
TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.1

Introduction to
Distributed Systems - II

Wes J. Lloyd

School of Engineering
& Technology (SET)
University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 1/3

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:

▪ Accessibility: resource sharing & availability

▪ Distribution transparency

▪ Openness

▪ Scalability

 Activity: Design goals of distributed systems

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.2

OBJECTIVES – 1/5

1

2

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.2

 The most popular times based on the survey were:

▪ Email appointment (60%)

▪ Tuesday after class (50%)

▪ Thursday after class (50%)

▪ Monday afternoon (50%)

 Office hour will be Tuesdays after class

▪ ~4:00 – 5:00p CP 229 and Zoom

 Additional hours will be added as needed

 Also by email appointment: wlloyd@uw.edu

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.3

TCSS 558 OFFICE HOURS – WINTER 2023

 Projects typically due at 11:59 PM on the due date

 36-hour grace period on late assignments

 Assignments will be marked as late in Canvas

 Cumulative timeliness of assignments can be considered for:

▪ grade curving/rounding decisions

▪ Recommendations: employers, grad school letters, etc.

 Occasionally submitting a late assignments is not an issue

 Submitting EVERY assignment late is a potential cause of concern

 Assignments 36 to 48 hours late receive 5% late penalty

 Each additional day incurs an additional 5% penalty up to 4 days

 Late submissions more than 4 days late receive zero score without

prior arrangement with the instructor

 When possible, assignments are posted at least two weeks prior to

the due date

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.4

TCSS 558 – LATE POLICY

3

4

mailto:wlloyd@uw.edu

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.3

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by Wed @ 10p

 Thursday surveys: due Mon @ 10p

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.5

ONLINE DAILY FEEDBACK SURVEY

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L2.6

5

6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.4

 Please classify your perspective on material covered in today’s

class (32 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.65( - previous 6.09)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.91( - previous 5.55)

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.7

MATERIAL / PACE

 Why do we need to ‘track system status’?

 For a distributed system consisting of multiple nodes
often there is a need to have the capability to track:
global system state

 EXAMPLE: Apache ZooKeeper:

▪ ZooKeeper provides a reusable implementation for key
features required by distributed applications/systems

▪ Saves developers from having to ‘reinvent the wheel’ each
time, by offering a common reusable implementation for
commonly required distributed systems functions

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.8

FEEDBACK FROM 1/3

7

8

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.5

 Apache ZooKeeper

 Reusable replicated key -value store that supports multiple common
distributed system requirements:

▪ Configuration management

▪ Naming service

▪ Data synchronization

▪ Leader election

▪ Message queue

▪ Notification system

 Key attributes:

▪ Scalable – can run on a single server or across multiple nodes

▪ Reliable – can suffer the loss of a node

▪ Fast – best for read dominant workloads with few writes

 Alternatives: Etcd, Consul

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.9

FEEDBACK - 2

 “Atomic” transactions – all or nothing ?

 “Atomic” in computer science means that a set of independent

operations proceeds as if it were a single operation

 On CPUs, atomic operations typically consist of individual

assembly instructions

 Of the assembly instructions, what is atomic ?

mov 0x8049a1c, %eax

add $0x1, %eax

mov %eax, 0x8049a1c

 Atomic transaction mean a set of changes to ‘global system

data’ will be applied as a set

▪ Either all of the changes are applied, or none of them

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.10

FEEDBACK - 3

9

10

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.6

 Why do we need overlay networks?

 An overlay network is a virtual computer network layered on
top of another (existing) network

 Internet originally was as an overlay over the telephone
network

▪ Existing telephone infrastructure used to augment connectivity and
reach of the internet

▪ Early on: lack of network infrastructure for moving digital data

 Today with Voice-over-IP the telephone network is increasingly
becoming an overlay network built on top of the Internet

 For distributed systems, overlay networks refers to ‘virtual
networks’ which nodes use to communicate

▪ The underlying networks are used to implement the overlay using a
variety of physical links

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.11

FEEDBACK - 4

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L2.12

 Consider the System Archicture:

 Consider a node with data token

 How many messages are required to share the data

with all nodes in the distributed system?

