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OBJECTIVES - 3/2

| = Questions from 2/28 |

® Assignment 2: Replicated Key Value Store
® Chapter 6: Coordination

= Chapter 6.2: Logical Clocks
Vector Clocks

m Class Activity 4 - Total Ordered Multicasting
® Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion
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ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 10p

= Thursday surveys: due ~ Mon @ 10p

— TCSS 558 A > Assignments

Winter 2021

Home

Announcements

| * Upcoming Assignments

Zoom

b
Chat Not available until Jan 5 at 1:30pm | Due Jan é at 10pm

TCSS 558 - Online Daily Feedback Survey - 1/5

-/1pts

Marchi2,12023 School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2023] | 1173 |

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan 6 at 10pm Points 1 Questions 4
Available Jan 5 at 1:30pm - Jan 6 at 11:59pm 1 day Time Limit None

[ | Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:

1 2 3 4 5 6 7 8 9 1e

Mostly Equal Mostly
Review To Me New and Review New to Me

[ | Question 2 0.5 pts

Please rate the pace of today’s class:

1 2 3 4 5 6 7 8 9 1e

Slow Just Right Fast
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UW-Tacoma

MATERIAL / PACE

® Please classify your perspective on material covered in today’s

class (24 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.25 (| - previous 6.57)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.65 ({ - previous 5.81)

TCSS558: Applied Distributed Computing [Winter 2023]

Marchi2,12023 School of Engineering and Technology, University of Washington - Tacoma

| L17.5 |

FEEDBACK FROM 2/28

= Will adjusting the time using Lamport's algorithm affect the order

of other messages in the process?

= Node P, receives a message m; from node P; at time=56

= The timestamp of m; from P, is time=60

= We assume that P; sends the message at P P P
time=60 0 0 0
= P, must receive my at P;3’s time+1 6 ~m |8 10
= P,’s clock is adjusted to time=61 _J_g_\lﬁ_ 2
= Because of the happens-before relation, 18 ?i%@g,
we still say m, and m, happen before mj, 24 321 p adjusts |22.
= What if mg arrives at P; from P, at time=50 gg :g its clock 'ég'
= M5 is time stamped at time=24 e Eéilcggitsﬁ‘{ﬁj-
® Does the_sending of m, from P, happen before 18 B9 0
the sending of mg from P,? ﬁ#'ﬁ;‘ "y
= This question asks about causality 76 a5 100
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FEEDBACK FROM 2/28

Will adjusting the time using Lamport's algorithm affect the order
of other messages in the process?

Node P

] Ware insufficient = [F- -
to determine causality (cause and effect) I ENED

m,

- P,adjusts 40

What if m; arrives at P, from P, at time=50 = its clock 23
M5 is time stamped at time=24 5] P adiusts ‘m/-_-';ﬁ-
Does the sending of m, from P, happen before 5|0k = ’ M
the sending of mg frompP,?2 —=e T %0
This question asks about causality Zel 0 las 100

March 2, 2023

TCSS558: Applied Distributed Computing [Winter 2023] 7.7
School of Engineering and Technology, University of Washington - Tacoma :

FEEDBACK - 2

What is the difference between clock time accuracy vs. precision?

Accuracy is how close a given set of time measurements are to
their true value

Assume the atomic clock (UTC receiver) is the authority

For a given node A, the time accuracy will be the error relative to
the authority,

Precision is how close two time measurements are to each other
= Here neither is an authority

Example:
Consider if the UTC receiver indicates the time is 12:00:00 AM

Node A and Node B both indicate the time is 12:00:25 AM
What is the accuracy of Node A and B’s sense of time?
What is the precision of time between Node A and Node B?

