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OBJECTIVES - 3/2

| = Questlons from 2/28 |
= Assignment 2: Replicated Key Value Store
= Chapter 6: Coordination

= Chapter 6.2: Logical Clocks
Vector Clocks

= Class Activity 4 - Total Ordered Multicasting
= Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion
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ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 10p

= Thursday surveys: due ~ Mon @ 10p

== TCSS558A » Assignments

Home

* Upcoming Assignments

o TCSS 558 - Online Daily Feedback Survey - 1/5

ot avalsbie undil Jan 5 ot 1:30pm | Bue Jan 6 at 10pm

TCSS558: Applied Distributed Computing [Winter 2023]
[March272023 School of Engineering and Technology, University of Washington - Tacoma w3

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan &6 at 10pm Points 1 Questions 4
Available Jan 5 at 1:30pm - Jan 6 at 11:59m 1dsy  Time Limit None
Question 1 0.5 pts

Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 a 4 s 3 7 8 s 10

Equa1 ety

Question 2 a5 pis

Please rate the pace of today's class:

1 2 3 4 s 3 7 8 ® 10

P et might Past

TCSS558: Applied Distributed Computing [Winter 2023]
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MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (24 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.25 (I - previous 6.57)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.65 ({ - previous 5.81)

TCSS558: Applied Distributed Computing [Winter 2023]
s School of Engineering and Technology, University of Washington -Tacoma s

FEEDBACK FROM 2/28

i iusti i f D
of other messages In the process?

Node P, receives a message m; from node P; at time=56
The timestamp of m; from P; is time=60
= We assume that P; sends the message at
time=60

P, must receive m; at P;3’s time+1

P,’s clock is adjusted to time=61

Because of the happens-before relation,
we still say m; and m, happen before my

What if mg arrives at P; from P, at time=50
M5 is time stamped at time=24

42
Does the sending of m, from P, happen before
the sending of mg from P,?

This question asks about causality

TCSS558: Applied Distributed Computing [Winter 2023]
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FEEDBACK FROM 2/28

= Wl adjusting the time using Lamport's algorlithm affect the order
of other messages In the process?
Node P. i
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] Lamport clock’s are insufficient
to determine causality (cause and effect)
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2 P, adjusts |-
= What if mg arrives at P; from P, at time=50 its clock
= M5 is time stamped at time=24

= Does the sending of m, from P, happen before
the sending of mg from P,?

= This question asks about causality

TCSS558: Applied Distributed Computing [Winter 2023]
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FEEDBACK - 2

What s the difference between clock time accuracy vs. precision?
Accuracy is how close a given set of time measurements are to
their true value

Assume the atomic clock (UTC receiver) is the authority

For a given node A, the time accuracy will be the error relative to
the authority,

Preclslon is how close two time measurements are to each other
= Here neither is an authority

Example:

Consider if the UTC receiver indicates the time is 12:00:00 AM
Node A and Node B both indicate the time is 12:00:25 AM

What is the accuracy of Node A and B’'s sense of time?

What is the precision of time between Node A and Node B?

TCSS558: Applied Distributed Computing [Winter 2023]
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FEEDBACK - 3

= Please explaln the Berkeley algorithm

= |n the absence of a time authority, a time daemon polls the
system to assess the consensus of time

= Nodes report their time offset relative to the time daemon

= Time daemon calculates average time, tells other nodes to
advance or slow their clocks to the new time has been

achieved
Jue

250 375 2:50 325 305 3.05
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FEEDBACK - 4

= Please provide an example of RBS

= RBS used for time synchronization in wireless sensor networks

= RBS: assumes no node has accurate time

= GOAL: internally synchronize clocks - same as Berkeley

= RBS: to save wireless network bandwidth, 2-way time sync not
performed. Instead receivers note the time offset when msgs
are received

= RBS: assumes message delivery time is roughly constant
(no multi-hop message delivery)
= RBS: ignores time spent to construct message, and time spent
to access network (only records receipt time stamps)
= RBS:receiver notes time when message arrives (T, ,)
assumes constant message delivery time (single-hop)

TCs5558: Applied Distributed Computing [Winter 2023]

s School of Engineering and Technology, University of Washington -Tacoma

urn
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FEEDBACK - 3

Please explain the Berkeley algorithm
In the absence of a time authority, a time daemon polls the
system to assess the consensus of time

hod Notice how the average time difference is 5:

ECAE average time

0 + 25) / 3 (nodes) = +5
achi

Time daemon adjusts clock to new consen:

250 375 2:50 325 2:50 325
TCSS558: Applied Distributed Computing [Winter 2023]
‘ arch272023 School of Engineering and Technology, University of Washington - Tacoma 1710