11

12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.7

SURVEY

LINKS

AT:

http://faculty.washington.edu/wlloyd

/courses/tcss558/announcements.html

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L2.13

 Questions from 1/3

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:

▪ Accessibility: resource sharing & availability

▪ Distribution transparency

▪ Openness

▪ Scalability

 Activity: Design goals of distributed systems

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.14

OBJECTIVES – 1/5

13

14

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.8

 Definition:

 A collection of autonomous computing elements that

appears to users as a single coherent system.

 How nodes collaborate / communicate is key

 Nodes

▪ Autonomous computing elements

▪ Implemented as hardware or software processes

 Single coherent system

▪ Users and applications perceive a single system

▪ Nodes collaborate, and provide “abstraction”

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.15

WHAT IS A DISTRIBUTED SYSTEM?

#1: Collection of autonomous computing elements

▪Node synchronization

▪Node coordination

▪Overlay networks – enable node connectivity

#2: Single coherent system

▪Distribution transparency

▪Middleware

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.16

CHARACTERISTICS OF

DISTRIBUTED SYSTEMS - 1

15

16

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.9

 Questions from 1/3

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:

▪ Accessibility: resource sharing & availability

▪ Distribution transparency

▪ Openness

▪ Scalability

 Activity: Design goals of distributed systems

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

OBJECTIVES – 1/5

Accessibility: support for sharing resources

Distribution transparency: the idea that how a

system is distributed is hidden from users

Openness: avoid vendor lock-in

Scalability: ability to adapt and perform well with

an increased or expanding workload or scope

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

DESIGN GOALS

OF DISTRIBUTED SYSTEMS

17

18

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.10

 Questions from 1/3

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:

▪ Accessibility: resource sharing & availability

▪ Distribution transparency

▪ Openness

▪ Scalability

 Activity: Design goals of distributed systems

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.19

OBJECTIVES – 1/5

 In distributed systems, aspects of the implementation are

hidden from users

 End users can simply use / consume the resource (or system)

without worrying about the implementation details

 Technology aspects required to implement the distribution are

abstracted from end users

 The distribution is transparent to end users.

 End users are not aware of certain mechanisms that do not

appear in the distributed system because transparency

confines details into layer(s) below the one users interact

with. (abstraction through layered architectures)

 Users perceive the system as a single entity even though it’s

implementation is spread across a collection of devices.

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.20

DISTRIBUTION TRANSPARENCY

19

20

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.11

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

DISTRIBUTION TRANSPARENCY - 2

 Types of distribution transparency

 Object is a resource or a process

Transparency Description

Access Hide differences in data representation and how an object is

accessed.

Location Hide where an object is located

Relocation Hide that an object may be moved to another location while in use

Migration Hide that an object may move to another location

Replication Hide that an object is replicated

Concurrency Hide than an object may be shared by several independent users

Failure Hide the failure and recovery of an object

 Access transparency – same (client) operations are used to
access local or remote resources

 Access transparency is the idea that a common set of actions
is used to access an object or data that is remote or local

 Access transparency supports relocation and migration
transparency

 Location transparency:

 Provided with Uniform resource locator (URLs) …

 Location is abstract: no client reconfiguration needed for
relocation

 Users can’t tell where an object physically is

 Example: during covid-19 students have location transparency
from instructor enabled by Zoom

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.22

DISTRIBUTION TRANSPARENCY - 3

21

22

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.12

 Relocation transparency:

 Resource(s) can migrate from one server to another

 Initiated by the distributed system, possibly for maintenance

 Should a resource move while in use, users are unable to

notice

 Example: Student changes Zoom client from laptop to cell

phone - instructor does not notice

 Does Zoom provide good relocation transparency?

 Migration transparency:

 Feature offered by distributed systems

 Users are unaware if a resource possesses the ability to move

to a dif ferent location

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

DISTRIBUTION TRANSPARENCY - 4

 Replication transparency:

 Hide the fact that several copies of a resource exist

 What if a user is aware of, or has to interact with the copies?

 Reasons for replication:

 Increase availability

 Improve performance

 Fault tolerance: a replica can take over when another fails

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

DISTRIBUTION TRANSPARENCY - 4

23

24

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.13

 Concurrency transparency:

 Concurrent use of resources requires synchronization w/ locks

 Transactions are often used

 Having concurrency transparency implies the client is unaware

of locking mechanisms, etc.

 No special knowledge is needed

 Failure transparency:

 Masking failures is one of the hardest issues in dist. systems

 How do we tell the dif ference between a failed process and a

very slow one?

 When do we need to “fail over” to a replica?

