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 Assignment 2: Replicated Key Value Store
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 Class Activity 4 – Total Ordered Multicasting
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OBJECTIVES – 3/2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (24 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.25  ( - previous 6.57)  

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.65  ( - previous 5.81)
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MATERIAL / PACE

 Wil l adjusting the t ime us ing Lampor t's a lgorithm af fect the order 
o f  o ther messages in  the process?

 Node P2 receives a message m 3 from node P3 at t ime=56

 The timestamp of m3 from P3 is t ime=60

 We assume that P 3 sends the message at
t ime=60

 P2 must receive m3 at P3’s t ime+1

 P2’s clock is adjusted to t ime=61

 Because of the happens-before relat ion,
we st i l l  say m1 and m2 happen before m3

 What if m5 arrives at P3 from P4 at t ime=50

 M5 is t ime stamped at  t ime=24

 Does the sending of m 2 from P2 happen before 
the sending of m5 from P4?

 This quest ion asks about causality
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FEEDBACK FROM 2/28
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 Wil l adjusting the t ime us ing Lampor t's algorithm af fect the order 
of  o ther messages in  the process?
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 The timestamp of m3 from P3 is t ime=60

 We assume that P 3 sends the message at
t ime=60

 P2 must receive m3 at P3’s t ime+1
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the sending of m5 from P4?

 This quest ion asks about causality
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FEEDBACK FROM 2/28

KEY CONCEPT:
Lamport clock’s are insufficient 
to determine causality (cause and effect)

 What is  the d i f ference between c lock t ime accuracy vs .  p recision?

 Accuracy is how close a given set  of t ime measurements are to 

their t rue value

 Assume the atomic clock (UTC receiver) is the authority

 For a given node A, the t ime accuracy wil l  be the error relat ive to 

the authority,

 Precision is how close two t ime measurements are to each other

▪ Here neither is an authority

 Example:

 Consider if  the UTC receiver indicates the t ime is 12:00:00 AM

 Node A and Node B both indicate the t ime is 12:00:25 AM

 What is the accuracy of Node A and B’s sense of t ime?

 What is the precision of t ime between Node A and Node B?
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FEEDBACK - 2

 Please explain the Berkeley algorithm

 In the absence of a time authority, a t ime daemon polls the

system to assess the consensus of time

 Nodes report their time offset relative to the time daemon

 Time daemon calculates average time, tells other nodes to 

advance or slow their clocks to the new time has been 

achieved
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FEEDBACK - 3

 Please explain the Berkeley algorithm

 In the absence of a time authority, a t ime daemon polls the

system to assess the consensus of time

 Nodes report their time offset relative to the time daemon

 Time daemon calculates average time, tells other nodes to 

advance or slow their clocks to the new time has been 

achieved
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FEEDBACK - 3

Notice how the average time difference is 5:

average time = (-10 + 25) / 3 (nodes) = +5

Time daemon adjusts clock to new consensus of time

 Please provide an example of  RBS

 RBS used for time synchronization in wireless sensor networks

 RBS: assumes no node has accurate time

 GOAL : internally synchronize clocks – same as Berkeley

 RBS: to save wireless network bandwidth, 2 -way time sync not 
performed. Instead receivers note the time offset when msgs
are received

 RBS: assumes message delivery time is roughly constant
(no multi-hop message delivery )

 RBS: ignores time spent to construct message, and time spent 
to access network (only records receipt time stamps)

 RBS: receiver notes time when message arrives (Tp,m)
assumes constant message delivery time (single -hop)
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FEEDBACK - 4

 RBS: two nodes p and q communicate their relat ive of fset

 P tells q when it  received msg, Q tells p when it  received msg

 Assume message delivery t ime is same

 P and Q exchange message receipt  t imes

 Calculate average offset  between P and Q (how much time varies)

 Dif ference between p and q t ime represents avg clock of fset

 Offset  is calculated for a series of M messages

 Nodes don’t  adjust  clocks to save battery – instead node offset

 UNFORUNATELY: Average clock offset is not constant

 Avg clock of fset  is precise at  first ,  but  then clocks drif t  apart

 Elson et  al .  propose to use l inear regression to est imate how clocks 
wil l  drif t  apart  over t ime using historical p and q of fsets
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FEEDBACK - 5
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 NTP example:

Time server B

Client A

 Assume: Treq= Tres=50

 T1=50, T2(@A)=100, T2=200, T3=300, T3(@A)=200, T4=250

 Calculate clock offset ()  between A and B

 =                                =

 What is  the clock of fset between A and B?
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FEEDBACK - 6

 = clock offset
 = propagation delay

 How do the formulas shown in c lass work; can we get some 

practice problems with them so we can better know how to 

use them in a c lass activity or an exam?

 Class Activity 3

 Class Activity 4

 Practice Final Exam – next Thursday 3/9
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FEEDBACK - 7
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 Questions from 2/28

 Assignment 2:  Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 3/2

 Include readme.txt or doc file with instructions in submission

 Must document membership tracking method 

>> please indicate which types to test <<

ID Description

F Static file membership tracking – file is not reread

FD Static file membership tracking DYNAMIC - file is 

periodically reread to refresh membership list

T TCP membership tracking – servers are configured to 

refer to central membership server

U UDP membership tracking - automatically discovers 

nodes with no configuration
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SHORT-HAND-CODES FOR MEMBERSHIP 

TRACKING APPROACHES

 Sunday March 12 th

 Goal: Replicated Key Value Store

 Team signup posted on Canvas under ‘People’

 Builds off of Assignment 1 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking 

for extra credit
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ASSIGNMENT 2
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 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 3/2

 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)
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CHAPTER 6 - COORDINATION

CH. 6.2: LOGICAL

CLOCKS

L17.21

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Initial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed
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TOTAL-ORDERED MULTICASTING

DB1 DB2

 Two messages (m 1,  m2)  must be distributed,

to two processes (p1,  p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1,  add $100)

 m2(12, p2,  add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the 

Lamport clock timestamp

 In each queue, each message must be acknowledged by every 

process in the system before operations can be applied to the 

local database
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TOTAL-ORDERED MULTICASTING 

EXAMPLE

 Two messages (m 1,  m2)  must be distributed,

to two processes (p1,  p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1,  add $100)

 m2(12, p2,  add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the 

Lamport clock timestamp

 In each queue, each message must be acknowledged by every 

process in the system before operations can be applied to the 

local database
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TOTAL-ORDERED MULTICASTING 

EXAMPLE

Key point:

Multicast messages are also received by the sender (itself)
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What is the final account balance?

(12)

(12)

(10) 1

3

4

2

2

4

3

1

 Each message timestamped with local logical clock of sender

 Multicast messages are also received by the sender ( i tself)

 Assumptions:

▪ Messages from same sender received in order they were sent

▪ No messages are lost

 When messages arrive they are placed in local queue ordered 
by timestamp

 Receiver multicasts acknowledgement of message receipt to 
other processes

▪ Time stamp of message receipt is lower the acknowledgement

 This process replicates queues across sites

 Messages delivered to application (database) only when 
message at the head of the queue has been acknowledged by 
every process in the system
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TOTAL-ORDERED MULTICASTING - 2

 Can be used to implement replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical c locks and (2) exchanging acknowledgement 

messages, allows for events to be “totally” ordered in 

replicated event queues  

 Events can be applied “ in order” to each (distributed) 

replicated state machine (RSM)
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TOTAL-ORDERED MULTICASTING - 3

 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 3/2
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 Lamport clocks don’t help to determine causal ordering of 

messages

 Vector clocks capture causal histories and can be used as an 

alternative

 But what is causality? …
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VECTOR CLOCKS

 Having a causal relationship between two events (A and E)

indicates that event E results from the occurrence of event A.

 When one event results from another, there is a causal 

relationship between the two events. 

 This is also referred to as cause and effect.
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WHAT IS CAUSALITY?

