TCSS 558: Applied Distributed Computing January 17, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

TCSS 558

APPLIED DISTRIBUTED COMPUTING OBJECTIVES - 1/17
| |

| = Questlons from 1/12 |
: C = Assignment O: Cloud Computing Infrastructure Tutorial
tributed Systems B . = Chapter 2: Distributed System Architectures:
Architectures and - = Chapter 2.1 - Architectural Styles
Middleware Organization = Resource-centered architectures

Representational state transfer (REST)
= Event-based
Wes J. |_|oyd Publish and subscribe (Rich Site Summary RSS feeds)
School of Engineering = Class Activity: Architectural Styles
& Technology (SET) = Chapter 2.2: Middleware Organization
University of Washington - Tacoma = Chapter 2.3: System Architectures
. = Centralized system architectures
= Decentralized peer-to-peer architectures

= Hybrid architectures

TCsS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

January17, 2023

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan & at 10pm Points 1 Questions 4

ONLINE DAI LY FEED BACK SURVEY Available Jan 5 at 1:30pm - Jan & at 11:59pm 1 day Time Limit None

Question 1 05 pts

= Daily Feedback Quiz in Canvas - Available After Each Class

Ona scale of 1 to 10, please classify your perspective on material covered in today's

= Extra credit available for completing surveys ON TIME class
= Tuesday surveys: due by Wed @ 10p 1 2 3 4 & & 7 @ ’ e
= Thursday surveys: due Mon @ 10p Rories To e e o Revien - e

== TCSS558A » Assignments

Winter 2021

Home

Question 2 aspis

* Upcoming Assignments Please rate the pace of today's class:

ot avalsbie undil Jan 5 ot 1:30pm | Bue Jan 6 at 10pm

o TCSS 558 - Online Daily Feedback Survey - 1/5 | 1 z 3 4 s L} 7 8] 10

P et might Past

TCSs558; Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]

January 17, 2023 o ¢ 53 23]
‘ o School of Engineering and Technology, University of Washington - Tacoma JENIETRT L I School of Engineering and Technology, University of Washington - Tacoma L54

MATERIAL / PACE FEEDBACK FROM 1/12

= Please classify your perspective on material covered in today’s = | would like more of an outline before going into the material.
class (34 respondents): For example, when h lon he cl

= 1-mostly review, 5-equal new/review, 10-mostly new which of the flve distributed technologles a system was an

= Average - .00 (- previous 5.94) example of, | didn't even realize that you were distinguishing

these five things In the slides before.
= Coverage on the types of distributed systems (ch. 1.3) started in
lecture 3, and spanned over to lecture 4

= Each lecture continues from the previous one

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast

= Average - 5.15 (- previous 5.30) = Can refer to the previous lecture slides for context before class
= | will often rephrase and repeat some content from the prior class
PACE: Pretty good, = | did spend time re-discussing distributed information systems at the
consldering about start of lecture 4.
~67 slides were covered | = | should have quickly re-capped by reshowing the outline

TCs5558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2023]

‘ January 17, 2023 School of Engineering and Technology, University of Washington - Tacoma

155 ‘ January 17, 2023

Slides by Wes J. Lloyd L5.1

TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

TYPES OF DISTRIBUTED SYSTEMS FEEDBACK - 2

= From Chapter 1.3
= HPC, Cluster, Grid, Cloud

= Proxles provide an object Interface which transfers method
Invocatlon over the network to the remote host.” (Slide 64)

o . i Could you please elaborate a little more on that?
= Distributed information systems = With distributed objects, the separation between object interfaces
= Transactions and the objects implementing the interface allows the object to exist
= Application integration: Shared files, DBs, RPC, RMI, Message- locally or remotely
oriented middleware = When a client binds to a distributed object, an implementation of the
. object’s interface called a proxy is loaded into the client’s address
= Pervasive Systems space
= Ubiquitous computing systems Only a local interface (address) can be loaded into client’'s memory
= Mobile systems Remote implementations can’t be directly loaded because memory is out
of scope - on another computer
= Sensor networks

= The object proxy features the identical object interface, but instead
marshals method invocations into messages sent over the network
= The proxy unmarshals reply messages received from the remote
object on the local computer

TCSS558: Applied Distributed Computing [Winter 2023]
EauayL2n2 School of Engineering and Technology, University of Washington - Tacoma 157

TCSS558: Applied Distributed Computing [Winter 2023]
flanuaryizi2023 School of Engineering and Technology, University of Washington - Tacoma 158

OBJECT PROXY

DISTRIBUTED OBJECTS

B R B R Client machine Server machine
= Object proxy - resides on the client machine Object
X . . . - jec
" Object implementation - resides on remote server Client Server A
= Both f re th m j interf - State
ot ea.tu et fa sa. e. object interface ‘ . ’—‘ Same
= Method invocation is first passed to a stub interface in Giient T interiace LI - method
p invoke as object
the object proxy invol ;Sd —
& mefno y Skeleton 4 T I
l_‘_|_| ivokes ————T— nterface
Proxy same method Skelaton
at object A
Client OS Server OS
[|
Network

Marshalled invocation
is passed across network

T D ‘ TCsS558: Applied Distributed Computing [Winter 2023) 10

59
School of Engineering and Technology, University of Washington - Tacoma

‘ AT) TCSS558: Applied Distributed Computing [Winter 2023] ‘

School of Engineering and Technology, University of Washington - Tacoma

10

FEEDBACK - 3 FEEDBACK - 4

= Why are object-based distributed systems language = The smart home sensor network is a ubiquitous system, but
dependent?

h rth ki nsor m I nsor network. Why?