TCSS558: Applied Distributed Computing [Winter 2023]
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TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

FEEDBACK - 3

= Please explain the Berkeley algorithm

= |[n the absence of a time authority, a time daemon polls the
system to assess the consensus of time

® Nodes report their time offset relative to the time daemon

= Time daemon calculates average time, tells other nodes to
advance or slow their clocks to the new time has been
achieved

Time daemon 3:00 0 3:U0 +5
3:00 3:00 P
: - +15
3:00

Cen) (e (e
SG (OB 5] [K5

2:50 3:25 2:50 3:25 3:05 3:05

March 2, 2023

School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2023] | 117.9 |

FEEDBACK - 3

= Please explain the Berkeley algorithm

= |n the absence of a time authority, a time daemon polls the
system to assess the consensus of time

" Nodg¢

Notice how the average time difference is 5:

average time = (-10 + 25) / 3 (nodes) = +5

Time daemon adjusts clock to new consensus of time

L =
9G98B O

2:50 3:25 2:50 3:25 2:50 3:25

TCSS558: Applied Distributed Computing [Winter 2023]
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TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

FEEDBACK - 4

= Please provide an example of RBS

= RBS used for time synchronization in wireless sensor networks
= RBS: assumes no node has accurate time

® GOAL: internally synchronize clocks - same as Berkeley

= RBS: to save wireless network bandwidth, 2-way time sync not
performed. Instead receivers note the time offset when msgs
are received

® RBS: assumes message delivery time is roughly constant
(no multi-hop message delivery)
= RBS: ignores time spent to construct message, and time spent
to access network (only records receipt time stamps)
= RBS:receiver notes time when message arrives (g 50)
assumes constant message delivery time (single-hop)

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma L1711

March 2, 2023
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FEEDBACK - 5

RBS: two nodes p and q communicate their relative offset

P tells q when it received msg, Q tells p when it received msg
Assume message delivery time is same

P and Q exchange message receipt times

Calculate average offset between P and Q (how much time varies)
Difference between p and q time represents avg clock offset

Mo(r
Offset [p, 4] = E—kzl(T;’\’:; Tos

m Offset is calculated for a series of M messages
® Nodes don’t adjust clocks to save battery - instead node offset
= UNFORUNATELY: Average clock offset is not constant

= Avg clock offset is precise at first, but then clocks drift apart

= Elson et al. propose to use linear regression to estimate how clocks
will drift apart over time using historical p and g offsets

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

March 2, 2023 117.12
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FEEDBACK - 6

= NTP example:
Time server B B T Ts 0 = clock offset

T T,
: A — > —
Client A T 6T,
= Assume: oT oT, =50

veq=
= T,=50, T,(@A)=100, T,=200, T;,=300, T;(@A)=200, T,=250
= Calculate clock offset (0) between A and B
" 0= (T,—T) +(T3—-T,) 0= (Ta—Th)—(T3-To)

2 2
= What is the clock offset between A and B?

8 = propagation delay

TCSS558: Applied Distributed Computing [Winter 2023]

Marchi2,12023 School of Engineering and Technology, University of Washington - Tacoma

117.13
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FEEDBACK - 7

= How do the formulas shown in class work; can we get some
practice problems with them so we can better know how to
use them in a class activity or an exam?

m Class Activity 3
= Class Activity 4
= Practice Final Exam - next Thursday 3/9

TCSS558: Applied Distributed Computing [Winter 2023]

e 23, ) School of Engineering and Technology, University of Washington - Tacoma

117.14
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TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

0 < Activities Visual settings {6} Edit < >
0l
@ Respond at PollEv.com/wesleylloyd641
By 7 Text WESLEYLLOYDG641 to 22333 once to join, then A, B, C, D, or E
Are you working to submit a MS Thesis or Capstone
proposal this Quarter ?
Yes, an MS thesis proposal
Yes, an MS capstone proposal
No, not this quarter, but later on |C
No, am planning coursework option
Undecided
0 1 Z 3 4 5
Total Results: 16
Powered by ED Poll Everywhere
15

