
TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.1

Chapter 6 – Coordination - III

Wes J. Lloyd

School of Engineering
& Technology (SET)
University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.2

OBJECTIVES – 3/2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.3

ONLINE DAILY FEEDBACK SURVEY

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L17.4

 Please classify your perspective on material covered in today’s

class (24 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.25 ( - previous 6.57)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.65 ( - previous 5.81)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.5

MATERIAL / PACE

 Wil l adjusting the t ime us ing Lampor t's a lgorithm af fect the order
o f o ther messages in the process?

 Node P2 receives a message m 3 from node P3 at t ime=56

 The timestamp of m3 from P3 is t ime=60

 We assume that P 3 sends the message at
t ime=60

 P2 must receive m3 at P3’s t ime+1

 P2’s clock is adjusted to t ime=61

 Because of the happens-before relat ion,
we st i l l say m1 and m2 happen before m3

 What if m5 arrives at P3 from P4 at t ime=50

 M5 is t ime stamped at t ime=24

 Does the sending of m 2 from P2 happen before
the sending of m5 from P4?

 This quest ion asks about causality

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.6

FEEDBACK FROM 2/28

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.2

 Wil l adjusting the t ime us ing Lampor t's algorithm af fect the order
of o ther messages in the process?

 Node P2 receives a message m 3 from node P3 at t ime=56

 The timestamp of m3 from P3 is t ime=60

 We assume that P 3 sends the message at
t ime=60

 P2 must receive m3 at P3’s t ime+1

 P2’s clock is adjusted to t ime=61

 Because of the happens-before relat ion,
we st i l l say m1 and m2 happen before m 3

 What if m5 arrives at P3 from P4 at t ime=50

 M5 is t ime stamped at t ime=24

 Does the sending of m 2 from P2 happen before
the sending of m5 from P4?

 This quest ion asks about causality

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.7

FEEDBACK FROM 2/28

KEY CONCEPT:
Lamport clock’s are insufficient
to determine causality (cause and effect)

 What is the d i f ference between c lock t ime accuracy vs . p recision?

 Accuracy is how close a given set of t ime measurements are to

their t rue value

 Assume the atomic clock (UTC receiver) is the authority

 For a given node A, the t ime accuracy wil l be the error relat ive to

the authority,

 Precision is how close two t ime measurements are to each other

▪ Here neither is an authority

 Example:

 Consider if the UTC receiver indicates the t ime is 12:00:00 AM

 Node A and Node B both indicate the t ime is 12:00:25 AM

 What is the accuracy of Node A and B’s sense of t ime?

 What is the precision of t ime between Node A and Node B?

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.8

FEEDBACK - 2

 Please explain the Berkeley algorithm

 In the absence of a time authority, a t ime daemon polls the

system to assess the consensus of time

 Nodes report their time offset relative to the time daemon

 Time daemon calculates average time, tells other nodes to

advance or slow their clocks to the new time has been

achieved

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.9

FEEDBACK - 3

 Please explain the Berkeley algorithm

 In the absence of a time authority, a t ime daemon polls the

system to assess the consensus of time

 Nodes report their time offset relative to the time daemon

 Time daemon calculates average time, tells other nodes to

advance or slow their clocks to the new time has been

achieved

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.10

FEEDBACK - 3

Notice how the average time difference is 5:

average time = (-10 + 25) / 3 (nodes) = +5

Time daemon adjusts clock to new consensus of time

 Please provide an example of RBS

 RBS used for time synchronization in wireless sensor networks

 RBS: assumes no node has accurate time

 GOAL : internally synchronize clocks – same as Berkeley

 RBS: to save wireless network bandwidth, 2 -way time sync not
performed. Instead receivers note the time offset when msgs
are received

 RBS: assumes message delivery time is roughly constant
(no multi-hop message delivery)

 RBS: ignores time spent to construct message, and time spent
to access network (only records receipt time stamps)

 RBS: receiver notes time when message arrives (Tp,m)
assumes constant message delivery time (single -hop)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.11