 Subject of chapter 8…

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.25

DISTRIBUTION TRANSPARENCY - 5

 Questions from 1/3

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:

▪ Accessibility: resource sharing & availability

▪ Distribution transparency

▪ Openness

▪ Scalability

 Activity: Design goals of distributed systems

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.26

OBJECTIVES – 1/5

25

26

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.14

 Capability of a system consisting of components that are

easily used by, or integrated into other systems

 Key aspects of openness:

 Interoperability, portability, extensibility

 Interoperability: ability for components from separate

systems to work together (different vendors?)

 Though implementation of a common interface

 How could we measure interoperability of components?

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

OPENNESS

 Portability: degree that an application developed for

distributed system A can be executed without

modification on distributed system B

 How could we evaluate portability of a component?

 What percentage of portability is expected?

 The degree of portability will also reflect the

reusability of the software

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

OPENNESS - 2

27

28

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.15

 Extensibility : easy to reconfigure, add, remove, replace

components from different developers

 Example: replace the underlying file system of a distributed

system

 To be open, we would like to separate policy from mechanism

 Policy may change

 Mechanism is the technological implementation

 Avoid coupling policy and mechanism

 Enables flexibility

 Similar to separation of concerns, modular/OO design principle

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

OPENNESS - 3

 Interfaces: provide general syntax and semantics to

interact with distributed components

 Services expose interfaces: functions, parameters, return

values

 Semantics: describe what the services do

▪ Often informally specified (via documentation)

 General interfaces enable alternate component

implementations

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

ENABLING OPENNESS

29

30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.16

 Example: web browser caching

 Mechanism: browser provides facility for storing documents

 Policy: Users decide which documents, for how long, …

 Goal: Enable users to set policies dynamically

 For example: browser may allow separate component plugin
to specify policies

 Tradeoff: management complexity vs. policy flexibility

 Static policies are inflexible, but are easy to manage as
features are barely revealed.

 AWS Lambda (Function-as-a-Service) abstracts configuration
polices from the user resulting in management simplicity

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

SEPARATING POLICY FROM MECHANISM

Which of the following designs is more open?

 Acme software corporation hosts a set of public weather web

services (e.g. web service API… weatherbit ?)

 DESIGN A: API is implemented using MS .NET Remoting

 .NET Remoting is a mechanism for communicating between

objects which are not in the same process. It is a generic

system for dif ferent applications to communicate with one

another. .NET objects are exposed to remote processes, thus

allowing inter process communication. The applications can

be located on the same computer, dif ferent computers on the

same network, or on computers across separate networks.

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.32

OPENNESS EXAMPLE

31

32

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.17

 DESIGN B: API is implemented using Java RMI

 The Java Remote Method Invocation (RMI) is a Java API that

performs remote method invocation to allow Java objects to

be distributed across dif ferent Java program instances on the

same or dif ferent computers. RMI is the Java equivalent of C

remote procedure calls, which includes support for transfer of

serialized Java classes and distributed garbage -collection.

 DESIGN C: API is implemented as HTTP/RESTful web interface

 A RESTful API is an API that uses HTTP requests to GET, PUT,

POST and DELETE data. RESTful APIs are referred to as a

RESTful web services

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

OPENNESS EXAMPLE - 2

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L10.34

33

34

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.18

 Questions from 1/3

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:

▪ Accessibility: resource sharing & availability

▪ Distribution transparency

▪ Openness

▪ Scalability

 Activity: Design goals of distributed systems

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.35

OBJECTIVES – 1/5

 The capability of a system to handle a growing amount of work

by adding resources to the system

 Scalability is measured over multiple dimensions

 Two types: horizontal (scale out by adding more nodes)

and vertical (scale up by adding resource to a single node)

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.36

SCALABILITY

35

36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.19

 SIZE scalability : distributed system can grow easily without

impacting performance

▪ Supports adding new users, processes, resources

 GEOGRAPHICAL scalability : users and resources may be

dispersed, but communication delays are negligible

 ADMINISTRATIVE scalabil ity: Policies are scalable as the

distributed system grows to support more users… (security,

configuration management policies are agile enough to deal

with growth) Goal: have administratively scalable systems !