OBJECTIVES - 3/2

® Questions from 2/28

| = Assignment 2: Replicated Key Value Store |
® Chapter 6: Coordination

= Chapter 6.2: Logical Clocks
Vector Clocks

m Class Activity 4 - Total Ordered Multicasting

® Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.16
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TCSS 558: Applied Distributed Computing March 2, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

SHORT-HAND-CODES FOR MEMBERSHIP

TRACKING APPROACHES

® |[nclude readme.txt or doc file with instructions in submission
= Must document membership tracking method

>> please indicate which types to test <<

ID Description

F Static file membership tracking - file is not reread
FD Static file membership tracking DYNAMIC - file is
periodically reread to refresh membership list

T TCP membership tracking - servers are configured to
refer to central membership server
u UDP membership tracking - automatically discovers

nodes with no configuration

TCSS558: Applied Distributed Computing [Winter 2023]

Marchi2,12023 School of Engineering and Technology, University of Washington - Tacoma

117.17

17

ASSIGNMENT 2

I- Sunday March 12th I
® Goal: Replicated Key Value Store

= Team signup posted on Canvas under ‘People’
= Builds off of Assignment 1 GenericNode

® Focus on TCP client/server w/ replication

= How to track membership for data replication?

= Can implement multiple types of membership tracking
for extra credit

TCSS558: Applied Distributed Computing [Winter 2023]

e 23, ) School of Engineering and Technology, University of Washington - Tacoma

117.18
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TCSS 558: Applied Distributed Computing
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UW-Tacoma

OBJECTIVES - 3/2

® Questions from 2/28

m Assignment 2: Replicated Key Value Store
® Chapter 6: Coordination

|__=Chapter 6.2: Logical Clocks |
Vector Clocks

m Class Activity 4 - Total Ordered Multicasting
® Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion

TCSS558: Applied Distributed Computing [Winter 2023]

Marchi2,12023 School of Engineering and Technology, University of Washington - Tacoma

L17.19
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CHAPTER 6 - COORDINATION

® 6.1 Clock Synchronization
= Physical clocks
= Clock synchronization algorithms

® 6.2 Logical clocks
= Lamport clocks
= Vector clocks

® 6.3 Mutual exclusion

® 6.4 Election algorithms

® 6.6 Distributed event matching (light)
® 6.7 Gossip-based coordination (light)

TCSS558: Applied Distributed Computing [Winter 2023]

e 23, ) School of Engineering and Technology, University of Washington - Tacoma
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UW-Tacoma

(1.0,0} (2,000 (31,0 41,0} (5,1.2)(61.2) (7.1.2)
P o
¢ a b L P g "
Py
fore @20 k(632
P2 oy <
1(6.0,1) ™ (0,02

CH. 6.2: LOGICAL
CLOCKS

21

TOTAL-ORDERED MULTICASTING

®m Consider concurrent updates to a replicated database
® Communication latency between DB1 and DB2 is 250ms

i Update 1 ] Update 2__ - i

Replicated database

Update 1is Update 2 is
performed before performed before
update 2 update 1

= |nitial Account balance: $1,000

= Update #1: Deposit $100

= Update #2: Add 1% Interest

= Total Ordered Multicasting needed

TCSS558: Applied Distributed Computing [Winter 2023]

22
School of Engineering and Technology, University of Washington - Tacoma v
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TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

TOTAL-ORDERED MULTICASTING

EXAMPLE

= Two messages (m,, m,) must be distributed,
to two processes (p4, p,)

= We assume messages have correct lamport clock timestamps
m,(10, p,, add $100)
m,(12, p,, add 1% interest)

= Each process maintains a queue of messages

= Arriving messages are placed into queues ordered by the
Lamport clock timestamp

= |n each queue, each message must be acknowledged by every
process in the system before operations can be applied to the
local database

TCSS558: Applied Distributed Computing [Winter 2023]

117.23
School of Engineering and Technology, University of Washington - Tacoma

March 2, 2023
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TOTAL-ORDERED MULTICASTING