FEEDBACK - 5

RBS: two nodes p and g communicate their relative offset
P tells g when it received msg, Q tells p when it received msg
Assume message delivery time is same
P and Q exchange message receipt times
Calculate average offset between P and Q (how much time varies)
Difference between p and q time represents avg clock offset
M (Tpx =T,

Offep,q) = H2 e~ Tt
Offset is calculated for a series of M messages
Nodes don’t adjust clocks to save battery - instead node offset
UNFORUNATELY: Average clock offset is not constant
Avg clock offset is precise at first, but then clocks drift apart
Elson et al. propose to use linear regression to estimate how clocks

will drift apart over time using historical p and g offsets
TCSS558: Applied Distributed Computing [Winter 2023]
) School of Engineering and Technology, University of Washington - Tacoma e

12




TCSS 558

: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,
UW-Tacoma

FEEDBACK - 6

= NTP example:
Time server B B T T

6 = clock offset
8 = propagation delay

Client A T,
= Assume: 8T ,.,= 8T,=50
= T,=50, T,(@A)=100, T,=200, T,=300, T;(@A)=200, T,=250
= Calculate clock offset (0) between A and B
0= (-T)+(T3-Ty) 6= (M-T)-(T:-T)
B 3

= What Is the clock offset between A and B?

TCSS558: Applied Distributed Computing [Winter 2023]

‘ LA S School of Engineering and Technology, University of Washington - Tacoma urs
(1) < Activities € visual settings @ it < >
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© Respond at PollEv.com/wesleylloyd641
& # Text WESLEYLLOYD641 to 22333 once to jain, then A, B, C, D, or E
Are you working to submit a MS Thesis or Capstone

proposal this Quarter ?
Yes, an MS thesis proposal
Yes, an MS capstone proposal

No, not this quarter, but later on |C
No, am planning coursework option
Undecided

¢ T T T 1
Total Results: 16
powered by @) Poll Everywhere

SHORT-HAND-CODES FOR MEMBERSHIP

TRACKING APPROACHES

= Include readme.txt or doc file with instructions in submission
= Must document membership tracking method

>> please Indicate which types to test <<

ID Description

F Static file membership tracking - file is not reread

FD Static file membership tracking DYNAMIC - file is
periodically reread to refresh membership list

T TCP membership tracking - servers are configured to
refer to central membership server
u UDP membership tracking - automatically discovers
nodes with no configuration
TCSS558: Applied Distributed C iting [Winter 2023]
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FEEDBACK - 7

= How do the formulas shown In class work; can we get some
practice problems with them so we can better know how to
use them in a class activity or an exam?

= Class Activity 3
= Class Activity 4
= Practice Final Exam - next Thursday 3/9

TCss558: Applied Distributed Computing [Winter 2023]
‘ WALz SR E School of Engineering and Technology, University of Washington - Tacoma s
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OBJECTIVES - 3/2

= Questions from 2/28

| = Assignment 2: Replicated Key Value Store |
= Chapter 6: Coordination

= Chapter 6.2: Logical Clocks
Vector Clocks

= Class Activity 4 - Total Ordered Multicasting
= Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion

TCSS558: Applied Distributed Computing [Winter 2023]
‘ March2,2023 School of Engineering and Technology, University of Washington - Tacoma U716
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ASSIGNMENT 2

= Sunday March 12t
= Goal: Replicated Key Value Store

= Team signup posted on Canvas under ‘People’
= Builds off of Assignment 1 GenericNode

= Focus on TCP client/server w/ replication

= How to track membership for data replication?

= Can implement multiple types of membership tracking
for extra credit

TCSS558: Applied Distributed Computing [Winter 2023]
‘ [EEGZTD School of Engineering and Technology, University of Washington -Tacoma L
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March 2, 2023

OBJECTIVES - 3/2

® Questions from 2/28
= Assignment 2: Replicated Key Value Store
= Chapter 6: Coordination

| =Chapter 6.2: Logical Clocks |
Vector Clocks

= Class Activity 4 - Total Ordered Multicasting
= Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion

TCSS558: Applied Distributed Computing [Winter 2023]
‘ LI 2 School of Engineering and Technology, University of Washington - Tacoma ure

CHAPTER 6 - COORDINATION

= 6.1 Clock Synchronization

= Physical clocks

= Clock synchronization algorithms
= 6.2 Logical clocks

= Lamport clocks

= Vector clocks

= 6.3 Mutual exclusion

= 6.4 Election algorithms

= 6.6 Distributed event matching (light)
= 6.7 Gossip-based coordination (light)