= Some early systems used legacy distributed object = The smart home system aggregates a heterogeneous array of
technologies that were language specific devices (some with sensors) to provide smart home

= Java RMI

functionality
= NET remoting (technically multiple languages, but MS ones) = The seismic (earthquake) monitoring system captures seismic

= CORBA - Common Object Request Broker Architecture d.ata from. rer.note sensors v.vhich is aggregated to enable re.al—
= General standard for distributed objects that supported multiple ::;nke 320 O3 M) Gei I e G e (] S
languages and operating systems
= Suffers from criticism from poor implementations of the standard ® Purple air is a sensor network of low-cost air quality sensors
= Performance issue: calls to objects in local address space are that_coueCtS data from ‘L‘:itizen' scientists regard_ing
treated same as remote objects which increases complexity for particulate matter pollution to augment that available from

invoking local methods the Environmental Protection Agency

TCsS558: Applied Distributed Computing [Winter 2023]
‘ (EIEFERERED School of Engineering and Technology, University of Washington - Tacoma o

TCSS558: Applied Distributed Computing [Winter 2023]
OERARETD School of Engineering and Technology, University of Washington - Tacoma L2

Slides by Wes J. Lloyd L5.2

TCSS 558: Applied Distributed Computing January 17, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

FEEDBACK - 5
= 3 ARG o
y LA W in i;a;‘ 'Q%iﬁ E% CeT) o = For pervasive, | am not clear about the differences between
» ¢ -}-%..h.._‘. £ & : \‘5 g Ubiquitous computing systems and Sensor networks.
T Sim 5: ,,"'“i""&;e!-*j
® o " e, 6 = Pervaslve Computing Systems consists of systems that have
. o 18 L. PN @ - hardware “everywhere”
@ 1 __VO" ko] = We covered three types:
) o 5 D a2 = Ubiqui Mobile Sy Sensor Networks
g z (-3 Lo = A major distinguishing factor with Ubiquitous Systems is that
5 - L] they consist of many heterogeneous devices
o - = processors in day-to-day objects > think Home Automation
. o [= Sensor networks
B @ Q‘M:! - = Can have heterogeneous devices, but in general many sensor nodes
;_ - cardl s o “JWS Ll / ,O a are uniform / similar in nature (homogeneous)
[maninas [T et o o Mt 2 o o s [i [T et vered ot W 0o 1

13 14

OBJECTIVES - 1/17 ASSIGNMENT O

SAQuestionsifromEt/d2 = Preparing for Asslgnment 0:
| = Asslgnment O: Cloud Computing Infrastructure Tutorlal | = Establish AWS Account
= Chapter 2: Distributed System Architectures: Standard account - ** request cloud credits from Instructor **

= Specify “AWS CREDIT REQUEST" as subject of email
* Include email address of AWS account
AWS Educate Starter account - some account limitations
= httpsy// tartel nt- vices,s3, com/
AWS_Educate_Starter_Account_Services_Supported.pdf
= Establish local Linux/Ubuntu environment

= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization - UL AL = LAV EEEEITE e
= Task 2 - Working w/ Docker, creating Dockerfile for Apache Tomcat

= Chapter 2.3: System Architectures

;. N L] - i i
= Centralized system architectures Task 3 Creat.lng a_DockerflIe for h.aproxy
= Decentralized peer-to-peer architectures = Task 4 - Working with Docker-Machine
= Hybrid architectures = Task 5 - For Submission: Testing Alternate Server Configurations
TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ e Z202s School of Engineering and Technology, University of Washington - Tacoma s ‘ e School of Engineering and Technology, University of Washington - Tacoma o

15 16

ASSIGNMENT O CH 2.1 - ARCHITECTURAL STYLES

= Preparing for Assignment 0:

= Establish AWS Account =Layered
Standard account Lecture 4
= Complete AWS Cloud Credits Survey and provide AWS account ID = Object-based
= Credits will be automatically loaded by Amazon into accounts I = Service oriented architecture (SOA) I
= Tasks:

= Task 1 - Establish local Linux/Ubuntu environment - RESRIEE-EEEred AEEes
= Task 2 -AWS account setup, obtain user credentials
= Task 3 - Intro to: Amazon EC2 & Docker: create Dockerfile for = Representational state transfer (REST)

Apache Tomcat
= Task 4 - Create Dockerfile for haproxy
= Task 5 - Working with Docker-Machine = Event-based
= Task 6 - Config 3 multiple server configs to load balance = Publish and subscribe (Rich Site Summary RSS feeds)
requests for RESTful Fibonacci web service
= Task 7 - Test configs and submit results

TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ (EIEFERERED School of Engineering and Technology, University of Washington - Tacoma o OERARETD School of Engineering and Technology, University of Washington - Tacoma o

17 18

Slides by Wes J. Lloyd L5.3

https://awseducate-starter-account-services.s3.amazonaws.com/AWS_Educate_Starter_Account_Services_Supported.pdf

TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

SERVICE ORIENTED ARCHITECTURE

= Services provide always-on encapsulated functions over
the internet/web

= Leverage redundant cloud computing infrastructure
= Services may:

= Aggregate multiple languages, libraries, operating
systems

= Include (wrap) legacy code
= Many software components may be involved in the
implementation
= Application server(s), relational database(s), key-value
stores, in memory-cache, queue/messaging services

‘ January17, 2023

TCsS558: Applied Distributed Computing [Winter 2023] 51
School of Engineering and Technology, University of Washington - Tacoma

19

OBJECTIVES - 1/17

= Questions from 1/12
= Assignment O: Cloud Computing Infrastructure Tutorial
= Chapter 2: Distributed System Architectures:

apter 2 Archit: Styles

ures
Representatlonal state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
* Hybrid architectures

TCs5558: Applied Distributed Computing [Winter 2023] 521
School of Engineering and Technology, University of Washington - Tacoma

‘ January17, 2023

21

REST SERVICES

= Representational State Transfer (REST)
= Built on HTTP
= Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
Four operations: GET PUT POST DELETE

Messages to/from a service are fully described

After execution server forgets about client
Stateless execution

‘ January 17, 2023

TCs5558: Applied Distributed Computing [Winter 2023] s
School of Engineering and Technology, University of Washington - Tacoma

23

Slides by Wes J. Lloyd

SERVICE ORIENTED ARCHITECTURE - 2

= Are more easily developed independently and shared
vs. systems with distributed object architectures

= Less coupling

= An error while invoking a distributed object may crash the
system

= An error calling a service (e.g. mismatching the interface)
generally does not result in a system crash

‘ January17, 2023

TCsS558: Applied Distributed Computing [Winter 2023] 1520
School of Engineering and Technology, University of Washington - Tacoma

20

RESOURCE BASED ARCHITECTURES

= Motivation:
= Increasing number of services available online
= Each with specific protocol(s), methods of interfacing

= Connecting services w/ different TCP/IP protocols
- integration nightmare

Need for specialized client for each service that speaks the
application protocol “language”...