EXAMPLE

= Two messages (m4, m,) must be distributed,
to two processes (p4, p,)
= We assume messages have correct lamport clock timestamps

" m,(10, p,, add $100)

Key point:

Multicast messages are also received by the sender (itself)

Lamport clock timestamp

® |[n each queue, each message must be acknowledged by every
process in the system before operations can be applied to the
local database

TCSS558: Applied Distributed Computing [Winter 2023]

17.24
School of Engineering and Technology, University of Washington - Tacoma -

March 2, 2023
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~ TOTAL-ORDERED MULTICASTING EXAMPLE

¢ s pp ABD N
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T [veve
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What is the final account balance?

TOTAL-ORDERED MULTICASTING - 2

® Fach message timestamped with local logical clock of sender
= Multicast messages are also received by the sender (itself)
= Assumptions:

= Messages from same sender received in order they were sent

= No messages are lost

= When messages arrive they are placed in local queue ordered

by timestamp
= Receiver multicasts acknowledgement of message receipt to
other processes

= Time stamp of message receipt is lower the acknowledgement
= This process replicates queues across sites

= Messages delivered to application (database) only when
message at the head of the queue has been acknowledged by
every process in the system

TCSS558: Applied Distributed Computing [Winter 2023]

e 23, ) School of Engineering and Technology, University of Washington - Tacoma

L17.28
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TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

TOTAL-ORDERED MULTICASTING - 3

® Can be used to implement replicated state machines (RSMs)
= Concept is to replicate event queues at each node

® (1) Using logical clocks and (2) exchanging acknowledgement
messages, allows for events to be “totally” ordered in
replicated event queues

= Events can be applied “in order” to each (distributed)
replicated state machine (RSM)

CHEEEUEE Gtents

Pass
to other machines

March 2, 2023

TCSS558: Applied Distributed Computing [Winter 2023] 117.29
School of Engineering and Technology, University of Washington - Tacoma :
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OBJECTIVES - 3/2

® Questions from 2/28

® Assignment 2: Replicated Key Value Store
® Chapter 6: Coordination

= Chapter 6.2: Logical Clocks
| Vector Clocks |

m Class Activity 4 - Total Ordered Multicasting
® Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion

March 2, 2023 TCSS558: Applied Distributed Computing [Winter 2023]
4 School of Engineering and Technology, University of Washington - Tacoma

117.30
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UW-Tacoma

VECTOR CLOCKS

= Lamport clocks don’t help to determine causal ordering of
messages

® Vector clocks capture causal histories and can be used as an
alternative

= But what is causality? ...

TCSS558: Applied Distributed Computing [Winter 2023]

Marchi2,12023 School of Engineering and Technology, University of Washington - Tacoma

117.31

31

WHAT IS CAUSALITY?

A
Proc 1 _.

my

® 0

Proc 2

= Having a causal relationship between two events (A and E)
indicates that event E results from the occurrence of event A.

= When one event results from another, there is a causal
relationship between the two events.

® This is also referred to as cause and effect.

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma tr32

March 2, 2023
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TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

CAUSALITY - 2

= Disclaimer:

= Without knowing actual information contained in messages, it
is not possible to state with certainty that there is a causal
relationship or perhaps a conflict

= Lamport/Vector clocks can help us suggest possible causality
= But we never know for sure...

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma 11733

March 2, 2023
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CAUSALITY - 3

= Consider the messages:

= =2 =
[0] 0 0

§l_m [ 10
12 i 16] m,_420

78 gc}__/ 30

24 32 |_m, |40
30 f_g_\ 50

36 a8 60
12 _E_i_j__“{ 70

48 69 80
ol 0,

L76] 185 | (100

= P2 receives m1, and subsequently sends m3

= Causality: Sending m3 may depend on what’s contained in m1
= P2 receives m2, receiving m2 is not related to receiving m1

= |s sending m3 causally dependent on receiving m2?

