
TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.1

Chapter 6 – Coordination - III

Wes J. Lloyd

School of Engineering
& Technology (SET)
University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.2

OBJECTIVES – 3/2

1

2

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.3

ONLINE DAILY FEEDBACK SURVEY

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L17.4

3

4

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.3

 Please classify your perspective on material covered in today’s

class (24 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.25 (- previous 6.57)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.65 (- previous 5.81)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.5

MATERIAL / PACE

 Wil l adjusting the t ime using Lampor t's algorithm af fect the order
of other messages in the process?

 Node P2 receives a message m3 from node P3 at time=56

 The timestamp of m3 from P3 is time=60

 We assume that P3 sends the message at
time=60

 P2 must receive m3 at P3’s time+1

 P2’s clock is adjusted to time=61

 Because of the happens-before relation,
we still say m1 and m2 happen before m3

 What if m5 arrives at P3 from P4 at time=50

 M5 is time stamped at time=24

 Does the sending of m2 from P2 happen before
the sending of m5 from P4?

 This question asks about causality

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.6

FEEDBACK FROM 2/28

5

6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.4

 Wil l adjusting the t ime using Lampor t's algorithm af fect the order
of other messages in the process?

 Node P2 receives a message m3 from node P3 at time=56

 The timestamp of m3 from P3 is time=60

 We assume that P3 sends the message at
time=60

 P2 must receive m3 at P3’s time+1

 P2’s clock is adjusted to time=61

 Because of the happens-before relation,
we still say m1 and m2 happen before m3

 What if m5 arrives at P3 from P4 at time=50

 M5 is time stamped at time=24

 Does the sending of m2 from P2 happen before
the sending of m5 from P4?

 This question asks about causality

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.7

FEEDBACK FROM 2/28

KEY CONCEPT:
Lamport clock’s are insufficient
to determine causality (cause and effect)

 What is the difference between clock t ime accuracy vs. precision?

 Accuracy is how close a given set of time measurements are to

their true value

 Assume the atomic clock (UTC receiver) is the authority

 For a given node A, the time accuracy will be the error relative to

the authority,

 Precision is how close two time measurements are to each other

▪ Here neither is an authority

 Example:

 Consider if the UTC receiver indicates the time is 12:00:00 AM

 Node A and Node B both indicate the time is 12:00:25 AM

 What is the accuracy of Node A and B’s sense of time?

 What is the precision of time between Node A and Node B?

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.8

FEEDBACK - 2

7

8

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.5

 Please explain the Berkeley algorithm

 In the absence of a time authority, a time daemon polls the

system to assess the consensus of time

 Nodes report their time offset relative to the time daemon

 Time daemon calculates average time, tells other nodes to

advance or slow their clocks to the new time has been

achieved

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.9

FEEDBACK - 3

 Please explain the Berkeley algorithm

 In the absence of a time authority, a time daemon polls the

system to assess the consensus of time

 Nodes report their time offset relative to the time daemon

 Time daemon calculates average time, tells other nodes to

advance or slow their clocks to the new time has been

achieved

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.10

FEEDBACK - 3

Notice how the average time difference is 5:

average time = (-10 + 25) / 3 (nodes) = +5

Time daemon adjusts clock to new consensus of time

9

10

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.6

 Please provide an example of RBS

 RBS used for time synchronization in wireless sensor networks

 RBS: assumes no node has accurate time

 GOAL : internally synchronize clocks – same as Berkeley

 RBS: to save wireless network bandwidth, 2 -way time sync not
performed. Instead receivers note the time offset when msgs
are received

 RBS: assumes message delivery time is roughly constant
(no multi-hop message delivery)

 RBS: ignores time spent to construct message, and time spent
to access network (only records receipt time stamps)

 RBS: receiver notes time when message arrives (Tp,m)
assumes constant message delivery time (single -hop)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.11

FEEDBACK - 4

 RBS: two nodes p and q communicate their relative of fset

 P tells q when it received msg, Q tells p when it received msg

 Assume message delivery time is same

 P and Q exchange message receipt times

 Calculate average of fset between P and Q (how much time varies)