= Need standardization of interfaces

= Make services/components more pluggable
= Easier to adopt and

integrate 4
= Common
architecture

TC5S558: Applied Distributed Computing [Winter 2023] 522
School of Engineering and Technology, University of Washington - Tacoma

‘ January 17, 2023

22

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

= An ASClI-based request/reply protocol for transferring
information on the web

= HTTP request includes:
= request method (GET, POST, etc.)
= Uniform Resource Identifier (URI)
= HTTP protocol version understood by the client
= headers—extra info regarding transfer request
= HTTP response from server
= Protocol version & status code >
= Response headers
= Response body

HTTP status codes:
Zxx — all is well

3xx — resowrce moved
4o aovess problem
Sxx - server eror

‘ January 17, 2023

TCSS558: Applied Distributed Computing [Winter 2023] 526
School of Engineering and Technology, University of Washington - Tacoma

24

L5.4

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

REST-FUL OPERATIONS

Operatlon Description -

PUT Create a new resource (C)reate
GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate
DELETE Delete a resource (D)elete

= Resources often implemented as objects in 00 languages
= REST is weak for tracking state
= Generic REST interfaces enable ubiquitous “so many” clients

TCSS558: Applied Distributed Computing [Winter 2023]
EauayL2n2 School of Engineering and Technology, University of Washington - Tacoma 1525

25

REST - 2

= Defacto web services protocol
= Requests made to a URI - uniform resource identifier

= Supersedes SOAP - Simple Object Access Protocol
= SOAP - application protocol specific to web services

= Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

= Responses most often in JSON, also HTML, ASCII text,
XML, no real limits as long as text-based

= curl - generic command-line REST client:
https://curl.haxx.se

TCSS558: Applied Distributed Computing [Winter 2023]
January17, 2023 School of Engineering and Technology, University of Washington - Tacoma 52

27

// SOAP RESPONSE - Book Store - Query Price

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPriceResponse>
<m: Price>10.95</m: Price>
</m:GetBookPriceResponse>
</soap:Body>
</soap:Envelope>

TCSS558: Applied Distributed Computing [Winter 2023]

Sanus 2028 School of Engineering and Technology, University of Washington - Tacoma L1129

January 17, 2023

EXAMPLE: AMAZON S3

= Amazon S3 offers a REST-based interface
= Requires signing HTTP authorization header or passing
authentication parameters in the URL query string

© AWS SDKs and Explorers
O Set Up the AWS CLI

= REST: GET/PUT/POST/DELETE

= SOAP: 16 operations, moving toward O Usingthe AWSsDK for Java
deprecation

= Python boto ~50 operations
(SDK for Python)

= SDKs for other languages

O Using the AWS SDK for .NET

O Using the AWS SDK for PHP
and Running PHP Examples

O Using the AWS SDK for Ruby -
Version 3

0 Using the AWS SDK for Python
(Boto)

TCsS558: Applied Distributed Computing [Winter 2023] 1526
School of Engineering and Technology, University of Washington - Tacoma

‘ January17, 2023

26

// SOAP REQUEST - Book Store - Query Price

POST /InStock HTTP/1.1

Host: www.bookshop.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">
<soap:Body xmlns:m="http://www.bookshop.org/prices">
<m:GetBookPrice>
<m:BookName>The Fleamarket</m:BookName>
</m:GetBookPrice>
</soap:Body>
</soap:Envelope>

TCSS558: Applied Distributed Computing [Winter 2023}

023]
LSS 2028 School of Engineering and Technology, University of Washington - Tacoma Lit.2e

28

// Web Service Definition Language (WSDL)
// Service Definition - Day of Week Service
xnl versions"1.0" encoding="UTE-8"7>

<definitions name ="DayofWeek"

tp:/ /1 1
ooy

o / /s
ittp: //schemas .xmlsoap.org/wsdl/s0ap/"
/www .3 .02/ 2001/04LSchema"

hemas xmlsoap . org/wsdl/">
ayOfWeekInput >

te" type="xsd:date"/>
ayOfHieskResponse>

.yOfWeek" type="xsd:string"/>

<soap:binding style="document"

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>

>
<soap:body use="encoded"
p:

p:
"http://sch 1 />
</output>
</operation>
</binding>
<service name="DayofWeekService" >
<documentation>
Returns the day-of-week name for a given date
</documentation>

ng
location="http: 7>

</definitions>

29

Slides by W

es J. Lloyd

30

https://curl.haxx.se/

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

REST CLIMATE SERVICES EXAMPLE

= USDA // REST/JSON
Lat/Long // Request climate data for Washington
Climate {
Service "parameter": [
{
Demo "name": "latitude",

"value":47.2529
I
{

0 "name": "longitude"
= Just provide wvalue":-122.4443
a Lat/Long]}
}
TCSS558: Applied Distributed Cc iting (Winter 2023]
‘ EauayL2n2 School of E::m!eermsg nd :ech:muv:v,ngnive:‘si;z of Washington - Tacoma 1531

31

PUBLISH-SUBSCRIBE ARCHITECTURES

= Enables separation between processing and coordination
= Types of coordination:

Temporally coupled | Temporally decoupled
(at the same time) (at different times)

Referentially coupled N bi Mailbox
Explicit synchronous Asynchronous by
(dependent on name) .
service call name (address)
. Event-based Shared data space
Referentially N p
Event notices Processes write tuples

decoupled

q published to shared to a shared data
(name not required)

bus, w/o addressing space
Publish and subscribe architectures

TCSS558: Applied Distributed Computing [Winter 2023]
‘ January17, 2023 School of Engineering and Technology, University of Washington - Tacoma 1533