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

March 2, 2023 117.34
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TCSS 558: Applied Distributed Computing March 2, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

VECTOR CLOCKS

= Vector clocks help keep track of causal history

= |f two local events happened at process P, then the
causal history H(p2) of event p2 is {p1,p2}

= P sends messages to Q (event p3)

m Q previously performed event q1

= Q records arrival of message as q2

® Causal histories merged at Q H(q2)= {p1,p2,p3,91,92}

= Fortunately, can simply store history of last event,
as a vector clock 2 H(q2) = (3,2)

= Each entry corresponds to the last event at the process

TCSS558: Applied Distributed Computing [Winter 2023]

Marchi2,12023 School of Engineering and Technology, University of Washington - Tacoma

L17.35
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VECTOR CLOCKS - 2

(1,0) (2,0) (3,0)
——0

1
my
(0,1) (3,2)
P, @

® Each process maintains a vector clock which

= Captures number of events at the local process (e.g. logical clock)

= Captures number of events at all other processes
= Causality is captured by:

= For each event at Pi, the vector clock (VC)) is incremented

= The msg is timestamped with VC;; and sending the msg is recorded
as a new event at P;

® P; adjusts its VC, choosing the max of: the message timestamp -or-
the local vector clock (VC))

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

March 2, 2023 117.36
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UW-Tacoma

received message

message(s) to be sent...

VECTOR CLOCKS - 3

= Pj knows the # of events at Pi based on the timestamps of the

= Pj learns how many events have occurred at other processes
based on timestamps in the vector

= These events “may be causally dependent*

= |In other words: they may have been necessary for the

March 2, 2023

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

117.37
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= Local clock is underlined CAUSALITY
[= (1,1,0) (2,1,0) '31,0) (41,0)
1 = o ———— /
m, m, m,
P, 4:3.0)
(0,1.0) (4200
md
P,
.11 (432
m, m, my,<m, m,>m, Conclusion
(2,4,0) (4,3,0) Yes No m2 may causally precede m4
TCSS558: Applied Distributed C ing [Winter 2023]
e 23, ) School of ErFl’gi:1eeeri:15:;n:t'?ech?\r:lzgll,nlfnivelrsﬁf; of Washington - Tacoma H7-38
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TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

VECTOR CLOCKS EXAMPLE - 2

P. (LLO) (2,1,0) 31 .0) 4,1 0)
P.
(DiO) (2,2,0)
md
P,
(2,3.1) (4.3.2)
m, m, m,<m, m,>m, Conclusion
(4,1,0) (2,3,0) No No m2 and m4 may conflict

= P3 can’t determine if m4 may be causally dependent on m2
= |s m4 causally dependent on m3 ?

TCSS558: Applied Distributed Computing [Winter 2023]

Marchi2,12023 School of Engineering and Technology, University of Washington - Tacoma

L17.39
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VECTOR CLOCKS EXAMPLE - 3

m;

P, (0.1,1)

my

(0,0,1)

= Provide a vector clock label for unlabeled events

TCSS558: Applied Distributed Computing [Winter 2023]

e 23, ) School of Engineering and Technology, University of Washington - Tacoma

L17.40
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TCSS 558: Applied Distributed Computing
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VECTOR CLOCKS EXAMPLE - 4

m;

m,

(0!0!1)

= TRUE/FALSE:

= The sending of message m; is causally dependent on the
sending of message m,.

= The sending of message m, is causally dependent on the
sending of message m,.

TCSS558: Applied Distributed Computing [Winter 2023]

Marchi2,12023 School of Engineering and Technology, University of Washington - Tacoma

117.41
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VECTOR CLOCKS EXAMPLE - 5

m;
m; my

P, (0.1,1)

my

(0,0,1)

= TRUE/FALSE:

= P, (1,0,0) and P54 (0,0,1) may be concurrent events.
= P, (0,1,1) and P4 (0,0,1) may be concurrent events.
= P, (1,0,0) and P, (0,1,1) may be concurrent events.