TCss558: Applied Distributed Computing [Winter 2023]
‘ WALz SR E School of Engineering and Technology, University of Washington - Tacoma 20
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CH. 6.2: LOGICAL
CLOCKS

TOTAL-ORDERED MULTICASTING

= Consider concurrent updates to a replicated database
= Communication latency between DB1 and DB2 is 250ms

i Update 1 Update 2 i
Y ¥ Y
Update 1 is Replicaled calabase Update 2is
performed before performed before
update 2 update 1

= |nitial Account balance: $1,000

= Update #1: Deposit $100

= Update #2: Add 1% Interest

= Total Ordered Multicasting needed

TCSS558: Applied Distributed Computing [Winter 2023]
arch272023 School of Engineering and Technology, University of Washington - Tacoma L
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TOTAL-ORDERED MULTICASTING
EXAMPLE

= Two messages (m,, m,) must be distributed,
to two processes (p4, Py)
= We assume messages have correct lamport clock timestamps
= m,(10, p,, add $100)
" my(12, p,, add 1% interest)

= Each process maintains a queue of messages
= Arriving messages are placed into queues ordered by the
Lamport clock timestamp

= |[n each queue, each message must be acknowledged by every

process in the system before operations can be applied to the
local database

TCs5558: Applied Distributed Computing [Winter 2023] .
School of Engineering and Technology, University of Washington - Tacoma

‘ March2, 2023
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TOTAL-ORDERED MULTICASTING
EXAMPLE

= Two messages (m4, m,) must be distributed,

to two processes (p4, P5)
= We assume messages have correct lamport clock timestamps
= m,(10, p,, add $100)

Key point:

Multicast messages are also received by the sender (itself)

Lamport clock timestamp
= |[n each queue, each message must be acknowledged by every

process in the system before operations can be applied to the
local database

TCSS558: Applied Distributed Computing [Winter 2023] 2
School of Engineering and Technology, University of Washington - Tacoma

‘ March 2, 2023
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TCSS 558: Applied Distributed Computing
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TOTAL-ORDERED MULTICASTING EXAMPLE

A hn
o

March 2, 2023

25

TOTAL-ORDERED MULTICASTING EXAMPLE

P Gueve
T

bt AdTAGS

TOTAL-ORDERED MULTICASTING EXAMPLE

1L Gueve

A hn
v

What is the final account balance?

27

TOTAL-ORDERED MULTICASTING - 2

= Each message timestamped with local logical clock of sender
= Multicast messages are also recelved by the sender (ltself)
= Assumptions:
= Messages from same sender received in order they were sent
= No messages are lost
= When messages arrive they are placed in local queue ordered
by timestamp
= Receiver multicasts acknowledgement of message receipt to
other processes
= Time stamp of message receipt is lower the acknowledgement

= This process replicates queues across sites

= Messages delivered to application (database) only when
message at the head of the queue has been acknowledged by
every process in the system

TCSS558: Applied Distributed Computing [Winter 2023]
arch272023 [ School of Engineering and Technology, University of Washington - Tacoma 1728

= Concept is to replicate event queues at each node

28

TOTAL-ORDERED MULTICASTING - 3

= Can be used to implement replicated state machines (RSMs)

= (1) Using loglcal clocks and (2) hanging ack ledg

messages, allows for events to be “totally” ordered in
replicated event queues

= Events can be applied “In order” to each (distributed)
replicated state machine (RSM)

EEEEBERE caents

. Loy Log Log
Eeilael ] | el ) | feiledees) )

4

10 aiher machines

TCSS558: Applied Distributed Computing [Winter 2023]

March2, 2023
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OBJECTIVES - 3/2

= Questions from 2/28
= Assignment 2: Replicated Key Value Store
= Chapter 6: Coordination

= Chapter 6.2: Logical Clocks

Vector Clocks |

= Class Activity 4 - Total Ordered Multicasting
= Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion

TCSS558: Applied Distributed Computing [Winter 2023]
) School of Engineering and Technology, University of Washington - Tacoma 1
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VECTOR CLOCKS WHAT IS CAUSALITY?

= Lamport clocks don't help to determine causal ordering of N
messages e m
"1
. . D E
= Vector clocks capture causal histories and can be used as an Proc °

alternative
= Having a causal relationship between two events (A and E)
= But what is causality? ... indicates that event E results from the occurrence of event A.

= When one event results from another, there is a causal
relationship between the two events.

= This is also referred to as cause and effect.