33

PUBLISH SUBSCRIBE ARCHITECTURES - 3

= Shared data space
= Full decoupling (name and time)
= Processes publish “tuples” to shared dataspace (publish)

= Processes provide search pattern to find tuples
(subscribe)

| Component | | Component ‘
= Subscribers are notified of
matches (both existing and Publish Subscribe Data
newly published tuples) v y | deliver
= Key characteristic: ¥
Processes have no explicit
reference to each other
Shared (persistent) data space

TCSS558: Applied Distributed Computing [Winter 2023]
‘ (EIEFERERED School of Engineering and Technology, University of Washington - Tacoma 3

January 17, 2023

OBJECTIVES - 1/17

= Questions from 1/12
= Assignment O: Cloud Computing Infrastructure Tutorial
= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (RIch Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2023]
flanuaryizi2023 School of Engineering and Technology, University of Washington - Tacoma 1532

32

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

- Event. raination
= Processes do not know Subscrie | i ' Notification

delivery

Event bus

about each other explicitly re

Publish
= Processes:

= Publish: a notification
describing an event

= Subscribe: to receive
notification of specific kinds of events

= Assumes subscriber is presently up (temporally coupled)
= Subscribers must actively MONITOR event bus

TCSS558: Applied Distributed Computing [Winter 2023]
‘ Januaryi7,2023 School of Engineering and Technology, University of Washington - Tacoma 1534

34

PUBLISH SUBSCRIBE ARCHITECTURES - 4

= Subscriber describes events interested in
= Complex descriptions are intensive to evaluate and fulfil
= Middleware will:
= Publish matching notification and data to subscribers
= Common if middleware lacks storage
= Publish only matching notification
= Common if middleware provides storage facility
= Client must explicitly fetch data on their own

= Publish and subscribe systems are generally scalable

= What would reduce the scalability of a publish-and-
subscribe system?

‘ January 17, 2023 TCSS558: Applied Distributed Computing [Winter 2023] 536

School of Engineering and Technology, University of Washington - Tacoma

35

Slides by Wes J. Lloyd

36

L5.6

TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,

UW-Tacoma

January 17, 2023

WE WILL RETURN AT
2:40PM

OBJECTIVES - 1/17

= Questions from 1/12
= Assignment O: Cloud Computing Infrastructure Tutorial
= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
= Representational state transfer (REST)
= Event-based
= Publish and subscribe (Rich Site Summary RSS feeds)
|l Class Actlvity: Archltectural Styles |
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

TCsS558: Applied Distributed Computing [Winter 2023]
l flanuaryizi2023 School of Engineering and Technology, University of Washington - Tacoma 1538

37

38

IN-CLASS ACTIVITY:
ARCHITECTURAL
STYLES

CLASS ACTIVITY 2

= We will form groups of ~2-3
= On Zoom breakout rooms will be created
= Each group will complete a MS Doc worksheet
= Add names to the Doc as they appear in Canvas
= Once completed, gne person submits a PDF to Canvas
= |nstructor will score all group members based on the uploaded
PDF file
= To get started - link is under Class Activity 2 in Canvas:
= Log into your *** UW NET |D ***
= Link to shared doc file on Canvas

= Follow link:
https://canvas.uw.edu/courses/1621385/files/100858747

TCSS562: Software Engineering for Cloud Computing (Fall 2020] a0

l CEER D School of Engineering and Technology, University of Washington - Tacoma

39

DISTRIBUTED SYSTEM GOALS

TO CONSIDER

nsider how the archi ral change may im
= Availability
= Accessibility
= Responsiveness
= Scalability
= 0penness
= Distribution transparency
= Supporting resource sharing
= Other factors...

TCs5558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

l January 17, 2023

41

Slides by Wes J. Lloyd

40

CH 2.2: MIDDLEWARE

ORGANIZATION

TCSS558: Applied Distributed Computing [Winter 2023]

ST 202 School of Engineering and Technology, University of Washington -

42

L5.7

https://canvas.uw.edu/courses/1621385/files/100858747

TCSS 558: Applied Distributed Computing January 17, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 1/17 MIDDLEWARE ORGANIZATION

= Questions from 1/12

.) , = Relies on two important design patterns:
= Assignment O: Cloud Computing Infrastructure Tutorial

= Chapter 2: Distributed System Architectures: .Wrappers
= Chapter 2.1 - Architectural Styles =|nterceptors

= Resource-centered architectures
Representational state transfer (REST)
= Event-based = Both help achieve the goal of openness
Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures

= Decentralized peer-to-peer architectures
= Hybrid architectures

TCsS558: Applied Distributed Computing [Winter 2023] 1543 o) D) TCsS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma. L/ School of Engineering and Technology, University of Washington - Tacoma

‘ January17, 2023

43 44

Wrapper
= Wrappers (also called adapters) = Inter-application communication / ~
= WHY?: Interfaces available from legacy software may not be . s . . . clients —% ./
sufficient for all new applications to use Qfgrllczlti:':'tsama%;:?;:]de I RS [ﬂ'_,/ [
= WHAT: Special “frontend” components that provide interfaces for y. . sl) |
Ellente = Scalability suffers Application | |
= Interface wrappers transform client requests to “implementation” = N applications > O(N2) wrappers \‘/*\
(i.e. legacy software) at the component-level L O
= Can then provide modern service interfaces for legacy code/systems = ALTERNATE: L Broker
= Components encapsulate (i.e. abstract) dependencies to meet all . - . . —~
preconditions to operate and host legacy code = Provide a common intermediary — '_J
= Interfaces parameterize legacy functions, abstract environment = Broker km?ws _h°W to communicate with A4 /
configuration (i.e. make into black box) every application v
= Contributes towards system OPENNESS = Applications only know how to communicate Broker _(\D
= Example: Amazon $3: S3 HTTP REST interface with the broker s
= GET/PUT/DELETE/POST: requests handed off for fulfillment / ‘_/"
" — T —
[maninas [Tt o s e 2o [i [T e ol s W 201 o s

