> 

<m:BookName>The Fleamarket</m:BookName> 

</m:GetBookPrice> 

</soap:Body> 

</soap:Envelope>
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// SOAP RESPONSE – Book Store – Query Price

POST /InStock HTTP/1.1 

Host: www.bookshop.org 

Content-Type: application/soap+xml; charset=utf-8 

Content-Length: nnn

<?xml version="1.0"?> 

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope" 

soap:encodingStyle="http://www.w3.org/2001/12/soap-

encoding"> 

<soap:Body xmlns:m="http://www.bookshop.org/prices"> 

<m:GetBookPriceResponse> 

<m: Price>10.95</m: Price> 

</m:GetBookPriceResponse> 

</soap:Body> 

</soap:Envelope>

L5.30

// Web Service Definition Language (WSDL)

// Service Definition – Day of Week Service

<?xml version="1.0" encoding="UTF-8"?> 

<definitions  name ="DayOfWeek"  

targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl" 

xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl" 

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"  

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns="http://schemas.xmlsoap.org/wsdl/">  

<message name="DayOfWeekInput"> 

<part name="date" type="xsd:date"/> 

</message> 

<message name="DayOfWeekResponse"> 

<part name="dayOfWeek" type="xsd:string"/> 

</message> 

<portType name="DayOfWeekPortType"> 

<operation name="GetDayOfWeek"> 

<input message="tns:DayOfWeekInput"/> 

<output message="tns:DayOfWeekResponse"/> 

</operation> 

</portType> 

<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType"> 

<soap:binding style="document"  

transport="http://schemas.xmlsoap.org/soap/http"/> 

<operation name="GetDayOfWeek"> 

<soap:operation soapAction="getdayofweek"/> 

<input> 

<soap:body use="encoded"  

namespace="http://www.roguewave.com/soapworx/examples"  

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/> 

</input> 

<output> 

<soap:body use="encoded"  

namespace="http://www.roguewave.com/soapworx/examples"   

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/> 

</output> 

</operation> 

</binding> 

<service name="DayOfWeekService" > 

<documentation> 

Returns the day-of-week name for a given date 

</documentation> 

<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding"> 

<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/> 

</port> 

</service> 

</definitions> 
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USDA

Lat/Long

Climate

Service

Demo

 Just provide

a Lat/Long

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.31

REST CLIMATE SERVICES EXAMPLE

// REST/JSON

// Request climate data for Washington

{

"parameter": [

{

"name": "latitude",

"value":47.2529

},

{

"name": "longitude",

"value":-122.4443

}

]

}

 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures: 

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/17
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 Enables separation between processing and coordination

 Types of coordination:
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PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled

(at the same time)

Temporally decoupled

(at different times)

Referentially coupled 

(dependent on name)

Direct

Explicit synchronous 

service call

Mailbox

Asynchronous by 

name (address)

Referentially 

decoupled

(name not required)

Event-based

Event notices 

published to shared 

bus, w/o addressing

Shared data space

Processes write tuples 

to a shared data 

space

Publish and subscribe architectures

 Event-based coordination

 Processes do not know 

about each other explicitly

 Processes:

▪Publish: a notification 

describing an event

▪Subscribe: to receive 

notification of specific kinds of events

 Assumes subscriber is presently up ( temporally coupled )

 Subscribers must actively MONITOR event bus

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.34

PUBLISH-SUBSCRIBE ARCHITECTURES - 2
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 Shared data space

 Full decoupling (name and time)

 Processes publish “tuples” to shared dataspace (publish)

 Processes provide search pattern to find tuples 
(subscribe)

 Subscribers are notified of 
matches (both existing and
newly published tuples)

 Key characteristic: 
Processes have no explicit 
reference to each other
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PUBLISH SUBSCRIBE ARCHITECTURES - 3

Tuple space

 Subscriber describes events interested in

 Complex descriptions are intensive to evaluate and fulfil  

 Middleware will:

 Publish matching notification and data to subscribers

▪ Common if middleware lacks storage

 Publish only matching notification

▪ Common if middleware provides storage facility

▪ Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish -and-
subscribe system?
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PUBLISH SUBSCRIBE ARCHITECTURES - 4
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WE WILL RETURN AT 

2:40PM

 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures: 

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity:  Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/17
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IN-CLASS ACTIVITY:

ARCHITECTURAL 

STYLES

L5.39

 We will form groups of ~2-3 

▪ On Zoom breakout rooms will be created

 Each group will complete a MS Doc worksheet

 Add names to the Doc as they appear in Canvas

 Once completed, one person submits a PDF to Canvas

 Instructor will score all group members based on the uploaded 

PDF file

 To get started – link is under Class Activity 2 in Canvas:

▪ Log into your *** UW NET ID ***

▪ Link to shared doc file on Canvas

▪ Follow link:

https://canvas.uw.edu/courses/1621385/files/100858747

October 7, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

CLASS ACTIVITY 2
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 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…
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DISTRIBUTED SYSTEM GOALS 

TO CONSIDER

CH 2.2: MIDDLEWARE

ORGANIZATION
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 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures: 

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2:  Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/17

Relies on two important design patterns:

▪Wrappers

▪ Interceptors

Both help achieve the goal of openness
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MIDDLEWARE ORGANIZATION
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 Wrappers (also called adapters)

▪ WHY?: Interfaces available from legacy software may not be 
sufficient for all new applications to use

▪ WHAT: Special “frontend” components that provide interfaces for 
clients

▪ Interface wrappers transform client requests to “implementation”
(i.e. legacy software) at the component-level

▪ Can then provide modern service interfaces for legacy code/systems

▪ Components encapsulate (i.e. abstract) dependencies to meet all 
preconditions to operate and host legacy code

▪ Interfaces parameterize legacy functions, abstract environment 
configuration (i.e. make into black box)

 Contributes towards system OPENNESS

 Example: Amazon S3: S3 HTTP REST interface

 GET/PUT/DELETE/POST: requests handed off for fulfillment
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MIDDLEWARE: WRAPPERS

 Inter-application communication

▪ Applications may provide unique interface for

every client application

 Scalability suffers

▪ N applications → O(N2) wrappers

 ALTERNATE: Use a Broker

▪ Provide a common intermediary

▪ Broker knows how to communicate with

every application

▪ Applications only know how to communicate 

with the broker
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MIDDLEWARE: WRAPPERS - 2

clients
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 Interceptor

Software construct, breaks flow of control, allows 

other application code to be executed

 Interceptors send calls to other servers, or to ALL 

servers that replicate an object while abstracting 

the distribution and/or replication

▪ Used to enable remote procedure calls (RPC), remote 

method invocation (RMI)

Object A calls method belonging to object B

▪ Interceptors route calls to object B regardless of location
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MIDDLEWARE: INTERCEPTORS

Request-level 
interceptor 
transforms: 
B.doit(val)

into generic call:
invoke(B,&doit,val)

Message-level 
interceptor in 
middleware 
sends message 
through OS 
(TCP/IP socket) 
to transfer data: 
send(B,”doit”,val)

Non-intercepted:
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MIDDLEWARE: INTERCEPTORS - 2

If object is local
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 MIDDLEWARE: Provides local interface matching Object B to 
Object A

 Object A calls Object B’s method provided by local interface

 A’s call is transformed into a “generic object invocation” by 
request-level interceptor

 “Generic object invocation” is transformed into a message by 
message-level interceptor and sent over Object A’s network to 
Object B

 Interception automatically routes calls to all object replicas
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MIDDLEWARE INTERCEPTION - METHOD

 GOAL: It should be possible to modify middleware without loss 

of availability

▪ Software components can be replaced at runtime

 Component-based design

▪ Modifiability through composition

▪ Systems may have static or dynamic configuration of components

▪ Dynamic configuration requires late binding

▪ Components can be changed at runtime

 Component based software supports modifiability at runtime 

by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support 

modifiabil ity at runtime ?
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MODIFIABLE MIDDLEWARE
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CH 2.3: SYSTEM 

ARCHITECTURES
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 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures: 

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/17
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 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring 

system design problems

 Expressed as a logical organization of components

and connectors

 Deciding on the system components, their 

interactions, and placement is a “realization” of an 

architectural style

 System architectures represent designs used in 

practice
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SYSTEM ARCHITECTURES

 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures: 

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3:  System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/17
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 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured 

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Clients request services

 Servers provide services

 Request-reply behavior

 Connectionless protocols (UDP)

 Assume stable network communication with no failures

 Best effort communication: No guarantee of message 
arrival without errors, duplication, delays, or in sequence. 
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request 
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received

 But what is the server doing?
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CENTRALIZED: 

SIMPLE CLIENT-SERVER ARCHITECTURE
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 Connectionless cont’d

 Is resending the client request a good idea?