FEEDBACK - 4

 RBS: two nodes p and q communicate their relat ive of fset

 P tells q when it received msg, Q tells p when it received msg

 Assume message delivery t ime is same

 P and Q exchange message receipt t imes

 Calculate average offset between P and Q (how much time varies)

 Dif ference between p and q t ime represents avg clock of fset

 Offset is calculated for a series of M messages

 Nodes don’t adjust clocks to save battery – instead node offset

 UNFORUNATELY: Average clock offset is not constant

 Avg clock of fset is precise at first , but then clocks drif t apart

 Elson et al . propose to use l inear regression to est imate how clocks
wil l drif t apart over t ime using historical p and q of fsets

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.12

FEEDBACK - 5

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.3

 NTP example:

Time server B

Client A

 Assume: Treq= Tres=50

 T1=50, T2(@A)=100, T2=200, T3=300, T3(@A)=200, T4=250

 Calculate clock offset () between A and B

 = =

 What is the clock of fset between A and B?

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.13

FEEDBACK - 6

 = clock offset
 = propagation delay

 How do the formulas shown in c lass work; can we get some

practice problems with them so we can better know how to

use them in a c lass activity or an exam?

 Class Activity 3

 Class Activity 4

 Practice Final Exam – next Thursday 3/9

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.14

FEEDBACK - 7

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L17.15

 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.16

OBJECTIVES – 3/2

 Include readme.txt or doc file with instructions in submission

 Must document membership tracking method

>> please indicate which types to test <<

ID Description

F Static file membership tracking – file is not reread

FD Static file membership tracking DYNAMIC - file is

periodically reread to refresh membership list

T TCP membership tracking – servers are configured to

refer to central membership server

U UDP membership tracking - automatically discovers

nodes with no configuration

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.17

SHORT-HAND-CODES FOR MEMBERSHIP

TRACKING APPROACHES

 Sunday March 12 th

 Goal: Replicated Key Value Store

 Team signup posted on Canvas under ‘People’

 Builds off of Assignment 1 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking

for extra credit

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.18

ASSIGNMENT 2

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.4

 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.19

OBJECTIVES – 3/2

 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.20

CHAPTER 6 - COORDINATION

CH. 6.2: LOGICAL

CLOCKS

L17.21

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Initial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.22

TOTAL-ORDERED MULTICASTING

DB1 DB2

 Two messages (m 1, m2) must be distributed,

to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the

Lamport clock timestamp

 In each queue, each message must be acknowledged by every

process in the system before operations can be applied to the

local database

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.23

TOTAL-ORDERED MULTICASTING

EXAMPLE

 Two messages (m 1, m2) must be distributed,

to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the

Lamport clock timestamp

 In each queue, each message must be acknowledged by every

process in the system before operations can be applied to the

local database

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.24

TOTAL-ORDERED MULTICASTING

EXAMPLE

Key point:

Multicast messages are also received by the sender (itself)

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.5

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10) 1

3

4

2

2

4

3

1

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10) 1

3

4

2

2

4

3

1

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10)

What is the final account balance?

(12)

(12)

(10) 1

3

4

2

2

4

3

1

 Each message timestamped with local logical clock of sender

 Multicast messages are also received by the sender (i tself)

 Assumptions:

▪ Messages from same sender received in order they were sent

▪ No messages are lost

 When messages arrive they are placed in local queue ordered
by timestamp

 Receiver multicasts acknowledgement of message receipt to
other processes

▪ Time stamp of message receipt is lower the acknowledgement

 This process replicates queues across sites

 Messages delivered to application (database) only when
message at the head of the queue has been acknowledged by
every process in the system

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.28

TOTAL-ORDERED MULTICASTING - 2

 Can be used to implement replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical c locks and (2) exchanging acknowledgement

messages, allows for events to be “totally” ordered in

replicated event queues

 Events can be applied “ in order” to each (distributed)

replicated state machine (RSM)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.29

TOTAL-ORDERED MULTICASTING - 3

 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.30

OBJECTIVES – 3/2

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.6

 Lamport clocks don’t help to determine causal ordering of

messages

 Vector clocks capture causal histories and can be used as an

alternative

 But what is causality? …

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.31

VECTOR CLOCKS

 Having a causal relationship between two events (A and E)

indicates that event E results from the occurrence of event A.