45 46

MIDDLEWARE: INTERCEPTORS MIDDLEWARE: INTERCEPTORS - 2

= Interceptor » Client appiication Request-level
T interceptor
= Software construct, breaks flow of control, allows \ — transforms:
other application code to be executed [i B.doit(val)

into generic call:

Request-level interceptor P Nonintercepted call invoke (B, &doit,val)

Il l

J qu = L Message-level

= Interceptors send calls to other servers, or to ALL
servers that replicate an object while abstracting TeERes in
the distribution and/or replication middleware

= Used to enable remote procedure calls (RPC), remote Message-leve nterceptor| [object s local | tsﬁrﬂodusgf;gsssage

1 ‘ Object middieware

i

method invocation (RMI) _— Ln‘-, . (TCP/IP socket)

q . . to transfer data:

= Object A calls method belonging to object B Local 08 send(B,”doit”,val)
= Interceptors route calls to object B regardless of location To object B Non-intercepted:

TCSS558: Applied Distributed Computing [Winter 2023]

OERARETD School of Engineering and Technology, University of Washington -Tacoma

‘ January 17, 2023 TCS5558: Applied Distributed Computing [Winter 2023] a7 e

School of Engineering and Technology, University of Washington - Tacoma

47 48

Slides by Wes J. Lloyd L5.8

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

MIDDLEWARE INTERCEPTION - METHOD

= MIDDLEWARE: Provides local interface matching Object B to
Object A

= Object A calls Object B’s method provided by local interface

= A's call is transformed into a “generic object invocation” by
request-level Interceptor

= “Generic object invocation” is transformed into a message by
message-level Interceptor and sent over Object A’s network to
Object B

= [nterception automatically routes calls to all object replicas

School of Engineering and Technology, University of Washington - Tacoma

‘ January 17, 2023 TCSS558: Applied Distributed Computing [Winter 2023] 15

49

| |oometmsenars

Lt

s i

CH 2.3: SYSTEM
ARCHITECTURES

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington -

January 17, 2023

51

SYSTEM ARCHITECTURES

= Architectural styles (or patterns)
= General, reusable solutions to commonly occurring
system design problems

= Expressed as a logical organization of components
and connectors

= Deciding on the system components, their
interactions, and placement is a “realization” of an
architectural style

= System architectures represent designs used in
practice

TCSS558: Applied Distributed Computing [Winter 2023]
‘ (EIEFERERED School of Engineering and Technology, University of Washington - Tacoma o

MODIFIABLE MIDDLEWARE

® GOAL: It should be possible to modify middleware without loss
of availability
= Software ts can be rep at runtime

= Component-based design
= Modifiability through composition
= Systems may have static or dynamic configuration of components

= Dynamic configuration requires [ate binding
= Comp s can be ch d at runtime

= Component based software supports modifiability at runtime
by enabling components to be swapped out.

= Does a microservices archltecture (e.g. AWS Lambda) support
modiflabllity at runtime ?

‘ T) TCss558: Applied Distributed Computing [Winter 2023] 1550

School of Engineering and Technology, University of Washington - Tacoma

50

OBJECTIVES - 1/17

= Questions from 1/12
= Assignment O: Cloud Computing Infrastructure Tutorial
= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
| = Chapter 2.3: System Archltectures |
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2023]
‘ fanuanvilzizozs School of Engineering and Technology, University of Washington - Tacoma 1952

52

OBJECTIVES - 1/17

® Questions from 1/12
= Assignment 0: Cloud Computing Infrastructure Tutorial

= Chapter 2: Distributed System Architectures:
= Ch: r 2.1 - Archi ral
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Archlitectures
| -c system |
= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2023]
CLERFERETD School of Engineering and Technology, University of Washington - Tacoma s

53

Slides by Wes J. Lloyd

54

L5.9

TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,

UW-Tacoma

TYPES OF SYSTEM ARCHITECTURES

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured

= Unstructured
= Hierarchically organized
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2023]
‘ EauayL2n2 School of Engineering and Technology, University of Washington - Tacoma 1555

January

17,2023

55

CENTRALIZED:
SIMPLE CLIENT-SERVER ARCHITECTURE

. R Cliant Sarver
= Clients request services —
= Servers provide services
= Request-reply behavior fait onty Pravida serice

= Connectionless protocols (UDP)

= Assume stable network communication with no failures

= Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

= Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

= Clients can resend the request when no reply is received

= But what Is the server dolng?

TCsS558: Applied Distributed Computing [Winter 2023] 1556
School of Engineering and Technology, University of Washington - Tacoma

‘ January17, 2023

CLIENT-SERVER PROTOCOLS

= Connectlonless cont’d
= |s resending the client request a good idea?
= Examples:
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money | have left”
= |dempotent - repeating requests is safe
= Connectlon-orlented (TCP)
= Client/server communication over wide-area networks (WANs)

= When communication is inherently reliable
= Leverage “reliable” TCP/IP connections

TCs5558: Applied Distributed Computing [Winter 2023] 1557
School of Engineering and Technology, University of Washington - Tacoma

‘ January17, 2023

56

CLIENT-SERVER PROTOCOLS - 2

= Connectlon-oriented cont’d
= Set up and tear down of connections is relatively expensive
= Overhead can be amortized with longer lived connections

= Example: database connections often retained

= Ongoing debate:
= How do you differentiate between a client and server?
= Roles are blurred

= Blurred Roles Example: Distributed databases
= DB nodes both service client requests, *and* submlit new
requests to other DB nodes for replication, synchronization, etc.