 Dif ference between p and q time represents avg clock of fset

 Offset is calculated for a series of M messages

 Nodes don’t adjust clocks to save battery – instead node of fset

 UNFORUNATELY: Average clock offset is not constant

 Avg clock of fset is precise at first, but then clocks drif t apart

 Elson et al. propose to use linear regression to estimate how clocks
will drif t apart over time using historical p and q of fsets

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.12

FEEDBACK - 5

11

12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.7

 NTP example:

Time server B

Client A

 Assume: Treq= Tres=50

 T1=50, T2(@A)=100, T2=200, T3=300, T3(@A)=200, T4=250

 Calculate clock offset () between A and B

 = =

 What is the clock of fset between A and B?

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.13

FEEDBACK - 6

 = clock offset
 = propagation delay

 How do the formulas shown in class work; can we get some

practice problems with them so we can better know how to

use them in a class activity or an exam?

 Class Activity 3

 Class Activity 4

 Practice Final Exam – next Thursday 3/9

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.14

FEEDBACK - 7

13

14

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.8

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L17.15

 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.16

OBJECTIVES – 3/2

15

16

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.9

 Include readme.txt or doc file with instructions in submission

 Must document membership tracking method

>> please indicate which types to test <<

ID Description

F Static file membership tracking – file is not reread

FD Static file membership tracking DYNAMIC - file is

periodically reread to refresh membership list

T TCP membership tracking – servers are configured to

refer to central membership server

U UDP membership tracking - automatically discovers

nodes with no configuration

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.17

SHORT-HAND-CODES FOR MEMBERSHIP

TRACKING APPROACHES

 Sunday March 12 th

 Goal: Replicated Key Value Store

 Team signup posted on Canvas under ‘People’

 Builds off of Assignment 1 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking

for extra credit

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.18

ASSIGNMENT 2

17

18

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.10

 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.19

OBJECTIVES – 3/2

 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.20

CHAPTER 6 - COORDINATION

19

20

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.11

CH. 6.2: LOGICAL

CLOCKS

L17.21

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Initial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.22

TOTAL-ORDERED MULTICASTING

DB1 DB2

21

22

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.12

 Two messages (m1, m2) must be distributed,

to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the

Lamport clock timestamp

 In each queue, each message must be acknowledged by every

process in the system before operations can be applied to the

local database

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.23

TOTAL-ORDERED MULTICASTING

EXAMPLE

 Two messages (m1, m2) must be distributed,

to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the

Lamport clock timestamp

 In each queue, each message must be acknowledged by every

process in the system before operations can be applied to the

local database

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.24

TOTAL-ORDERED MULTICASTING

EXAMPLE

Key point:

Multicast messages are also received by the sender (itself)

23

24

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.13

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10) 1

3

4

2

2

4

3

1

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10) 1

3

4

2

2

4

3

1

25

26

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.14

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10)

What is the final account balance?

(12)

(12)

(10) 1

3

4

2

2

4

3

1

 Each message timestamped with local logical clock of sender

 Multicast messages are also received by the sender (itself)

 Assumptions:

▪ Messages from same sender received in order they were sent

▪ No messages are lost

 When messages arrive they are placed in local queue ordered
by timestamp

 Receiver multicasts acknowledgement of message receipt to
other processes

▪ Time stamp of message receipt is lower the acknowledgement

 This process replicates queues across sites

 Messages delivered to application (database) only when
message at the head of the queue has been acknowledged by
every process in the system

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.28

TOTAL-ORDERED MULTICASTING - 2

27

28

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.15

 Can be used to implement replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical clocks and (2) exchanging acknowledgement

messages, allows for events to be “totally” ordered in

replicated event queues

 Events can be applied “in order” to each (distributed)

replicated state machine (RSM)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.29

TOTAL-ORDERED MULTICASTING - 3

 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.30

OBJECTIVES – 3/2

29

30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.16

 Lamport clocks don’t help to determine causal ordering of

messages

 Vector clocks capture causal histories and can be used as an

alternative

 But what is causality? …

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.31

VECTOR CLOCKS

 Having a causal relationship between two events (A and E)

indicates that event E results from the occurrence of event A.

