
TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.1

Chapter 6 – Coordination - IV

Wes J. Lloyd

School of Engineering
& Technology (SET)
University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 3/2

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Class Activity 5 – Causality and Vector Clocks

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

▪ Chapter 6.4: Election Algorithms

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.2

OBJECTIVES – 3/7

1

2

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.3

ONLINE DAILY FEEDBACK SURVEY

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L18.4

3

4

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.3

 Please classify your perspective on material covered in today’s

class (30 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.47 (- previous 6.25)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.83 (- previous 5.65)

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.5

MATERIAL / PACE

In the 2 phase algorithm is there a need to use a concurrent

locking mechanism or just a boolean variable is f ine for the

assignment?

 Atomic variables may be a good choice:

 https://docs.oracle.com/javase/tutorial/essential/concurrenc

y/atomicvars.html

 https://winterbe.com/posts/2015/05/22/java8-concurrency -

tutorial-atomic-concurrent-map-examples/

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.6

FEEDBACK FROM 3/2

5

6

https://docs.oracle.com/javase/tutorial/essential/concurrency/atomicvars.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/atomicvars.html
https://winterbe.com/posts/2015/05/22/java8-concurrency-tutorial-atomic-concurrent-map-examples/
https://winterbe.com/posts/2015/05/22/java8-concurrency-tutorial-atomic-concurrent-map-examples/

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.4

 What is the format to switch between the membership

tracking methods when starting the TCP server, as I am not

sure how the membership tracking ids(F,FD, T,U) are going to

be passed? (are these command-line arguments?)

 To receive full extra credit points, you only need to implement

2 membership tracking approaches. The key is, which ones.

 These combinations will result in max extra credit: T and U or

FD and U.

 There are 5 less points for "FD and T" or "F and T".

 There are no “extra” extra points for implementing three

approaches.

 If three are implemented, then either T and U or FD and U are

typically tested.

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.7

FEEDBACK - 2

 For F or FD, this is the default membership tracking method.

 The assumption is that the user will put a file in temp called

"/tmp/nodes.cfg".

 Implement F or FD, but not both.

 There is no command line argument to specific to use F or FD

for the server.

 The TCP server upon starting will read "/tmp/nodes.cfg"

 The readme.txt file should say that "F" or "FD" has been

implemented and should be tested.

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.8

FEEDBACK - 3

7

8

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.5

 For T, when starting the servers you'll need to explicitly point

to the TCP server that acts as the centralized membership

server by providing the IP address and port number:

 java -jar GenericNode.jar ts <server port number>

<membership-server-IP> <membership-server-port>

 #Example:

 java -jar GenericNode.jar ts 1234 54.12.44.33 1111

 See page 7

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.9

FEEDBACK - 4

 For U (UDP), there will be no configuration.

 The readme.txt needs to say to test "U".

 When the servers are turned on, they will start talking to each
other by broadcasting messages.

 Very few groups will do “(F or FD) and U".

 I f "F/FD and U" are implemented, it will probably be necessary to
configure one approach or the other by passing in an argument to
the server on startup.

 Most groups will either do "F or FD" and T, or T and U.

 For these combinations the dif ferentiating factor is that T requires
a centralized membership server to be explicitly specified on server
startup. That's how we can tell the user wants "T" and not "F/FD"
or "U"

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.10

FEEDBACK - 5

9

10

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.6

 Questions from 3/2

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Class Activity 5 – Causality and Vector Clocks

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

▪ Chapter 6.4: Election Algorithms

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.11

OBJECTIVES – 3/7

 Include readme.txt or doc file with instructions in submission

 Must document membership tracking method

>> please indicate which types to test <<

ID Description

F Static file membership tracking – file is not reread

FD Static file membership tracking DYNAMIC - file is

periodically reread to refresh membership list

T TCP membership tracking – servers are configured to

refer to central membership server

U UDP membership tracking - automatically discovers

nodes with no configuration

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.12

SHORT-HAND-CODES FOR MEMBERSHIP

TRACKING APPROACHES

11

12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.7

 Sunday March 12 th

 Goal: Replicated Key Value Store

 Team signup posted on Canvas under ‘People’