TCSS558: Applied Distributed Computing [Winter 2023]

e 23, ) School of Engineering and Technology, University of Washington - Tacoma

117.42
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TCSS 558: Applied Distributed Computing March 2, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

WE WILL RETURN AT
2:40 PM

OBJECTIVES - 3/2

® Questions from 2/28

® Assignment 2: Replicated Key Value Store
® Chapter 6: Coordination
= Chapter 6.2: Logical Clocks
Vector Clocks
| = Class Activity 4 - Total Ordered Multicasting |
® Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.44

March 2, 2023
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UW-Tacoma

OBJECTIVES - 3/2

® Questions from 2/28

® Assignment 2: Replicated Key Value Store
® Chapter 6: Coordination

= Chapter 6.2: Logical Clocks
Vector Clocks

m Class Activity 4 - Total Ordered Multicasting
= Chapter 6: Coordination
| = Chapter 6.3: Distributed Mutual Exclusion |
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS

® Coordinating access among distributed processes to a
shared resource requires Distributed Mutual Exclusion

= Algorithms in 6.3

® Token-ring algorithm

= Permission-based algorithms:
® Centralized algorithm

® Distributed algorithm (Ricart and Agrawala)

® Decentralized voting algorithm (Lin et al.)

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma L1747
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TOKEN-BASED ALGORITHMS

= Mutual exclusion by passing a “token” between nodes
= Nodes often organized in ring
= Only one token, holder has access to shared resource

= Avoids starvation: everyone gets a chance to obtain lock

= Avoids deadlock: easy to avoid
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TCSS 558: Applied Distributed Computing March 2, 2023
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TOKEN-RING ALGORITHM

= Construct overlay network
= Establish logical ring among nodes

B Token
(O—=>(D—(2—()
(D))«

m Single token circulated around the nodes of the network

= Node having token can access shared resource

= |f no node accesses resource, token is constantly circulated
around ring

TCSS558: Applied Distributed Computing [Winter 2023]
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TOKEN-RING CHALLENGES

1. If token is lost, token must be regenerated
= Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

= What is the difference between token being lost and a
node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

= Dead nodes can be detected by adding a receipt message
for when the token passes from node-to-node

= When no receipt is received, node assumed dead
= Dead process can be “jumped” in the ring

TCSS558: Applied Distributed Computing [Winter 2023]
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS - 3

=Permission-based algorithms

® Processes must require permission from other processes
before first acquiring access to the resource

= CONTRAST: Token-ring did not ask nodes for permission

= Centralized algorithm

® Elect a single leader node to coordinate access to shared
resource(s)

® Manage mutual exclusion on a distributed system similar
to how mutual exclusion is managed for a single system

® Nodes must all interact with leader to obtain “the lock”
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CENTRALIZED MUTUAL EXCLUSION

Permission granted from coordinator \/ No response from coordinator

K

R t
Request | |O eques Release

“ No reply OK

| |Queers @@ ﬂ

P, executes P, blocks P, finishes; P, executes
= When resource not available, coordinator can block the
requesting process, or respond with a reject message

= P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked

B Requests are granted permission fairly using FIFO queue
® Just three messages: (request, grant (OK), release)

TCSS558: Applied Distributed Computing [Winter 2023]

e 23, ) School of Engineering and Technology, University of Washington - Tacoma

117.52

52

Slides by Wes J. Lloyd

March 2, 2023

L17.26
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CENTRALIZED MUTUAL EXCLUSION - 2

= |[ssues
® Coordinator is a single point of failure

= Processes can't distinguish dead coordinator from “blocking”
when resource is unavailable

= No difference between CRASH and BLOCK (for a long time)
= Large systems, coordinator becomes performance bottleneck
= Scalability: Performance does not scale

= Benefits
= Simplicity:
Easy to implement compared to distributed alternatives
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DISTRIBUTED ALGORITHM