 When one event results from another, there is a causal

relationship between the two events.

 This is also referred to as cause and effect.

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.32

WHAT IS CAUSALITY?

Proc 1

Proc 2

A B C

D E

m1

31

32

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.17

 Disclaimer:

 Without knowing actual information contained in messages, it

is not possible to state with certainty that there is a causal

relationship or perhaps a conflict

 Lamport/Vector clocks can help us suggest possible causality

 But we never know for sure…

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.33

CAUSALITY - 2

 Consider the messages:

 P2 receives m1, and subsequently sends m3

 Causality: Sending m3 may depend on what’s contained in m1

 P2 receives m2, receiving m2 is not related to receiving m1

 Is sending m3 causally dependent on receiving m2?

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.34

CAUSALITY - 3

33

34

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.18

 Vector clocks help keep track of causal history

 If two local events happened at process P, then the

causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event,

as a vector clock → H(q2) = (3,2)

 Each entry corresponds to the last event at the process

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.35

VECTOR CLOCKS

 Each process maintains a vector clock which

▪ Captures number of events at the local process (e.g. logical clock)

▪ Captures number of events at all other processes

 Causality is captured by:

▪ For each event at Pi, the vector clock (VC i) is incremented

▪ The msg is timestamped with VCi; and sending the msg is recorded

as a new event at P i

▪ P j adjusts its VC j choosing the max of: the message timestamp –or-

the local vector clock (VCj)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.36

VECTOR CLOCKS - 2

P1

P2

(1,0) (2,0) (3,0)

(0,1) (3,2)

m1

35

36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.19

 Pj knows the # of events at Pi based on the timestamps of the

received message

 Pj learns how many events have occurred at other processes

based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the

message(s) to be sent…

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.37

VECTOR CLOCKS - 3

 Local clock is underlined

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.38

VECTOR CLOCKS EXAMPLE

m2 m4 m2 < m4 m2 > m4 Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

37

38

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.20

 P3 can’t determine if m4 may be causally dependent on m2

 Is m4 causally dependent on m3 ?

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.39

VECTOR CLOCKS EXAMPLE - 2

m2 m4 m2 < m4 m2 > m4 Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

 Provide a vector clock label for unlabeled events

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.40

VECTOR CLOCKS EXAMPLE - 3

39

40

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.21

 TRUE/FALSE:

 The sending of message m3 is causally dependent on the
sending of message m1.

 The sending of message m2 is causally dependent on the
sending of message m1.

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.41

VECTOR CLOCKS EXAMPLE - 4

 TRUE/FALSE:

 P1 (1,0,0) and P3 (0,0,1) may be concurrent events.

 P2 (0,1,1) and P3 (0,0,1) may be concurrent events.

 P1 (1,0,0) and P2 (0,1,1) may be concurrent events.

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.42

VECTOR CLOCKS EXAMPLE - 5

41

42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.22

WE WILL RETURN AT

2:40 PM

 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.44

OBJECTIVES – 3/2

43

44

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.23

 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.45

OBJECTIVES – 3/2

CH. 6.3: DISTRIBUTED

MUTUAL

EXCLUSION

L17.46

45

46

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.24

 Coordinating access among distributed processes to a

shared resource requires Distributed Mutual Exclusion

Algorithms in 6.3

 Token-ring algorithm

 Permission-based algorithms:

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.47

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.48

TOKEN-BASED ALGORITHMS

47

48

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.25

 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated

around ring

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.49

TOKEN-RING ALGORITHM

1. If token is lost, token must be regenerated

▪ Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

▪What is the difference between token being lost and a

node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

▪ Dead nodes can be detected by adding a receipt message

for when the token passes from node-to-node

▪When no receipt is received, node assumed dead

▪ Dead process can be “jumped” in the ring

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.50

TOKEN-RING CHALLENGES

49

50

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.26

Permission-based algorithms

 Processes must require permission from other processes

before first acquiring access to the resource

▪ CONTRAST: Token-ring did not ask nodes for permission

 Centralized algorithm

 Elect a single leader node to coordinate access to shared

resource(s)

 Manage mutual exclusion on a distributed system similar

to how mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.51

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS - 3

 When resource not available, coordinator can block the

requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject

otherwise can wait if simply blocked

 Requests are granted permission fairly using FIFO queue

 Just three messages: (request, grant (OK), release)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.52

CENTRALIZED MUTUAL EXCLUSION

P1 executes P2 blocks P1 finishes; P2 executes

Permission granted from coordinator \/ No response from coordinator

51

52

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.27

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “blocking”

when resource is unavailable

▪ No difference between CRASH and BLOCK (for a long time)

 Large systems, coordinator becomes performance bottleneck

▪ Scalability: Performance does not scale

 Benefits

 Simplicity:

Easy to implement compared to distributed alternatives

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.53

CENTRALIZED MUTUAL EXCLUSION - 2

 Ricart and Agrawala [1981], use total ordering of all events

▪ Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:

▪ Name of resource

▪ Process number

▪ Current (logical) time

 Assume messages are sent reliably

▪ No messages are lost

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.54

DISTRIBUTED ALGORITHM

53

54

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.28

 When each node receives a request message they will:

1. Say OK (if the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. If node is also waiting to access the resource: perform a

timestamp comparison -

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership

list of the distributed system

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.55

DISTRIBUTED ALGORITHM - 2

 Node 0 and Node 2 simultaneously request access to resource

 Node 0’s time stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Node 1 is not interested in the resource, it OKs both requests

 In case of conflict, lowest timestamp wins!

▪ Node 2 rejects its own request (12) in favor of node 0 (8)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.56

DISTRIBUTED ALGORITHM - 3

55

56

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.29

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 No Reply Problem: When node is accessing the resource,

it does not respond

▪ Lack of response can be confused with failure

▪ Possible Solution: When node receives request for

resource it is accessing, always send a reply either

granting or denying permission (ACK)

▪ Enables requester to determine when nodes have died

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.57

CHALLENGES WITH

DISTRIBUTED ALGORITHM

 Problem: Multicast communication required –or- each node must
maintain full group membership

▪ Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement to
grant access to a shared resource

▪ This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed when
a simple majority of nodes grant permission (>50%)

▪ Presumably any one node locking the resource prevents agreement

▪ If one node gets majority of acknowledges no other can

▪ Requires every node to know size of system (# of nodes)

 Problem: 2 concurrent transactions get 50% permission → deadlock?

 Distributed algorithm for mutual exclusion works best for:

▪ Small groups of processes

▪ When memberships rarely change

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.58

CHALLENGES WITH

DISTRIBUTED ALGORITHM - 2

57

58

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.30

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator …(N coordinators)

 Accessing resource requires majority vote:

total votes (m) > N/2 coordinators

 Assumption #1: When coordinator does not give

permission to access a resource (because it is busy) it will

inform the requester

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.59

DECENTRALIZED ALGORITHM

 Assumption #2: When a coordinator crashes, it recovers

quickly, but will have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted

permission to the shared resource, and on recovery it errantly

grants permission again

 The Hope: if coordinator crashes, upon recovery , the node

granted access to the resource has already f inished before the

restored coordinator grants access again . . .