 When one event results from another, there is a causal

relationship between the two events.

 This is also referred to as cause and effect.

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.32

WHAT IS CAUSALITY?

Proc 1

Proc 2

A B C

D E

m1

 Disclaimer:

 Without knowing actual information contained in messages, it

is not possible to state with certainty that there is a causal

relationship or perhaps a conflict

 Lamport/Vector clocks can help us suggest possible causality

 But we never know for sure…

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.33

CAUSALITY - 2

 Consider the messages:

 P2 receives m1, and subsequently sends m3

 Causality: Sending m3 may depend on what’s contained in m1

 P2 receives m2, receiving m2 is not related to receiving m1

 Is sending m3 causally dependent on receiving m2?

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.34

CAUSALITY - 3

 Vector clocks help keep track of causal history

 If two local events happened at process P, then the

causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event,

as a vector clock → H(q2) = (3,2)

 Each entry corresponds to the last event at the process

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.35

VECTOR CLOCKS

 Each process maintains a vector clock which

▪ Captures number of events at the local process (e.g. logical clock)

▪ Captures number of events at all other processes

 Causality is captured by:

▪ For each event at Pi, the vector clock (VCi) is incremented

▪ The msg is timestamped with VCi; and sending the msg is recorded

as a new event at P i

▪ Pj adjusts its VCj choosing the max of: the message timestamp –or-

the local vector clock (VCj)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.36

VECTOR CLOCKS - 2

P1

P2

(1,0) (2,0) (3,0)

(0,1) (3,2)

m1

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.7

 Pj knows the # of events at Pi based on the timestamps of the

received message

 Pj learns how many events have occurred at other processes

based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the

message(s) to be sent…

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.37

VECTOR CLOCKS - 3

 Local clock is underlined

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.38

VECTOR CLOCKS EXAMPLE

m2 m4 m2 < m4 m2 > m4 Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

 P3 can’t determine if m4 may be causally dependent on m2

 Is m4 causally dependent on m3 ?

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.39

VECTOR CLOCKS EXAMPLE - 2

m2 m4 m2 < m4 m2 > m4 Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

 Provide a vector clock label for unlabeled events

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.40

VECTOR CLOCKS EXAMPLE - 3

 TRUE/FALSE:

 The sending of message m 3 is causally dependent on the
sending of message m 1.

 The sending of message m 2 is causally dependent on the
sending of message m 1.

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.41

VECTOR CLOCKS EXAMPLE - 4

 TRUE/FALSE:

 P1 (1,0,0) and P3 (0,0,1) may be concurrent events.

 P2 (0,1,1) and P3 (0,0,1) may be concurrent events.

 P1 (1,0,0) and P2 (0,1,1) may be concurrent events.

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.42

VECTOR CLOCKS EXAMPLE - 5

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.8

WE WILL RETURN AT

2:40 PM

 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.44

OBJECTIVES – 3/2

 Questions from 2/28

 Assignment 2: Replicated Key Value Store

 Chapter 6: Coordination

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity 4 – Total Ordered Multicasting

 Chapter 6: Coordination

▪ Chapter 6.3: Distributed Mutual Exclusion

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.45

OBJECTIVES – 3/2

CH. 6.3: DISTRIBUTED

MUTUAL

EXCLUSION

L17.46

 Coordinating access among distributed processes to a

shared resource requires Distributed Mutual Exclusion

Algorithms in 6.3

 Token-ring algorithm

 Permission-based algorithms:

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.47

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.48

TOKEN-BASED ALGORITHMS

43 44

45 46

47 48

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.9

 Construct overlay network

 Establish logical r ing among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated

around ring

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.49

TOKEN-RING ALGORITHM

1. If token is lost, token must be regenerated

▪ Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

▪What is the difference between token being lost and a

node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

▪ Dead nodes can be detected by adding a receipt message

for when the token passes from node-to-node

▪When no receipt is received, node assumed dead

▪ Dead process can be “jumped” in the ring

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.50

TOKEN-RING CHALLENGES

Permission-based algorithms

 Processes must require permission from other processes

before first acquiring access to the resource

▪ CONTRAST: Token-ring did not ask nodes for permission

 Centralized algorithm

 Elect a single leader node to coordinate access to shared

resource(s)