 Builds off of Assignment 1 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking

for extra credit

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.13

ASSIGNMENT 2

CH. 6.2: LOGICAL

CLOCKS

L18.14

13

14

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.8

 Questions from 3/2

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Class Activity 5 – Causality and Vector Clocks

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

▪ Chapter 6.4: Election Algorithms

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.15

OBJECTIVES – 3/7

 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.16

CHAPTER 6 - COORDINATION

15

16

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.9

 Lamport clocks don’t help to determine causal ordering of

messages

 Vector clocks capture causal histories and can be used as an

alternative

 But what is causality? …

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.17

VECTOR CLOCKS

 Having a causal relationship between two events (A and E)

indicates that event E results from the occurrence of event A.

 When one event results from another, there is a causal

relationship between the two events.

 This is also referred to as cause and effect.

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.18

WHAT IS CAUSALITY?

Proc 1

Proc 2

A B C

D E

m1

17

18

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.10

 Disclaimer:

 Without knowing actual information contained in messages, it

is not possible to state with certainty that there is a causal

relationship or perhaps a conflict

 Lamport/Vector clocks can help us suggest possible causality

 But we never know for sure…

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.19

CAUSALITY - 2

 Consider the messages:

 P2 receives m1, and subsequently sends m3

 Causality: Sending m3 may depend on what’s contained in m1

 P2 receives m2, receiving m2 is not related to receiving m1

 Is sending m3 causally dependent on receiving m2?

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.20

CAUSALITY - 3

19

20

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.11

 Vector clocks help keep track of causal history

 If two local events happened at process P, then the

causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event,

as a vector clock → H(q2) = (3,2)

 Each entry corresponds to the last event at the process

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.21

VECTOR CLOCKS

 Each process maintains a vector clock which

▪ Captures number of events at the local process (e.g. logical clock)

▪ Captures number of events at all other processes

 Causality is captured by:

▪ For each event at Pi, the vector clock (VC i) is incremented

▪ The msg is timestamped with VCi; and sending the msg is recorded

as a new event at P i

▪ P j adjusts its VC j choosing the max of: the message timestamp –or-

the local vector clock (VCj)

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.22

VECTOR CLOCKS - 2

P1

P2

(1,0) (2,0) (3,0)

(0,1) (3,2)

m1

21

22

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.12

 Pj knows the # of events at Pi based on the timestamps of the

received message

 Pj learns how many events have occurred at other processes

based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the

message(s) to be sent…

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.23

VECTOR CLOCKS - 3

 Local clock is underlined

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.24

VECTOR CLOCKS EXAMPLE

m2 m4 m2 < m4 m2 > m4 Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

23

24

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.13

 P3 can’t determine if m4 may be causally dependent on m2

 Is m4 causally dependent on m3 ?

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.25

VECTOR CLOCKS EXAMPLE - 2

m2 m4 m2 < m4 m2 > m4 Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

 Provide a vector clock label for unlabeled events

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.26

VECTOR CLOCKS EXAMPLE - 3

25

26

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.14

 TRUE/FALSE:

 The sending of message m3 is causally dependent on the
sending of message m1.

 The sending of message m2 is causally dependent on the
sending of message m1.

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.27

VECTOR CLOCKS EXAMPLE - 4

 TRUE/FALSE:

 P1 (1,0,0) and P3 (0,0,1) may be concurrent events.

 P2 (0,1,1) and P3 (0,0,1) may be concurrent events.

 P1 (1,0,0) and P2 (0,1,1) may be concurrent events.