Proc 1

Proc 2

A         B        C

D                      E

m1

 Disclaimer:

 Without knowing actual information contained in messages, it 

is not possible to state with certainty that there is a causal 

relationship or perhaps a conflict

 Lamport/Vector clocks can help us suggest possible causality

 But we never know for sure…
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CAUSALITY - 2

 Consider the messages:

 P2 receives m1, and subsequently sends m3

 Causality: Sending m3 may depend on what’s contained in m1

 P2 receives m2, receiving m2 is not related to receiving m1

 Is  sending m3 causally dependent on receiving m2?
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CAUSALITY - 3

 Vector clocks help keep track of causal history

 If  two local events happened at process P, then the 

causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event, 

as a vector clock → H(q2) = (3,2)

 Each entry corresponds to the last event at the process
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VECTOR CLOCKS

 Each process maintains a vector clock which

▪ Captures number of events at the local process (e.g. logical clock)

▪ Captures number of events at all other processes

 Causality is captured by:

▪ For each event at Pi, the vector clock (VCi) is incremented

▪ The msg is timestamped with VCi; and sending the msg is recorded 

as a new event at P i

▪ Pj adjusts its VCj choosing the max of: the message timestamp –or-

the local vector clock (VCj)
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VECTOR CLOCKS - 2

P1

P2

(1,0)   (2,0)    (3,0)

(0,1)                    (3,2)

m1

31 32
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 Pj knows the # of events at Pi based on the timestamps of the  

received message

 Pj learns how many events have occurred at other processes 

based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the 

message(s) to be sent…
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VECTOR CLOCKS - 3

 Local clock is underlined
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VECTOR CLOCKS EXAMPLE

m2 m4 m2 < m4 m2 > m4 Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

 P3 can’t determine if m4 may be causally dependent on m2

 Is  m4 causally dependent on m3 ?
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VECTOR CLOCKS EXAMPLE - 2

m2 m4 m2 < m4 m2 > m4 Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

 Provide a vector clock label for unlabeled events
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VECTOR CLOCKS EXAMPLE - 3

 TRUE/FALSE:

 The sending of message m 3 is causally dependent on the 
sending of message m 1.

 The sending of message m 2 is causally dependent on the 
sending of message m 1.
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VECTOR CLOCKS EXAMPLE - 4

 TRUE/FALSE:

 P1 (1,0,0) and P3 (0,0,1) may be concurrent events.

 P2 (0,1,1) and P3 (0,0,1) may be concurrent events.

 P1 (1,0,0) and P2 (0,1,1) may be concurrent events.
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VECTOR CLOCKS EXAMPLE - 5
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WE WILL RETURN AT 

2:40 PM

 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 3/2

 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 3/2

CH. 6.3: DISTRIBUTED

MUTUAL

EXCLUSION

L17.46

 Coordinating access among distributed processes to a 

shared resource requires Distributed Mutual Exclusion

Algorithms in 6.3

 Token-ring algorithm

 Permission-based algorithms:

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid
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TOKEN-BASED ALGORITHMS
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 Construct overlay network

 Establish logical r ing among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If  no node accesses resource, token is constantly circulated 

around ring
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TOKEN-RING ALGORITHM

1. If token is lost, token must be regenerated

▪ Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

▪What is the difference between token being lost and a 

node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

▪ Dead nodes can be detected by adding a receipt message 

for when the token passes from node-to-node

▪When no receipt is received, node assumed dead

▪ Dead process can be “jumped” in the ring
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TOKEN-RING CHALLENGES

Permission-based algorithms

 Processes must require permission from other processes 

before first acquiring access to the resource

▪ CONTRAST: Token-ring did not ask nodes for permission 

 Centralized algorithm

 Elect a single leader node to coordinate access to shared 

resource(s)

 Manage mutual exclusion on a distributed system similar 

to how mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS - 3

 When resource not available, coordinator can block the 

requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject

otherwise can wait if  simply blocked

 Requests are granted permission fairly using FIFO queue

 Just three messages: (request, grant (OK), release)
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CENTRALIZED MUTUAL EXCLUSION

P1 executes                                    P2 blocks               P1 finishes; P2 executes

Permission granted from coordinator    \/  No response from coordinator

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “blocking”

when resource is unavailable

▪ No difference between CRASH and BLOCK (for a long time)

 Large systems, coordinator becomes performance bottleneck

▪ Scalability: Performance does not scale

 Benefits

 Simplicity:

Easy to implement compared to distributed alternatives
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CENTRALIZED MUTUAL EXCLUSION - 2

 Ricart and Agrawala [1981], use total ordering of all events

▪ Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:

▪ Name of resource

▪ Process number

▪ Current (logical) time

 Assume messages are sent reliably

▪ No messages are lost
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DISTRIBUTED ALGORITHM
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 When each node receives a request message they will:

1. Say OK ( i f  the node doesn’t need the resource )

2. Make no reply, queue request (node is  using the resource)

3. I f  node is  a lso waiting to access the resource: perform a 

timestamp comparison -

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership 

list of the distributed system
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DISTRIBUTED ALGORITHM - 2

 Node 0 and Node 2 simultaneously request access to resource

 Node 0’s time stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Node 1 is not interested in the resource, it OKs both requests

 In case of  conflict, lowest t imestamp wins!

▪ Node 2 rejects its own request (12) in favor of node 0 (8)
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DISTRIBUTED ALGORITHM - 3

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 No Reply Problem: When node is accessing the resource, 

it does not respond

▪ Lack of response can be confused with failure

▪ Possible Solution: When node receives request for 

resource it is accessing, always send a reply either 

granting or denying permission (ACK)

▪ Enables requester to determine when nodes have died

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.57

CHALLENGES WITH 

DISTRIBUTED ALGORITHM

 Problem: Mult icast  communicat ion required –or- each node must 
maintain full  group membership

▪ Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement to 
grant access to a shared resource

▪ This approach may not scale on resource-constrained systems

 Solut ion: Can relax total agreement requirement and proceed when 
a s imple majority of nodes grant permission (>50%)

▪ Presumably any one node locking the resource prevents agreement

▪ If one node gets majority of acknowledges no other can

▪ Requires every node to know size of system (# of nodes)

 Problem: 2 concurrent  transactions get 50% permission → deadlock?

 Distributed algorithm for mutual exclusion works best  for:

▪ Small groups of processes

▪ When memberships rarely change
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CHALLENGES WITH 

DISTRIBUTED ALGORITHM - 2

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator      …(N coordinators)

 Accessing resource requires majority vote: 

total votes (m) > N/2 coordinators

 Assumption #1: When coordinator does not give 

permission to access a resource (because it is busy) it will 

inform the requester
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DECENTRALIZED ALGORITHM

 Assumption #2: When a coordinator crashes, it recovers 

quickly, but will have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted 

permission to the shared resource, and on recovery it errantly 

grants permission again

 The Hope: if  coordinator crashes, upon recovery , the node 

granted access to the resource has already f inished before the 

restored coordinator grants access again .  .  .
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DECENTRALIZED ALGORITHM - 2
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 With 99.167% coordinator availability (30 sec downtime/hour) 

chance of violating correctness is  so low it can be neglected in 

comparison to other types of failure

 Leverages fact that a new node must obtain a majority vote to 

access resource, which requires t ime
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DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote
p=seconds per hour coordinator is offline

 Back-off Polling Approach for permission-denied:

 If  permission to access a resource is denied via majority vote, 

process can poll to gain access again with a random delay 

(known as back-off)

 Node waits for a random amount, retries…

 If  too many nodes compete to gain access to a resource, 

majority vote can lead to low resource utilization

▪ No one can achieve majority vote to obtain access to the 

shared resource

▪ Mimics elections where with too many candidates, where no 

one candidate can get >50% of the total vote

 Problem Solution detailed in [Lin et al. 2014]
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DECENTRALIZED ALGORITHM - 4
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 Which algorithm offers the best scalability to support 

distributed mutual exclusion in a large distributed 

system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.67

DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS REVIEW

 Which algorithm(s) involve blocking (no reply) when a 

resource is not available? 

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS REVIEW - 2

 Which algorithm(s) involve arriving at a consensus 

(majority opinion) to determine whether a node should be 

granted access to a resource? 

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS REVIEW - 3

 Which algorithm(s) have N points of failure, 

where N = Number of Nodes in the system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS REVIEW - 4

QUESTIONS
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