TC5S558: Applied Distributed Computing [Winter 2023] 1558
School of Engineering and Technology, University of Washington - Tacoma

‘ January 17, 2023

58

57
TCP UDP
Reliable Unreliable
siended
retransi
No windowing or
‘and flow control through e ions
Segment No
No
[e e o oo o

Slides by Wes J. Lloyd

CONNECTIONLESS VS
CONNECTION ORIENTED

n nl DP) Connection-oriented (TCP)
stateless stateful

Advantages

Disadvantages

TCSS558: Applied Distributed Computing [Winter 2023]

‘ OERARETD School of Engineering and Technology, University of Washington - Tacoma

60

L5.10

TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,

UW-Tacoma

January 17, 2023

CONNECTIONLESS VS

CONNECTION ORIENTED

Connectlonless (UDP)

stateful

stateless

Connectlon-oriented (TCP)

* Message sequences

temporarily unavailable

Ad + Fastto i (no . delivery confirmation
connection overhead) * ldempotence not required
© toan i ° ically resent
* Network bandwidth savings - if client (or network) is

guaranteed
Disadvantages ° Cannot tell difference of = Connection setup is time-
request vs. failure i
* Requires idempotence * More bandwidth is required
* Clients must be online and (protocol, retries, multinode-
ready to receive ication)

TCSS558: Applied Distributed Computing [Winter 2023]

EauayL2n2 School of Engineering and Technology, University of Washington - Tacoma

1561

MULTITIERED ARCHITECTURES

= Where should functionality be distributed?
= At the client?
= At the server?

Client machine

User interface| | User interface | | Userinterface| | User interface

Application. J Application Application
i ST ‘ [ty Database
User interface Yo S~

Application -

| User interface

| Application Application | .
| Database Database | Database | [Datsbase | | Database ‘
rver maching

= Why should we consider component composition?

TCSS558: Applied Distributed Computing [Winter 2023]

flanuaryizi2023 School of Engineering and Technology, University of Washington - Tacoma

1562

61

62

Bell's Number: 4 15
5 52
k: number of ways

n components can be 6 203
distributed across containers 7 877
8 4,140
9 21,14

7

& N

SC1& SCTY

Resource utilization profile changes
from component composition

M-bound RUSLE2 - Soil Erosion Model Webservice
* Box size shows absolute deviation (+/-) from mean
« Shows relative magnitude of performance variance

Two application variants tested
* M-bound: Standard service, M is compute bound
* D-bound: Modified service, D is compute bound

Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%
143.9%

Network bytes sent: 143.7%

Resource footpri

MD F
L

rmo=

Tomcat Application Server
Postgresql DB

nginx file server

Logging server (high O/H)

CPUtime diskreads disk writes

networkreads networkwrites

63

64

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

15

Sl

M-bound:
D-bound:

25.7%

A Performance Change:
Min to max performance

14%

[Uo

.15

scl sc2 sc3 sed seh se6 sc7 seB seO scl0sc11sc12sc13sc145015

Service Configurations

MULTITIERED ARCHITECTURES - 2

=MD FL architecture

= M - is the application server

= M - is also a client to the database (D),
fileserver (F), and logging server (L)

Server as a client

Cliant Application
server

Request
operation

Request
data

Wit for | Wait for

reply | data
| Retum
data

Return

reply

Databasi
server

‘ TCs5558: Applied Distributed Computing [Winter 2023]

OERARETD School of Engineering and Technology, University of Washington - Tacoma

65

Slides by Wes J. Lloyd

66

L5.11

TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,

UW-Tacoma

= Vertlcal distribution
® The distribution of “M D F L"

= M - The application server
= D - The database server

= Horizontal distribution

= Scaling an individual tier

= Add multiple machines and distribute load
= Load balancing

MULTITIERED RESOURCE SCALING

= Application is scaled by placing “tiers” on separate servers

= Vertical distribution impacts “network footprint” of application
= Service isolation: each component is isolated on its own HW

TCSS558: Applied Distributed Computing [Winter 2023]

‘ EauayL2n2 School of Engineering and Technology, University of Washington - Tacoma

1567

January 17, 2023

MULTITIERED RESOURCE SCALING - 2

= Horlzontal distributlon cont’d
= Sharding: portions of a database map” to a specific server
= Distributed hash table
= Or replica servers

TCSS558: Applied Distributed Computing [Winter 2023]

‘ flanuaryizi2023 School of Engineering and Technology, University of Washington - Tacoma

67

OBJECTIVES - 1/17

= Questions from 1/12
= Assignment O: Cloud Computing Infrastructure Tutorial
= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures

| = Decentrallzed peer-to-peer archltectures |

* Hybrid architectures

TCS5558: Applied Distributed Computing [Winter 2023]

‘ January17, 2023 School of Engineering and Technology, University of Washington - Tacoma.

1569

68

TYPES OF SYSTEM ARCHITECTURES

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured

= Unstructured
= Hierarchically organized
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2023]
‘ Januaryi7,2023 School of Engineering and Technology, University of Washington - Tacoma 70

69

DECENTRALIZED PEER-TO-PEER
ARCHITECTURES

= Client/server:
= Nodes have specific roles

= Peer-to-peer:
= Nodes are seen as all equal...

= How should nodes be organlzed for communlication?

TCs5558: Applied Distributed Computing [Winter 2023]

‘ (EIEFERERED School of Engineering and Technology, University of Washington - Tacoma

1571

70

STRUCTURED PEER-TO-PEER

= Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)
= Organization assists in data lookups

= Data indexed using “semantic-free” indexing
= Key / value storage systems

= Key used to look-up data

= Nodes store data associated with a subset of keys

TCSS558: Applied Distributed Computing [Winter 2023]
‘ OERARETD School of Engineering and Technology, University of Washington - Tacoma wr

71

Slides by Wes J. Lloyd

72

L5.12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

DISTRIBUTED HASH TABLE (DHT)

= Distributed hash table (DHT) (ch. 5)
® Hash function

key(data item) = hash(data item’s value)
= Hash function “generates” a unique key based on the data
= No two data elements will have the same key (hash)
= System supports data lookup via key
= Any node can receive and resolve the request
= Lookup function determines which node stores the key

existing node = lookup (key)

= Node forwards request to node with the data

‘ January 17, 2023 TCSS558: Applied Distributed Computing [Winter 2023] 5

School of Engineering and Technology, University of Washington - Tacoma

73

FIXED HYPERCUBE EXAMPLE - 2
= Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)
= Node 1110 is not a neighbor to 0111

= Which connector leads to the shortest path?