 Most systems only account for SIZE scalability

 One solution is to operate multiple parallel independent nodes

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.37

SCALABILITY DIMENSIONS

Centralized architectures have limitations

At some point a single central

coordinator/arbitrator node can’t keep up

▪Centralized server: limited CPU, disk, network capacity

Scaling requires surmounting bottlenecks

L loyd W, Pal l i ck ar a S , D av id O, Lyon J , A ra b i M, Roj as K . Mig rat i on o f mul t i - t ie r appl i c at ions

to i nf ras t ructu r e -as -a - s e r v ic e c l oud s : A n i nv es t ig at ion us i ng ker nel -b a sed v i r tu a l ma c hin es .

In Gr id Comput i ng (G RI D) , 2011 1 2t h IEEE / ACM Inte rn at ion al C onfe re nc e on 2011 S ep 21 (pp .

137-144) . IEEE .

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.38

SIZE SCALABILITY

37

38

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.20

 Nodes dispersed by great distances

▪ Communication is slower, less reliable

▪ Bandwidth may be constrained

 How do you support synchronous communication?

▪ Latencies may be higher

▪ Synchronous communication may be too slow and timeout

▪WAN links can be unreliable

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.39

GEOGRAPHIC SCALABILITY

 Conflicting policies regarding usage (payment),

management, and security

 How do you manage security for multiple, discrete data

centers?

 Grid computing: how can resources be shared across

disparate systems at different domains, etc. ?

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.40

ADMINISTRATIVE SCALABILITY

39

40

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.21

 Hide communication latencies

▪ Use asynchronous communication to do other work and hide latency

▪ Remote server runs in parallel in the background – client not locked

▪ Separate event handler captures return response from server

 Hide latency by moving key press validation to client:

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.41

APPROACHES TO SCALING

 Partitioning data and computations across machines

 Just one copy

▪ Where is the copy?

 Move computations to the client

▪ Thin client → thick client

▪ Edge, fog, cloud….

 Decentralized naming services (DNS)

 Decentralized information services (WWW)

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.42

APPROACHES TO SCALING - 2

41

42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.22

Replication and caching – make copies of data
available at different machines

Replicated file servers and databases

Mirrored web sites

Web caches (in browsers and proxies)

File caches (at server and client)

 LOAD BALANCER (or proxy server)

▪Commonly used to distribute user requests to nodes of
a distributed system

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.43

APPROACHES TO SCALING - 3

 Having multiple copies of data leads to inconsistency

(cached or replicated copies)

 Modifying one copy invalidates all of the others

 Keeping copies consistent requires global synchronization

 Global-synchronization prohibits large-scale up

▪ Best to synchronize just a few copies or synchronization

latency becomes too long, entire system slows down!

▪ Consider how synchronization time increases with system

size and distance between nodes

 To address synchronization time, distributed systems

designers will relax data consistency guarantees…

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.44

PROBLEMS WITH REPLICATION

43

44

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.23

 Consistency Models: Contract between the programmer and a
system, where the system guarantees if the programmer
follows rules for operations on (distributed/replicated) data,
data will be consistent and the results of reading, writing, or
updating memory will be predictable

 Strict Consistency – a write to a variable by any node needs to
be seen instantaneously by all nodes

 Non-strict model, for P2: x can be 0 or 1

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.45

TYPES OF CONSISTENCY

 Strong consistency – data is locked during writes and

replication across nodes. No other nodes can access data

for read/write when locked

 Sacrifices availability and performance for consistency

 Amazon Simple Storage Service (S3) now offers strong

consistency

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.46

TYPES OF CONSISTENCY - 2

45

46

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.24

 Eventual consistency – a consistency model used in

distributed systems where data consistency is relaxed in order

to improve availability and performance

 If a distributed system has many nodes distributed by great

distances, strong consistency will hurt performance

 Idea: relax consistency requirements

 Eventual consistency provides an informal guarantee that, if

no new updates (writes) are made to a given data item,

eventually all accesses to that item (from any node) will return

the last updated (written) value

 Does not guarantee safety (correctness) of data

 Only guarantees liveness (access/response) to a data query

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.47

TYPES OF CONSISTENCY - 3

 Consider the implications for a serverless application consisting of

multiple AWS Lambda serverless functions

 Serverless functions, like web services, don’t store local state data

 To address the lack of state data in serverless functions, often

external data storage services are used

▪ AWS Lambda commonly uses the Simple Storage Service (S3) object store

to persist state data

 CONSIDER if S3 is used to track state data for a set of AWS Lambda

serverless functions, and consider if S3 were only

eventually consistent

 For the use case, several serverless functions rely on S3 for

exchanging state data

 What would the implications be for the application?