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.60

DECENTRALIZED ALGORITHM - 2

59

60

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.31

 With 99.167% coordinator availability (30 sec downtime/hour)

chance of violating correctness is so low it can be neglected in

comparison to other types of failure

 Leverages fact that a new node must obtain a majority vote to

access resource, which requires time

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.61

DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote

p=seconds per hour coordinator is offline

 Back-off Poll ing Approach for permission-denied :

 If permission to access a resource is denied via majority vote,

process can poll to gain access again with a random delay

(known as back-off)

 Node waits for a random amount, retries…

 If too many nodes compete to gain access to a resource,

majority vote can lead to low resource utilization

▪ No one can achieve majority vote to obtain access to the

shared resource

▪ Mimics elections where with too many candidates, where no

one candidate can get >50% of the total vote

 Problem Solution detailed in [Lin et al. 2014]

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.62

DECENTRALIZED ALGORITHM - 4

61

62

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.32

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L17.63

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L17.64

63

64

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.33

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L17.65

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L17.66

65

66

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.34

 Which algorithm offers the best scalability to support

distributed mutual exclusion in a large distributed

system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.67

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW

 Which algorithm(s) involve blocking (no reply) when a

resource is not available?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.68

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 2

67

68

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.35

 Which algorithm(s) involve arriving at a consensus

(majority opinion) to determine whether a node should be

granted access to a resource?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.69

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 3

 Which algorithm(s) have N points of failure,

where N = Number of Nodes in the system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.70

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 4

69

70

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.36

QUESTIONS

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L17.71

71

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 3/2
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 2/28
	Slide 7: Feedback from 2/28
	Slide 8: Feedback - 2
	Slide 9: Feedback - 3
	Slide 10: Feedback - 3
	Slide 11: Feedback - 4
	Slide 12: Feedback - 5
	Slide 13: Feedback - 6
	Slide 14: Feedback - 7
	Slide 15
	Slide 16: OBJECTIVES – 3/2
	Slide 17: Short-hand-codes for Membership Tracking Approaches
	Slide 18: Assignment 2
	Slide 19: OBJECTIVES – 3/2
	Slide 20: Chapter 6 - Coordination
	Slide 21: Ch. 6.2: logical clocks
	Slide 22: Total-ordered multicasting
	Slide 23: Total-ordered multicasting example
	Slide 24: Total-ordered multicasting example
	Slide 25: Total-ordered multicasting example
	Slide 26: Total-ordered multicasting example
	Slide 27: Total-ordered multicasting example
	Slide 28: Total-ordered multicasting - 2
	Slide 29: Total-ordered multicasting - 3
	Slide 30: OBJECTIVES – 3/2
	Slide 31: Vector clocks
	Slide 32: What is causality?
	Slide 33: Causality - 2
	Slide 34: causality - 3
	Slide 35: Vector clocks
	Slide 36: Vector clocks - 2
	Slide 37: Vector clocks - 3
	Slide 38: Vector clocks example
	Slide 39: Vector clocks example - 2
	Slide 40: Vector clocks example - 3
	Slide 41: Vector clocks example - 4
	Slide 42: Vector clocks example - 5
	Slide 43: We will return at 2:40 pm
	Slide 44: OBJECTIVES – 3/2
	Slide 45: OBJECTIVES – 3/2
	Slide 46: Ch. 6.3: distributed mutual exclusion
	Slide 47: Distributed mutual exclusion algorithms
	Slide 48: token-based algorithms
	Slide 49: Token-ring algorithm
	Slide 50: Token-ring challenges
	Slide 51: Distributed mutual exclusion algorithms - 3
	Slide 52: Centralized mutual exclusion
	Slide 53: Centralized mutual exclusion - 2
	Slide 54: Distributed algorithm
	Slide 55: Distributed algorithm - 2
	Slide 56: Distributed algorithm - 3
	Slide 57: Challenges with Distributed algorithm
	Slide 58: Challenges with Distributed algorithm - 2
	Slide 59: Decentralized algorithm
	Slide 60: Decentralized algorithm - 2
	Slide 61: Decentralized algorithm - 3
	Slide 62: Decentralized algorithm - 4
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Distributed mutual exclusion algorithms review
	Slide 68: Distributed mutual exclusion algorithms review - 2
	Slide 69: Distributed mutual exclusion algorithms review - 3
	Slide 70: Distributed mutual exclusion algorithms review - 4
	Slide 71: Questions