 Manage mutual exclusion on a distributed system similar

to how mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.51

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS - 3

 When resource not available, coordinator can block the

requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject

otherwise can wait if simply blocked

 Requests are granted permission fairly using FIFO queue

 Just three messages: (request, grant (OK), release)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.52

CENTRALIZED MUTUAL EXCLUSION

P1 executes P2 blocks P1 finishes; P2 executes

Permission granted from coordinator \/ No response from coordinator

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “blocking”

when resource is unavailable

▪ No difference between CRASH and BLOCK (for a long time)

 Large systems, coordinator becomes performance bottleneck

▪ Scalability: Performance does not scale

 Benefits

 Simplicity:

Easy to implement compared to distributed alternatives

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.53

CENTRALIZED MUTUAL EXCLUSION - 2

 Ricart and Agrawala [1981], use total ordering of all events

▪ Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:

▪ Name of resource

▪ Process number

▪ Current (logical) time

 Assume messages are sent reliably

▪ No messages are lost

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.54

DISTRIBUTED ALGORITHM

49 50

51 52

53 54

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.10

 When each node receives a request message they will:

1. Say OK (i f the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. I f node is a lso waiting to access the resource: perform a

timestamp comparison -

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership

list of the distributed system

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.55

DISTRIBUTED ALGORITHM - 2

 Node 0 and Node 2 simultaneously request access to resource

 Node 0’s time stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Node 1 is not interested in the resource, it OKs both requests

 In case of conflict, lowest t imestamp wins!

▪ Node 2 rejects its own request (12) in favor of node 0 (8)

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.56

DISTRIBUTED ALGORITHM - 3

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 No Reply Problem: When node is accessing the resource,

it does not respond

▪ Lack of response can be confused with failure

▪ Possible Solution: When node receives request for

resource it is accessing, always send a reply either

granting or denying permission (ACK)

▪ Enables requester to determine when nodes have died

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.57

CHALLENGES WITH

DISTRIBUTED ALGORITHM

 Problem: Mult icast communicat ion required –or- each node must
maintain full group membership

▪ Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement to
grant access to a shared resource

▪ This approach may not scale on resource-constrained systems

 Solut ion: Can relax total agreement requirement and proceed when
a s imple majority of nodes grant permission (>50%)

▪ Presumably any one node locking the resource prevents agreement

▪ If one node gets majority of acknowledges no other can

▪ Requires every node to know size of system (# of nodes)

 Problem: 2 concurrent transactions get 50% permission → deadlock?

 Distributed algorithm for mutual exclusion works best for:

▪ Small groups of processes

▪ When memberships rarely change

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.58

CHALLENGES WITH

DISTRIBUTED ALGORITHM - 2

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator …(N coordinators)

 Accessing resource requires majority vote:

total votes (m) > N/2 coordinators

 Assumption #1: When coordinator does not give

permission to access a resource (because it is busy) it will

inform the requester

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.59

DECENTRALIZED ALGORITHM

 Assumption #2: When a coordinator crashes, it recovers

quickly, but will have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted

permission to the shared resource, and on recovery it errantly

grants permission again

 The Hope: if coordinator crashes, upon recovery , the node

granted access to the resource has already f inished before the

restored coordinator grants access again . . .