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.48

EVENTUAL CONSISTENCY - EXAMPLE

47

48

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.25

 Can these inconsistencies be tolerated?

1. Consistent view of the number of likes for a message in

twitter?

2. Consistency of where a TinyURL navigates?

3. Consistency of files in Dropbox read from multiple devices?

4. An inventory count for an ecommerce website selling books?

5. Current temperature and wind speed from weather.com

6. Bank account balance – for a read only statement

7. Bank account balance – for a transfer/withdrawal

transaction

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.49

PROBLEMS WITH REPLICATION - 2

WE WILL RETURN AT

2:40PM

49

50

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.26

Developing a distributed system is a formidable

task

Many issues to consider:

Reliable networks do not exist

Networked communication is inherently insecure

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.51

DEVELOPING DISTRIBUTED SYSTEMS

 The network is reliable

 The network is secure

 The network is homogeneous

 The topology does not change

 Latency is zero

Bandwidth is infinite

 Transport cost is zero

 There is one administrator

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.52

FALSE ASSUMPTIONS ABOUT

DISTRIBUTED SYSTEMS

51

52

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.27

 Questions from 1/3

 Chapter 1 - What is a distributed system?

 Design goals of distributed systems:

▪ Accessibility: resource sharing & availability

▪ Distribution transparency

▪ Openness

▪ Scalability

 Activity: Design goals of distributed systems

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L2.53

OBJECTIVES – 1/5

 We will form groups of ~2-3

▪ Remote students will use Canvas breakout rooms

 Each group will complete a Google Doc worksheet

 Add names to Google Doc as they appear in Canvas

 Once completed, one person submits a PDF of the Google Doc
to Canvas

 Instructor will score all group members based on the uploaded
PDF file

 To get started:

▪ Log into your UW Google Account

▪ Link to shared Google Drive

▪ Follow link:

https://tinyurl.com/2p95hdby

October 7, 2020
TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

CLASS ACTIVITY 1

53

54

https://tinyurl.com/2p95hdby

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

January 5, 2023

Slides by Wes J. Lloyd L2.28

QUESTIONS

January 5, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L2.55

55

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 1/5
	Slide 3: Tcss 558 office hours – Winter 2023
	Slide 4: Tcss 558 – late policy
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 1/3
	Slide 9: Feedback - 2
	Slide 10: Feedback - 3
	Slide 11: Feedback - 4
	Slide 12
	Slide 13: Survey LINKS AT: http://faculty.washington.edu/wlloyd /courses/tcss558/announcements.html
	Slide 14: OBJECTIVES – 1/5
	Slide 15: What is a distributed system?
	Slide 16: Characteristics of distributed Systems - 1
	Slide 17: OBJECTIVES – 1/5
	Slide 18: Design goals of distributed systems
	Slide 19: OBJECTIVES – 1/5
	Slide 20: Distribution transparency
	Slide 21: Distribution transparency - 2
	Slide 22: Distribution transparency - 3
	Slide 23: Distribution transparency - 4
	Slide 24: Distribution transparency - 4
	Slide 25: Distribution transparency - 5
	Slide 26: OBJECTIVES – 1/5
	Slide 27: openness
	Slide 28: Openness - 2
	Slide 29: Openness - 3
	Slide 30: Enabling openness
	Slide 31: Separating policy from mechanism
	Slide 32: Openness example
	Slide 33: Openness example - 2
	Slide 34
	Slide 35: OBJECTIVES – 1/5
	Slide 36: scalability
	Slide 37: Scalability dimensions
	Slide 38: Size scalability
	Slide 39: Geographic scalability
	Slide 40: Administrative scalability
	Slide 41: Approaches to scaling
	Slide 42: Approaches to scaling - 2
	Slide 43: Approaches to scaling - 3
	Slide 44: Problems with replication
	Slide 45: Types of consistency
	Slide 46: Types of consistency - 2
	Slide 47: Types of consistency - 3
	Slide 48: Eventual consistency - example
	Slide 49: Problems with replication - 2
	Slide 50: We will return at 2:40pm
	Slide 51: Developing distributed systems
	Slide 52: False assumptions about distributed systems
	Slide 53: OBJECTIVES – 1/5
	Slide 54: Class activity 1
	Slide 55: Questions