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.28

VECTOR CLOCKS EXAMPLE - 5

27

28

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.15

WE WILL RETURN AT

2:40 PM

 Questions from 3/2

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Class Activity 5 – Causality and Vector Clocks

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

▪ Chapter 6.4: Election Algorithms

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.30

OBJECTIVES – 3/7

29

30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.16

 Questions from 3/2

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Class Activity 5 – Causality and Vector Clocks

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

▪ Chapter 6.4: Election Algorithms

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.31

OBJECTIVES – 3/7

CH. 6.3: DISTRIBUTED

MUTUAL

EXCLUSION

L18.32

31

32

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.17

 Coordinating access among distributed processes to a

shared resource requires Distributed Mutual Exclusion

Algorithms in 6.3

 Token-ring algorithm

 Permission-based algorithms:

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.33

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.34

TOKEN-BASED ALGORITHMS

33

34

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.18

 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated

around ring

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.35

TOKEN-RING ALGORITHM

1. If token is lost, token must be regenerated

▪ Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

▪What is the difference between token being lost and a

node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

▪ Dead nodes can be detected by adding a receipt message

for when the token passes from node-to-node

▪When no receipt is received, node assumed dead

▪ Dead process can be “jumped” in the ring

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.36

TOKEN-RING CHALLENGES

35

36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.19

Permission-based algorithms

 Processes must require permission from other processes

before first acquiring access to the resource

▪ CONTRAST: Token-ring did not ask nodes for permission

 Centralized algorithm

 Elect a single leader node to coordinate access to shared

resource(s)

 Manage mutual exclusion on a distributed system similar

to how mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.37

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS - 3

 When resource not available, coordinator can block the

requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject

otherwise can wait if simply blocked

 Requests are granted permission fairly using FIFO queue

 Just three messages: (request, grant (OK), release)

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.38

CENTRALIZED MUTUAL EXCLUSION

P1 executes P2 blocks P1 finishes; P2 executes

Permission granted from coordinator \/ No response from coordinator

37

38

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.20

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “blocking”

when resource is unavailable

▪ No difference between CRASH and BLOCK (for a long time)

 Large systems, coordinator becomes performance bottleneck

▪ Scalability: Performance does not scale

 Benefits

 Simplicity:

Easy to implement compared to distributed alternatives

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.39

CENTRALIZED MUTUAL EXCLUSION - 2

 Ricart and Agrawala [1981], use total ordering of all events

▪ Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:

▪ Name of resource

▪ Process number

▪ Current (logical) time

 Assume messages are sent reliably

▪ No messages are lost

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.40

DISTRIBUTED ALGORITHM

39

40

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.21

 When each node receives a request message they will:

1. Say OK (if the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. If node is also waiting to access the resource: perform a

timestamp comparison -

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership

list of the distributed system

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.41

DISTRIBUTED ALGORITHM - 2

 Node 0 and Node 2 simultaneously request access to resource

 Node 0’s time stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Node 1 is not interested in the resource, it OKs both requests

 In case of conflict, lowest timestamp wins!

▪ Node 2 rejects its own request (12) in favor of node 0 (8)

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.42

DISTRIBUTED ALGORITHM - 3

41

42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.22

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 No Reply Problem: When node is accessing the resource,

it does not respond

▪ Lack of response can be confused with failure

▪ Possible Solution: When node receives request for

resource it is accessing, always send a reply either

granting or denying permission (ACK)

▪ Enables requester to determine when nodes have died

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.43

CHALLENGES WITH

DISTRIBUTED ALGORITHM

 Problem: Multicast communication required –or- each node must
maintain full group membership

▪ Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement to
grant access to a shared resource

▪ This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed when
a simple majority of nodes grant permission (>50%)

▪ Presumably any one node locking the resource prevents agreement

▪ If one node gets majority of acknowledges no other can

▪ Requires every node to know size of system (# of nodes)

 Problem: 2 concurrent transactions get 50% permission → deadlock?

 Distributed algorithm for mutual exclusion works best for:

▪ Small groups of processes

▪ When memberships rarely change

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.44

CHALLENGES WITH

DISTRIBUTED ALGORITHM - 2

43

44

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.23

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator …(N coordinators)

 Accessing resource requires majority vote:

total votes (m) > N/2 coordinators

 Assumption #1: When coordinator does not give

permission to access a resource (because it is busy) it will

inform the requester

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.45

DECENTRALIZED ALGORITHM

 Assumption #2: When a coordinator crashes, it recovers

quickly, but will have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted

permission to the shared resource, and on recovery it errantly

grants permission again

 The Hope: if coordinator crashes, upon recovery , the node

granted access to the resource has already f inished before the

restored coordinator grants access again . . .