 Examples: 

Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide -area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections
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CLIENT-SERVER PROTOCOLS

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections

▪ Example: database connections often retained

 Ongoing debate:

 How do you dif ferentiate between a client and server?

 Roles are blurred

 Blurred Roles Example: Distributed databases

 DB nodes both service client requests, *and* submit new 

requests to other DB nodes for replication, synchronization, etc.
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CLIENT-SERVER PROTOCOLS - 2
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TCP/UDP

Connectionless (UDP) 

stateless

Connection-oriented (TCP)

stateful

Advantages

Disadvantages
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CONNECTIONLESS VS 

CONNECTION ORIENTED
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Connectionless (UDP) 

stateless

Connection-oriented (TCP)

stateful

Advantages • Fast to communicate (no 

connection overhead)

• Broadcast to an audience

• Network bandwidth savings

• Message delivery confirmation

• Idempotence not required

• Messages automatically resent 

- if client (or network) is 

temporarily unavailable

• Message sequences 

guaranteed

Disadvantages • Cannot tell difference of 

request vs. response failure

• Requires idempotence

• Clients must be online and 

ready to receive messages

• Connection setup is time-

consuming

• More bandwidth is required 

(protocol, retries, multinode-

communication)
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CONNECTIONLESS VS 

CONNECTION ORIENTED

 Where should functionality be distributed?

▪ At the client?

▪ At the server? 

 Why should we consider component composition?
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MULTITIERED ARCHITECTURES
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SC2
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SC9
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SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions

• One or more component(s) deployed to each VM 

• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways 
n components can be 
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14

7

n . . .

SC15
SC14

SC13
SC12

SC11
SC10

SC9
SC8

SC7
SC6
SC5

SC4

SC3

SC2
SC1

CPU time        disk reads   disk writes  network reads     network writes

∆  Resource Utilization Change
Min to Max Utilization

m-bound d-bound       

CPU time: 6.5% 5.5%

Disk sector reads: 14.8% 819.6%
Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%

Network bytes sent: 143.7% 143.9%

Resource utilization profile changes 

from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice

• Box size shows absolute deviation (+/-) from mean

• Shows relative magnitude of performance variance

Two application variants tested

• M-bound: Standard service, M is compute bound

• D-bound: Modified service, D is compute bound
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65

PERFORMANCE IMPLICATIONS OF

COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆  Performance Change:
Min to max performance

M-bound: 14%

D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D), 

fileserver (F), and logging server (L)
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MULTITIERED ARCHITECTURES - 2

M

D F L

client
Server as a client
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 Vertical distribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers

▪ M – The application server

▪ D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing
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MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

▪ Sharding: portions of a database map” to a specific server

▪ Distributed hash table

▪ Or replica servers
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MULTITIERED RESOURCE SCALING - 2
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 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures: 

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/17

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured 

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES
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 Client/server:

▪ Nodes have specific roles

 Peer-to-peer:

▪ Nodes are seen as all equal…

 How should nodes be organized for communication?
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DECENTRALIZED PEER-TO-PEER 

ARCHITECTURES

 Nodes organized using specific topology 

(e.g. ring, binary -tree, grid, etc.)

▪ Organization assists in data lookups

 Data indexed using “semantic -free” indexing

▪ Key / value storage systems

▪ Key used to look-up data

 Nodes store data associated with a subset of keys

January 17, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.72

STRUCTURED PEER-TO-PEER
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 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data
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DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number 

of varying bits between neighboring nodes and destination
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FIXED HYPERCUBE EXAMPLE
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 Example: fixed hypercube

node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?
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FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does it matter which node is selected for the first hop?
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WHICH CONNECTOR LEADS TO THE 

SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent– bad path)

0101 (3 bits dif ferent– bad path)
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 Fixed hypercube requires static topology

▪ Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

▪ Dynamic topology

▪ Nodes organized in ring

▪ Every node has unique ID

▪ Each node connected with other nodes (shortcuts)

▪ Shortest path between any pair of nodes is ~ order O(log N)

▪ N is the total number of nodes
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DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains finger table of successor nodes

 Client sends key/value 

lookup to any node

 Node forwards client 

request to node with 

m-bit ID closest to, but 

not greater than key k 

 Nodes must continually 

refresh finger tables by 

communicating with 

adjacent nodes to 

incorporate node 

joins/departures
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CHORD SYSTEM
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 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed

▪ Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible

▪ How would you calculate the route algorithmically?