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.60

DECENTRALIZED ALGORITHM - 2

55 56

57 58

59 60

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.11

 With 99.167% coordinator availability (30 sec downtime/hour)

chance of violating correctness is so low it can be neglected in

comparison to other types of failure

 Leverages fact that a new node must obtain a majority vote to

access resource, which requires t ime

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.61

DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote
p=seconds per hour coordinator is offline

 Back-off Polling Approach for permission-denied:

 If permission to access a resource is denied via majority vote,

process can poll to gain access again with a random delay

(known as back-off)

 Node waits for a random amount, retries…

 If too many nodes compete to gain access to a resource,

majority vote can lead to low resource utilization

▪ No one can achieve majority vote to obtain access to the

shared resource

▪ Mimics elections where with too many candidates, where no

one candidate can get >50% of the total vote

 Problem Solution detailed in [Lin et al. 2014]

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.62

DECENTRALIZED ALGORITHM - 4

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L17.63 October 24, 2016

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L17.64

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L17.65 October 24, 2016

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L17.66

61 62

63 64

65 66

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

March 2, 2023

Slides by Wes J. Lloyd L17.12

 Which algorithm offers the best scalability to support

distributed mutual exclusion in a large distributed

system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.67

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW

 Which algorithm(s) involve blocking (no reply) when a

resource is not available?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.68

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 2

 Which algorithm(s) involve arriving at a consensus

(majority opinion) to determine whether a node should be

granted access to a resource?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.69

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 3

 Which algorithm(s) have N points of failure,

where N = Number of Nodes in the system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L17.70

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 4

QUESTIONS

March 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L17.71

67 68

69 70

71

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 3/2
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 2/28
	Slide 7: Feedback from 2/28
	Slide 8: Feedback - 2
	Slide 9: Feedback - 3
	Slide 10: Feedback - 3
	Slide 11: Feedback - 4
	Slide 12: Feedback - 5
	Slide 13: Feedback - 6
	Slide 14: Feedback - 7
	Slide 15
	Slide 16: OBJECTIVES – 3/2
	Slide 17: Short-hand-codes for Membership Tracking Approaches
	Slide 18: Assignment 2
	Slide 19: OBJECTIVES – 3/2
	Slide 20: Chapter 6 - Coordination
	Slide 21: Ch. 6.2: logical clocks
	Slide 22: Total-ordered multicasting
	Slide 23: Total-ordered multicasting example
	Slide 24: Total-ordered multicasting example
	Slide 25: Total-ordered multicasting example
	Slide 26: Total-ordered multicasting example
	Slide 27: Total-ordered multicasting example
	Slide 28: Total-ordered multicasting - 2
	Slide 29: Total-ordered multicasting - 3
	Slide 30: OBJECTIVES – 3/2
	Slide 31: Vector clocks
	Slide 32: What is causality?
	Slide 33: Causality - 2
	Slide 34: causality - 3
	Slide 35: Vector clocks
	Slide 36: Vector clocks - 2
	Slide 37: Vector clocks - 3
	Slide 38: Vector clocks example
	Slide 39: Vector clocks example - 2
	Slide 40: Vector clocks example - 3
	Slide 41: Vector clocks example - 4
	Slide 42: Vector clocks example - 5
	Slide 43: We will return at 2:40 pm
	Slide 44: OBJECTIVES – 3/2
	Slide 45: OBJECTIVES – 3/2
	Slide 46: Ch. 6.3: distributed mutual exclusion
	Slide 47: Distributed mutual exclusion algorithms
	Slide 48: token-based algorithms
	Slide 49: Token-ring algorithm
	Slide 50: Token-ring challenges
	Slide 51: Distributed mutual exclusion algorithms - 3
	Slide 52: Centralized mutual exclusion
	Slide 53: Centralized mutual exclusion - 2
	Slide 54: Distributed algorithm
	Slide 55: Distributed algorithm - 2
	Slide 56: Distributed algorithm - 3
	Slide 57: Challenges with Distributed algorithm
	Slide 58: Challenges with Distributed algorithm - 2
	Slide 59: Decentralized algorithm
	Slide 60: Decentralized algorithm - 2
	Slide 61: Decentralized algorithm - 3
	Slide 62: Decentralized algorithm - 4
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Distributed mutual exclusion algorithms review
	Slide 68: Distributed mutual exclusion algorithms review - 2
	Slide 69: Distributed mutual exclusion algorithms review - 3
	Slide 70: Distributed mutual exclusion algorithms review - 4
	Slide 71: Questions