Vads

0010

o110 I —Qm

TCs5558: Applied Distributed Computing [Winter 2023] 1575
School of Engineering and Technology, University of Washington - Tacoma

‘ January17, 2023

75

DYNAMIC TOPOLOGY

= Fixed hypercube requires static topology
= Nodes cannot join or leave

= Relies on symmetry of number of nodes

= Can force the DHT to a certain size

= Chord system - DHT (again in ch.5)
= Dynamic topology
= Nodes organized in ring
= Every node has unique ID
= Each node connected with other nodes (shortcuts)
= Shortest path between any pair of nodes is ~ order O(log N)
= N is the total number of nodes

TCSS558: Applied Distributed Computing [Winter 2023]
‘ (EIEFERERED School of Engineering and Technology, University of Washington - Tacoma w7

FIXED HYPERCUBE EXAMPLE

= Example where topology helps route data lookup request

= Statically sized 4-D hypercube, every node has 4 connectors

= 2 x 3-D cubes, 8 vertices, 12 edges

= Node IDs represented as 4-bit code (0000 to 1111)

= Hash data items to 4-bit key (1 of 16 slots)

= Distance (number of hops) determined by identifying number
of varying bits between neighboring nodes and destination

0010

—_ ~ g

TCSS558: Applied Distributed Computing [Winter 2023]
‘ flanuaryizi2023 ‘ School of Engineering and Technology, University of Washington - Tacoma 1574

74

WHICH CONNECTOR LEADS TO THE

SHORTEST PATH?

= Example: node 0111 (7) retrieves data from node 1110 (14)
= Node 1110 is not a neighbor to 0111

0111] Nelghbors:
1111 (1 bit different than 1110) 0011 (3 bits different- bad path)
0110 (1 bit different than 1110) 0101 (3 bits different- bad path)

= Does It matter which node Is selected for the first hop?

0010

—__ 1110

TCSS558: Applied Distributed Computing [Winter 2023]
‘ Januaryi7,2023 ‘ School of Engineering and Technology, University of Washington - Tacoma 1576

76

CHORD SYSTEM

= Data items have m-bit key
Data item is stored at closest “successor” node with ID = key k

Each node maintains finger table of successor nodes
Client sends key/value

lookup to any node o e ,

= Node forwards client hetustnoce g o /| E0)
request to node with i . .) X f 5
m-bit ID closest to, but | % DAV G
not greater than key k nate 4 A z

Nodes must continually /
refresh finger tables by | V)
communicating with L7 A P
adjacent nodes to @._‘- ’ ST 77 52
incorporate node 18 ‘@ . 6

joins/departures 30— 454

TCSS558: Applied Distributed Computing [Winter 2023]
‘ OERARETD School of Engineering and Technology, University of Washington -Tacoma e

Node respansiie for
heys (56789

77

Slides by Wes J. Lloyd

78

L5.13

TCSS 558: Applied Distributed Computing January 17, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

SEARCHING FOR DATA:

URED PEER-TO-PEER

UNSTRUCTURED PEER-TO-PEER SYSTEMS

= No topology: How do nodes find out about each other? = Flooding

= Each node maintains adhoc list of neighbors = [Node u] sends request for data item to all neighbors
= Facilitates nodes frequently joining, leaving, adhoc systems " [Node v]

= Nelghbor: node reachable from another via a network path scachesiiccallvicseondsioiicionarteilihayineldats

= Forwards request to ALL neighbors
= Ignores repeated requests
= Features

= Neighbor lists constantly refreshed
= Nodes query each other, remove unresponsive neighbors
= Forms a “random graph” = High network traffic
= Predetermining network routes not possible = Fast search results by saturating the network with requests
= How would you calculate the route algorithmically? = Variable # of hops
O RS sk Bo dseamsicd = Max number of hops or time-to-live (TTL) often specified

= Requests can “retry” by gradually increasing TTL/max hops until
data is found

TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ EauayL2n2 School of Engineering and Technology, University of Washington - Tacoma 1579 flanuaryizi2023 School of Engineering and Technology, University of Washington - Tacoma

79 80

SEARCHING FOR DATA - 2 SEARCHING FOR DATA - 3

= Random walks

= Pollcy-based search methods
® [Node u] asks a randomly chosen neighbor [node v]

- .
® If [node v] does not have data, forwards request to a Incorporate history and knowledge about thfe adhoc
random neighbor network at the node-level to enhance effectiveness of
= Features queries
= Low network traffic
= Akin to sequential search = Nodes maintain lists of preferred neighbors which often
= Longer search time succeed at resolving queries

= [node u] can start “n” random walks simultaneously to
reduce search time = Favor neighbors having highest number of neighbors
= As few as n=16..64 random walks sufficient to reduce search

time (LV et al. 2002) = Can help minimize hops

= Timeout required - need to coordinate stopping network-wide
walk when data is found...

TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ January17, 2023 School of Engineering and Technology, University of Washington - Tacoma e Januaryi7,2023 School of Engineering and Technology, University of Washington - Tacoma 1582

81 82

HIERARCHICAL HIERARCHICAL

PEER-TO-PEER NETWORKS

PEER-TO-PEER NETWORKS - 2

= Problem:
Adhoc system search performance does not scale well as
system grows

= Allow nodes to assume ROLES to improve search

= Content delivery networks (CDNs) (video streaming)
= Store (cache) data at nodes local to the requester (client)
= Broker node - tracks resource usage and node availability

= Super peers
= Head node of local centralized network
= Interconnected via overlay network with other super peers
= May have replicas for fault tolerance

= Weak peers
= Rely on super peers to find data

- a]
Track where data is needed ® Leader-election problem: SQ
Track which nodes have capacity (disk/CPU resources) to host data * Who can become a &
super peer? | Super paer
= Node roles ¥ i | s
N network of super peers |
= Super peer -Broker node, routes client requests to storage griaatieauirements e - -
—(;Lp— , q g must be met to become ; \Q o — 0
n - {
odes a super peer? Weak peer oy [B o O," =
= Weak peer - Store data O 9} =
TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ S School of Engineering and Technology, University of Washington - Tacoma L8 ‘ OERARETD School of Engineering and Technology, University of Washington - Tacoma e