 Routes must be discovered
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UNSTRUCTURED PEER-TO-PEER

 Flooding

 [Node u] sends request for data item to all neighbors

 [Node v]

▪ Searches locally, responds to u (or forwarder) if having data

▪ Forwards request to ALL neighbors

▪ Ignores repeated requests

 Features

▪ High network traffic

▪ Fast search results by saturating the network with requests

▪ Variable # of hops

▪ Max number of hops or time-to-live (TTL) often specified

▪ Requests can “retry” by gradually increasing TTL/max hops until 

data is found
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SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS
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 Random walks
 [Node u] asks a randomly chosen neighbor [node v]

 If [node v] does not have data, forwards request to a 
random neighbor

 Features

▪ Low network traffic

▪ Akin to sequential search

▪ Longer search time

▪ [node u] can start “n” random walks simultaneously to 
reduce search time

▪ As few as n=16..64 random walks sufficient to reduce search 
time  (LV et al. 2002)

▪ Timeout required - need to coordinate stopping network-wide 
walk when data is found…
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SEARCHING FOR DATA - 2

 Policy-based search methods

 Incorporate history and knowledge about the adhoc

network at the node-level to enhance effectiveness of 

queries

 Nodes maintain lists of preferred neighbors which often 

succeed at resolving queries

 Favor neighbors having highest number of neighbors

▪ Can help minimize hops
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SEARCHING FOR DATA - 3
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 Problem:

Adhoc system search performance does not scale well as 

system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs)   (video streaming)

▪ Store (cache) data at nodes local to the requester (client)

▪ Broker node – tracks resource usage and node availability

▪ Track where data is needed

▪ Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

▪ Super peer –Broker node, routes client requests to storage 

nodes

▪ Weak peer – Store data
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HIERARCHICAL

PEER-TO-PEER NETWORKS

 Super peers

▪ Head node of local centralized network

▪ Interconnected via overlay network with other super peers

▪ May have replicas for fault tolerance

 Weak peers

▪ Rely on super peers to find data

 Leader-election problem:

▪ Who can become a
super peer?

▪ What requirements 
must be met to become 
a super peer?
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HIERARCHICAL 

PEER-TO-PEER NETWORKS - 2
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 Questions from 1/12

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Chapter 2: Distributed System Architectures: 

▪ Chapter 2.1 – Architectural Styles

▪ Resource-centered architectures

▪ Representational state transfer (REST)

▪ Event-based 

▪ Publish and subscribe (Rich Site Summary RSS feeds)

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization

 Chapter 2.3: System Architectures

▪ Centralized system architectures

▪ Decentralized peer-to-peer architectures

▪ Hybrid architectures
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OBJECTIVES – 1/17

 Centralized system architectures

▪ Client-server

▪Multitiered

 Decentralized peer-to-peer architectures

▪ Structured 

▪ Unstructured

▪ Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES
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 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:

 Adhoc peer-to-peer devices connect to the internet through an 
edge server (origin server) 

 Edge servers (provided by an ISP) can optimize content and 
application distribution by storing assets near the edge

 Example:

 AWS Lambda@Edge: Enables Node.js Lambda Functions to 
execute “at the edge” harnessing existing CloudFront Content 
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws -lambda-at-edge
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HYBRID 

ARCHITECTURES

 Fog computing:

 Extend the scope of managed resources beyond the 
cloud to leverage compute and storage capacity of 
end-user devices  

 End-user devices become part of the overall system 

 Middleware extended to incorporate managing edge 
devices as participants in the distributed system  

 Cloud → in the sky   

▪ compute/resource capacity is huge, but far away…

 Fog → (devices) on the ground   

▪ compute/resource capacity is constrained and local…
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HYBRID 

ARCHITECTURES - 2
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 BitTorrent Example:

File sharing system – users must contribute as a file host to 

be eligible to download file resources 

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well 

known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then 

participates to reserve downloaded content or network 

bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes
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COLLABORATIVE DISTRIBUTED 

SYSTEM EXAMPLE

QUESTIONS
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