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.46

DECENTRALIZED ALGORITHM - 2

45

46

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.24

 With 99.167% coordinator availability (30 sec downtime/hour)

chance of violating correctness is so low it can be neglected in

comparison to other types of failure

 Leverages fact that a new node must obtain a majority vote to

access resource, which requires time

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.47

DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote

p=seconds per hour coordinator is offline

 Back-off Poll ing Approach for permission-denied :

 If permission to access a resource is denied via majority vote,

process can poll to gain access again with a random delay

(known as back-off)

 Node waits for a random amount, retries…

 If too many nodes compete to gain access to a resource,

majority vote can lead to low resource utilization

▪ No one can achieve majority vote to obtain access to the

shared resource

▪ Mimics elections where with too many candidates, where no

one candidate can get >50% of the total vote

 Problem Solution detailed in [Lin et al. 2014]

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.48

DECENTRALIZED ALGORITHM - 4

47

48

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.25

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L18.49

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L18.50

49

50

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.26

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L18.51

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L18.52

51

52

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.27

 Which algorithm offers the best scalability to support

distributed mutual exclusion in a large distributed

system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.53

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW

 Which algorithm(s) involve blocking (no reply) when a

resource is not available?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.54

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 2

53

54

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.28

 Which algorithm(s) involve arriving at a consensus

(majority opinion) to determine whether a node should be

granted access to a resource?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.55

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 3

 Which algorithm(s) have N points of failure,

where N = Number of Nodes in the system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.56

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 4

55

56

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.29

 Questions from 3/2

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Class Activity 5 – Causality and Vector Clocks

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

▪ Chapter 6.4: Election Algorithms

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.57

OBJECTIVES – 3/7

CH. 6.4: ELECTION

ALGORITHMS

L18.58

1

57

58

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.30

 Many distributed systems require one process to act as a

coordinator, initiator, or provide some special role

 Generally any node (or process) can take on the role

▪ In some situations there are special requirements

▪ Resource requirements: compute power, network capacity

▪ Data: access to certain data/information

 Assumption:

▪ Every node has access to a “node directory”

▪ Process/node ID, IP address, port, etc.

▪ Node directory may not know “current” node availability

 Goal of election: at conclusion all nodes agree on a

coordinator or “leader”

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.59

ELECTION ALGORITHMS

 Consider a distributed system with N processes (or nodes)

 Every process has an identifier id(P)

 Election algorithms attempt to locate the highest

numbered process to designate as coordinator

 Algorithms:

 Bully algorithm

 Ring algorithm

 Elections in wireless environments

 Elections in large-scale systems

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.60

ELECTION ALGORITHMS

59

60

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.31

 When any process notices the coordinator is no longer
responding to requests, it initiates an election

 Process Pk initiates an election as follows:

1. Pk sends an ELECTION message to all processes with higher
process IDs (Pk+1, Pk+2, … PN-1)

2. If no one responds, Pk wins the election and becomes
coordinator

3. If a “higher-up” process answers (Pk+n), it will take over and
run the election. Pk will quit sending ELECTION messages.

 When the higher numbered process receives an ELECTION
message from a lower-numbered colleague, it responds
with “OK”, indicating it’s alive, and it takes over the
election.

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.61

BULLY ALGORITHM

 The higher numbered process then holds an election with only
higher numbered processes (nodes).

 Eventually all processes give up except one, and the remaining
process becomes the new coordinator.

 The coordinator announces victory by sending all processes a
message stating it is starting as the coordinator.

 If a higher numbered node that was previously down comes
back up, it holds an election, and ultimately takes over the
coordinator role.

 The process with the “biggest” ID in town always wins.