83 84

Slides by Wes J. Lloyd L5.14

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 17, 2023

OBJECTIVES - 1/17

= Questions from 1/12
= Assignment O: Cloud Computing Infrastructure Tutorial
= Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures

* Hybrid architectures |
TCSS558: Applied Distributed Computing [Winter 2023]
EauayL2n2 School of Engineering and Technology, University of Washington - Tacoma. 1585

85

HYBRID
ARCHITECTURES

= Combine centralized server concepts with decentralized
peer-to-peer models

= Edge-server systems:
= Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

= Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

= Example:

= AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

= https://www.Infoq.com/news/2017/07/aws-lambda-at-edge
TCSS558: Applied Distributed Computing [Winter 2023]
‘ 202 School of Engineering and Technology, University of Washington - Tacoma 1587

87

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE

= BitTorrent Example:
File sharing system - users must contribute as a file host to
be eligible to download file resources

= Original implementation features hybrid architecture
= Leverages idle client network capacity in the background
= User joins the system by interacting with a central server

= Client accesses global directory from a tracker server at well
known address to access torrent file

= Torrent file tracks nodes having chunks of requested file

= Client begins downloading file chunks and immediately then
participates to reserve downloaded content or network
bandwldth Is reduced!!

= Chunks can be downloaded in parallel from distributed nodes

TCs5558: Applied Distributed Computing [Winter 2023]

‘ (EIEFERERED School of Engineering and Technology, University of Washington - Tacoma o

TYPES OF SYSTEM ARCHITECTURES

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

| = Hybrid architectures |

TCSS558: Applied Distributed Computing [Winter 2023]
‘ flanuaryizi2023 School of Engineering and Technology, University of Washington - Tacoma

86

HYBRID

ARCHITECTURES - 2

= Fog computing:

= Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

= End-user devices become part of the overall system

= Middleware extended to incorporate managing edge
devices as participants in the distributed system

= Cloud = in the sky
= compute/resource capacity is huge, but far away...

= Fog - (devices) on the ground
= compute/resource capacity is constrained and local...

TCSS558: Applied Distributed Computing [Winter 2023]

fanuanvilzizozs School of Engineering and Technology, University of Washington - Tacoma

88

QUESTIONS

TCS8558: Applied Distributed Computing [Winter 2023]
LT A School of Engineering and Technology, University of Washington -

89

Slides by Wes J. Lloyd

90

https://www.infoq.com/news/2017/07/aws-lambda-at-edge

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/17
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 1/12
	Slide 7: Types of distributed systems
	Slide 8: Feedback - 2
	Slide 9: Object proxy
	Slide 10: Distributed objects
	Slide 11: Feedback - 3
	Slide 12: Feedback - 4
	Slide 13
	Slide 14: Feedback - 5
	Slide 15: OBJECTIVES – 1/17
	Slide 16: Assignment 0
	Slide 17: Assignment 0
	Slide 18: Ch 2.1 - Architectural styles
	Slide 19: Service oriented architecture
	Slide 20: Service oriented architecture - 2
	Slide 21: OBJECTIVES – 1/17
	Slide 22: Resource based architectures
	Slide 23: Rest services
	Slide 24: Hypertext transport protocol (http)
	Slide 25: REST-ful operations
	Slide 26: Example: Amazon s3
	Slide 27: Rest - 2
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Rest climate services example
	Slide 32: OBJECTIVES – 1/17
	Slide 33: Publish-subscribe architectures
	Slide 34: Publish-subscribe architectures - 2
	Slide 35: Publish subscribe architectures - 3
	Slide 36: Publish subscribe architectures - 4
	Slide 37: We will return at 2:40pm
	Slide 38: OBJECTIVES – 1/17
	Slide 39: In-class activity: architectural styles
	Slide 40: Class activity 2
	Slide 41: Distributed system goals to consider
	Slide 42: Ch 2.2: Middleware organization
	Slide 43: OBJECTIVES – 1/17
	Slide 44: Middleware organization
	Slide 45: Middleware: Wrappers
	Slide 46: Middleware: wrappers - 2
	Slide 47: Middleware: interceptors
	Slide 48: Middleware: interceptors - 2
	Slide 49: Middleware interception - method
	Slide 50: Modifiable middleware
	Slide 51: Ch 2.3: System architectures
	Slide 52: OBJECTIVES – 1/17
	Slide 53: System architectures
	Slide 54: OBJECTIVES – 1/17
	Slide 55: Types of System architectures
	Slide 56: Centralized: simple client-server architecture
	Slide 57: Client-server protocols
	Slide 58: Client-server protocols - 2
	Slide 59: Tcp/udp
	Slide 60: Connectionless vs connection oriented
	Slide 61: Connectionless vs connection oriented
	Slide 62: Multitiered architectures
	Slide 63
	Slide 64
	Slide 65: Performance implications of component deployments
	Slide 66: Multitiered architectures - 2
	Slide 67: Multitiered resource scaling
	Slide 68: Multitiered resource scaling - 2
	Slide 69: OBJECTIVES – 1/17
	Slide 70: Types of System architectures
	Slide 71: Decentralized Peer-to-peer architectures
	Slide 72: Structured peer-to-peer
	Slide 73: Distributed hash table (DHT)
	Slide 74: Fixed hypercube example
	Slide 75: Fixed Hypercube example - 2
	Slide 76: Which connector leads to the shortest path?
	Slide 77: Dynamic topology
	Slide 78: Chord system
	Slide 79: unstructured peer-to-peer
	Slide 80: Searching for data: unstructured peer-to-peer systems
	Slide 81: Searching for data - 2
	Slide 82: Searching for data - 3
	Slide 83: Hierarchical peer-to-peer networks
	Slide 84: Hierarchical peer-to-peer networks - 2
	Slide 85: OBJECTIVES – 1/17
	Slide 86: Types of System architectures
	Slide 87: Hybrid architectures
	Slide 88: Hybrid architectures - 2
	Slide 89: Collaborative distributed system example
	Slide 90: Questions