= Ricart and Agrawala [1981], use total ordering of all events
= Leverages Lamport logical clocks

= Package up resource request message (AKA Lock Request)
= Send to all nodes
® |nclude:

= Name of resource

= Process number

= Current (logical) time

= Assume messages are sent reliably
= No messages are lost

TCSS558: Applied Distributed Computing [Winter 2023]
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DISTRIBUTED ALGORITHM - 2

= When each node receives a request message they will:
1. Say OK (if the node doesn’t need the resource)
2. Make no reply, queue request (node is using the resource)

3. If node is also waiting to access the resource: perform a
timestamp comparison -

1. Send OK if requester has lower logical clock value
2. Make no reply if requester has higher logical clock value
= Nodes sit back and wait for all nodes to grant permission

= Requirement: every node must know the entire membership
list of the distributed system

TCSS558: Applied Distributed Computing [Winter 2023]
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DISTRIBUTED ALGORITHM - 3

Node O and Node 2 simultaneously request access to resource
Node O's time stamp is lower (8) than Node 2 (12)

= Node 1 and Node 2 grant Node O access

® Node 1 is not interested in the resource, it OKs both requests

Accesses
resource

T .
° o @ Accesses

resource

(b) (e
= |n case of conflict, lowest timestamp wins!
= Node 2 rejects its own request (12) in favor of node O (8)
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CHALLENGES WITH

DISTRIBUTED ALGORITHM

= Problem: Algorithm has N points of failure !
® Where N = Number of Nodes in the system

= No Reply Problem: When node is accessing the resource,
it does not respond

= Lack of response can be confused with failure

= Possible Solution: When node receives request for
resource it is accessing, always send a reply either
granting or denying permission (ACK)

= Enables requester to determine when nodes have died

TCSS558: Applied Distributed Computing [Winter 2023]
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CHALLENGES WITH

DISTRIBUTED ALGORITHM - 2

= Problem: Multicast communication required -or- each node must
maintain full group membership

= Track nodes entering, leaving, crashing...

= Problem: Every process is involved in reaching an agreement to
grant access to a shared resource

= This approach may not scale on resource-constrained systems
® Solution: Can relax total agreement requirement and proceed when
a simple majority of nodes grant permission (>50%)
= Presumably any one node locking the resource prevents agreement
= |If one node gets majority of acknowledges no other can
= Requires every node to know size of system (# of nodes)
= Problem: 2 concurrent transactions get 50% permission -> deadlock?

= Distributed algorithm for mutual exclusion works best for:
= Small groups of processes
= When memberships rarely change

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

117.58

March 2, 2023

58

Slides by Wes J. Lloyd

March 2, 2023

L17.29
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DECENTRALIZED ALGORITHM

® Lin et al. [2004], decentralized voting algorithm
= Resource is replicated N times
® Each replica has its own coordinator ...(N coordinators)

® Accessing resource requires majority vote:
total votes (m) > N/2 coordinators

= Assumption #1: When coordinator does not give
permission to access a resource (because it is busy) it will
inform the requester

TCSS558: Applied Distributed Computing [Winter 2023]
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DECENTRALIZED ALGORITHM - 2

= Assumption #2: When a coordinator crashes, it recovers
quickly, but will have forgotten votes before the crash.

= Approach assumes coordinators reset arbitrarily at any time

= Risk: on crash, coordinator forgets it previously granted
permission to the shared resource, and on recovery it errantly
grants permission again

= The Hope: if coordinator crashes, upon recovery, the node
granted access to the resource has already finished before the
restored coordinator grants access again . . .
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TCSS 558: Applied Distributed Computing
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DECENTRALIZED ALGORITHM - 3

® With 99.167% coordinator availability (30 sec downtime/hour)
chance of violating correctness is so low it can be neglected in
comparison to other types of failure

m | everages fact that a new node must obtain a majority vote to
access resource, which requires time