 Hence the name, bully algorithm

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.62

BULLY ALGORITHM - 2

61

62

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.32

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.63

BULLY ALGORITHM - 3

1 2 3

4 5[1] Process 4
starts an election

[2] Process 5 and
6 respond

[3] Process 5 and
6 each hold an
election

[4] Process 6 tells
Process 5 to stop

[5] Process 6 wins
and tells everyone

Note that node 7 (the previous leader) has failed…

 Requirement: Every node knows who is participating in the

distributed system

▪ Each node has a group membership directory

 First process to notice the leader is offline launches a new

election

 GOAL: Find the highest number node that is running

▪ Loop over the nodes until the highest numbered node is found

▪ May require multiple election rounds

 Highest numbered node is always the “BULLY”

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.64

BULLY ALGORITHM - 4

63

64

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.33

 Election algorithm based on a network of nodes in logical ring

 Does not use a token

 Any process (Pk) starts the election by noticing the coordinator
is not functioning

1. Pk builds an election message, and sends to its successor in
the ring

▪ If successor is down, successor is skipped

▪ Skips continue until a running process is found

2. When the election message is passed around, each node
adds its ID to a separate active node list

3. When election message returns to Pk, Pk recognizes its own
identifier in the active node list . Message is changed to
COORDINATOR and “elected(Pk)” message is circulated.

▪ Second message announces Pk is the NEW coordinator

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.65

RING ALGORITHM

 PROBLEM: Two nodes start election at the same time: P3 and P6

 P3 sends ELECT(P3) message, P6 sends ELECT(P6) message

▪ P3 and P6 both circulate ELECTION messages at the same time

 Also circulated with ELECT message is an active node l ist

 Each node adds itself to the active node l ist

 Each node votes for the highest numbered candidate

 P6 wins the election because it’s the candidate with the highest ID

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.66

RING: MULTIPLE ELECTION EXAMPLE

65

66

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.34

 Assumptions made by traditional election algorithms not

realistic for wireless environments:

▪ >>> Message passing is reliable

▪ >>> Topology of the network does not change

 A few protocols have been developed for elections in

ad hoc wireless networks

 Vasudevan et al. [2004] solution handles failing nodes

and partitioning networks.

▪ Best leader can be elected, rather than just a random one

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.67

ELECTIONS WITH WIRELESS NETWORKS

1. Any node (source) (P) starts the election by sending an ELECTION

message to immediate neighbors (any nodes in range)

2. Receiving node (Q) designates sender (P) as parent

3. (Q) Spreads election message to neighbors, but not to parent

4. Node (R), receives message, designates (Q) as parent, and

spreads ELECTION message to neighbors, but not to parent

5. Neighbors that have already selected a parent immediately

respond to R.

▪ If all neighbors already have a parent, R is a leaf -node and will report

back to Q quickly.

▪ When reporting back to Q, R includes metadata regarding battery life

and resource capacity

6. Q eventually acknowledges the ELECTION message sent by P, and

also indicates the most eligible node (based on battery &

resource capacity)

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.68

VASUDEVAN ET AL. WIRELESS ELECTION

67

68

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.35

Node [A]
initiates election:
f ind the h ighest capac ity

Election messages
propagated to all
nodes

Each node reports
to its parent node
with best capacity

Node A then
facilitates Node H
becoming leader

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.69

WIRELESS ELECTION - 2

SOURCE NODE: [A]

 When multiple elections are initiated, nodes only join one

 Source node tags its ELECTION message with unique

identifier, to uniquely identify the election.

 With minor adjustments protocol can operate when the

network partitions, and when nodes join and leave

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.70

WIRELESS ELECTION - 3

69

70

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.36

 Large systems often require several nodes to serve as

coordinators/leaders

 These nodes are considered “super peers”

 Super peers must meet operational requirements:

1. Network latency from normal nodes to super peers must

be low

2. Super peers should be evenly distributed across the

overlay network (ensures proper load balancing,

availability)

3. Must maintain set ratio of super peers to normal nodes

4. Super peers must not serve too many normal nodes

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.71

ELECTIONS FOR LARGE-SCALE SYSTEMS

 DHT-based systems use a bit -string to identify nodes

 Basic Idea: Reserve fraction of ID space for super peers

 Reserve first log2(N) bits for super-peer IDs

 m=number of bits of the identifier

 k=# of nodes each node is responsible for (Chord system)

 Example:

 For a system with m=8 bit identifier, and k=3 keys per
node

 Required number of super peers is 2 (k – m) ▪ N, where N is
the number of nodes

▪ In this case N=32

▪ Only 1 super peer is required for every 32 nodes

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.72

ELECTIONS FOR DHT BASED SYSTEMS

71

72

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.37

 Given an overlay network, the idea is to position

superpeers throughout the network so they are evenly

disbursed

 Use tokens:

 Give N tokens to N randomly chosen nodes

 No node can hold more than (1) token

 Tokens are “repelling force”. Other tokens move away

 All tokens exert the same repelling force

 This automates token distribution across an overlay

network

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.73

SUPER PEERS IN

AN M-DIMENSIONAL SPACE

 Gossping protocol is used to disseminate token location and

force information across the network

 If forces acting on a node with a token exceed a threshold,

token is moved away

 Once nodes hold token for awhile they become superpeers

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L18.74

OVERLAY TOKEN DISTRIBUTION

73

74

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 7, 2023

Slides by Wes J. Lloyd L18.38

QUESTIONS

March 7, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L18.75

75

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 3/7
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 3/2
	Slide 7: Feedback - 2
	Slide 8: Feedback - 3
	Slide 9: Feedback - 4
	Slide 10: Feedback - 5
	Slide 11: OBJECTIVES – 3/7
	Slide 12: Short-hand-codes for Membership Tracking Approaches
	Slide 13: Assignment 2
	Slide 14: Ch. 6.2: logical clocks
	Slide 15: OBJECTIVES – 3/7
	Slide 16: Chapter 6 - Coordination
	Slide 17: Vector clocks
	Slide 18: What is causality?
	Slide 19: Causality - 2
	Slide 20: causality - 3
	Slide 21: Vector clocks
	Slide 22: Vector clocks - 2
	Slide 23: Vector clocks - 3
	Slide 24: Vector clocks example
	Slide 25: Vector clocks example - 2
	Slide 26: Vector clocks example - 3
	Slide 27: Vector clocks example - 4
	Slide 28: Vector clocks example - 5
	Slide 29: We will return at 2:40 pm
	Slide 30: OBJECTIVES – 3/7
	Slide 31: OBJECTIVES – 3/7
	Slide 32: Ch. 6.3: distributed mutual exclusion
	Slide 33: Distributed mutual exclusion algorithms
	Slide 34: token-based algorithms
	Slide 35: Token-ring algorithm
	Slide 36: Token-ring challenges
	Slide 37: Distributed mutual exclusion algorithms - 3
	Slide 38: Centralized mutual exclusion
	Slide 39: Centralized mutual exclusion - 2
	Slide 40: Distributed algorithm
	Slide 41: Distributed algorithm - 2
	Slide 42: Distributed algorithm - 3
	Slide 43: Challenges with Distributed algorithm
	Slide 44: Challenges with Distributed algorithm - 2
	Slide 45: Decentralized algorithm
	Slide 46: Decentralized algorithm - 2
	Slide 47: Decentralized algorithm - 3
	Slide 48: Decentralized algorithm - 4
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Distributed mutual exclusion algorithms review
	Slide 54: Distributed mutual exclusion algorithms review - 2
	Slide 55: Distributed mutual exclusion algorithms review - 3
	Slide 56: Distributed mutual exclusion algorithms review - 4
	Slide 57: OBJECTIVES – 3/7
	Slide 58: Ch. 6.4: election algorithms
	Slide 59: Election Algorithms
	Slide 60: Election algorithms
	Slide 61: Bully algorithm
	Slide 62: Bully algorithm - 2
	Slide 63: Bully algorithm - 3
	Slide 64: Bully algorithm - 4
	Slide 65: Ring algorithm
	Slide 66: Ring: multiple election example
	Slide 67: Elections with wireless networks
	Slide 68: Vasudevan et al. wireless election
	Slide 69: Wireless election - 2 Source node: [A]
	Slide 70: wireless election - 3
	Slide 71: Elections for large-scale systems
	Slide 72: Elections for dht based systems
	Slide 73: Super peers in an m-dimensional space
	Slide 74: Overlay token distribution
	Slide 75: Questions