N |m P Violation N |m P Violation
8 | 5 | 3secthour | <1015 8 | 5 | 30 secthour | < 1010
8 | 6 | 3sec/hour | < 10718 8 | 6 | 30 sec’hour | < 10712
16 | 9 | 3secthour | < 10=%7 16 | 9 | 30 secthour | < 1018
16 | 12 | 3 sec/hour | < 1073% 16 | 12 | 30 sec/hour | < 1072
32 | 17 | 3 sec/hour | < 10752 32 | 17 | 30 sec/hour | < 10~
32 | 24 | 3sec/hour | < 10773 32 | 24 | 30 secthour | < 10~%°

N = number of resource replicas, m = required “majority” vote
p=seconds per hour coordinator is offline
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DECENTRALIZED ALGORITHM - 4

= Back-off Polling Approach for permission-denied:

= |f permission to access a resource is denied via majority vote,
process can poll to gain access again with a random delay
(known as back-off)

= Node waits for a random amount, retries...

= |f too many nodes compete to gain access to a resource,
majority vote can lead to low resource utilization

= No one can achieve majority vote to obtain access to the
shared resource

= Mimics elections where with too many candidates, where no
one candidate can get >50% of the total vote

= Problem Solution detailed in [Lin et al. 2014]
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@ < Activities €3 Visual settings &} Edit <
0al
| & When poll is active, respond at PollEv.com/wesleylloyd641

= Text WESLEYLLOYDG641 to 22333 once to join

Which algorithm offers the best scalability to support
W distributed mutual exclusion in a large distributed

orithm

Total Results: 0

Powered by 0 Poll Everywhere
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@ < Activities €% visual settings &5 Edit < >

B

tall

@& When poll is active, respond at PollEv.com/wesleylloyd641
# Text WESLEYLLOYD®641 to 22333 once to join

W Which algorithm(s) involve blocking (no reply) when a
resource is not available? (check all that apply)

Token-ring algorithm

Centralized Algorithm

Distributed algorithm

None of the above

Total Results: 0

Powered by @ Poll Everywhere

64

Slides by Wes J. Lloyd

March 2, 2023

L17.32



TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,

UW-Tacoma

@ < Activities €3 Visual settings {8 Edit <
ol

@ When poll is active, respond at PollEv.com/wesleylloyd641
[

# Text WESLEYLLOYD641 to 22333 once to join

Which algorithm(s) involve arriving at a consensus

w (majority opinion) to determine whether a node should
be granted access to a resource? (check all that apply)

Total Results: 0

Powered by 0 Poll Everywhere
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@ < Activities %) Visual settings &b edit < >
tall
& When poll is active, respond at PollEv.com/wesleylloyd641
B = Text WESLEYLLOYDG641 to 22333 once to join
w- Which algorithm(s) have N points of failure, where N =
Number of Nodes in the system? (check all that apply)
Token-ring algorithm
Centralized algorithm
Distributed algorithm
g algorithm
Total Results: 0
Powered by 0 Poll Everywhere
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW

® Which algorithm offers the best scalability to support
distributed mutual exclusion in a large distributed
system?

® (A) Token-ring algorithm

= (B) Centralized algorithm

® (C) Distributed algorithm

= (D) Decentralized voting algorithm
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 2

® Which algorithm(s) involve blocking (no reply) when a
resource is not available?

= (A) Token-ring algorithm
® (B) Centralized algorithm
® (C) Distributed algorithm

= (D) Decentralized voting algorithm
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 3

® Which algorithm(s) involve arriving at a consensus
(majority opinion) to determine whether a node should be
granted access to a resource?

® (A) Token-ring algorithm
= (B) Centralized algorithm
® (C) Distributed algorithm

= (D) Decentralized voting algorithm
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 4

® Which algorithm(s) have N points of failure,
where N = Number of Nodes in the system?

= (A) Token-ring algorithm
® (B) Centralized algorithm
® (C) Distributed algorithm

= (D) Decentralized voting algorithm
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QUESTIONS
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