School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
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CAUSALITY - 3

= DiIsclalmer: = Consider the messages:

= Without knowing actual information contained in messages, it
is not possible to state with certainty that there is a causal
relationship or perhaps a conflict

= Lamport/Vector clocks can help us suggest possible causality
= But we never know for sure...

= P2 receives m1, and subsequently sends m3

= Causality: Sending m3 may depend on what’s contained in m1
= P2 receives m2, receiving m2 is not related to receiving m1

= Is sending m3 causally dependent on receiving m2?

TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ [March272023 School of Engineering and Technology, University of Washington - Tacoma 733 March2,2023 L3¢

School of Engineering and Technology, University of Washington - Tacoma
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VECTOR CLOCKS VECTOR CLOCKS - 2

= Vector clocks help keep track of causal history P, (1;0) (2'.0) (3;0)
= |f two local events happened at process P, then the
causal history H(p2) of event p2 is {p1,p2}

Wi
(0,1) (3,2)
h Py
= Each process maintains a vector clock which
= Captures number of events at the local process (e.g. logical clock)
= Captures number of events at all other processes

= P sends messages to Q (event p3)
= Q previously performed event q1
= Q records arrival of message as q2

= Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2} = Causality is captured by:
= For each event at Pi, the vector clock (VC;) is incremented
= Fortunately, can simply store history of last event, = The msg is timestamped with VC;; and sending the msg is recorded
as a vector clock > H(q2) = (3,2) as a new event at P,
= Each entry corresponds to the last event at the process - &:thal;satlsv:ztx::‘clc::;?:/ncgj)the max of: the message timestamp -or-
[ s Eeriiiniemdngn s [ wnnams IS b o o e - e

35 36
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VECTOR CLOCKS - 3

= Pj knows the # of events at Pi based on the timestamps of the
received message

= Pj learns how many events have occurred at other processes
based on timestamps in the vector

= These events “may be causally dependent”

= |In other words: they may have been necessary for the
message(s) to be sent...

TCSS558: Applied Distributed Computing [Winter 2023]
LA S School of Engineering and Technology, University of Washington - Tacoma st

VECTOR CLOCKS EXAMPLE

School of Engineering and Technology, University of Washington - Tacoma

= Local clock is underlined CAUSALITY
= (1.1,0) (2,1.0) 3,1.0) (4,1,0)
A UL AN Sl 1 =] —
m m, m,
P, @29
©0.10) 420 N\
mﬁ
P,
214 (432
m, m, m,<m, m,>m,
‘ (2,1,0) ‘ (4,3,0) ‘ Yes ‘ No ‘ m2 may causally precede m4 ‘
ianeh 22023 TCsS558: Applied Distributed Computing [Winter 2023] s

37

VECTOR CLOCKS EXAMPLE - 2

(231) (432)
‘ m, ‘ m, ‘ mp<m, my>m,
| @109 | @30 | No | No
= P3 can’t determine if m4 may be causally dependent on m2
= Is m4 causally dependent on m3 ?

TCs5558: Applied Distributed Computing [Winter 2023] 1739
School of Engineering and Technology, University of Washington - Tacoma

C

‘ m2 and m4 may conflict ‘

‘ March 2, 2023
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VECTOR CLOCKS EXAMPLE - 4

(1,0,0)
Z my my
P, 01,1 &
Py ad & *
(0,0,1)

= TRUE/FALSE:

= The sending of message m; is causally dependent on the
sending of message m;.

= The sending of message m, is causally dependent on the
sending of message m,.

TCS5558: Applied Distributed Computing [Winter 2023] e
School of Engineering and Technology, University of Washington - Tacoma

March 2, 2023
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VECTOR CLOCKS EXAMPLE - 3

(1,0,0)
Z my my
. 11y p
©.0.1) " i

= Provide a vector clock label for unlabeled events

TCSS558: Applied Distributed Computing [Winter 2023]

‘ March2,2023 School of Engineering and Technology, University of Washington - Tacoma
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VECTOR CLOCKS EXAMPLE - 5

(1,0,0)
Z my my
P, 01,1 &
Py ad & *
(0,0,1)

= TRUE/FALSE:

= P, (1,0,0) and P; (0,0,1) may be concurrent events.
= P, (0,1,1) and P; (0,0,1) may be concurrent events.
= P, (1,0,0) and P, (0,1,1) may be concurrent events.

TCSS558: Applied Distributed Computing [Winter 2023]

[EEGZTD School of Engineering and Technology, University of Washington -Tacoma
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WE WILL RETURN AT Q‘
2:40 PM

OBJECTIVES - 3/2

® Questions from 2/28

= Assignment 2: Replicated Key Value Store
= Chapter 6: Coordination
= Chapter 6.2: Logical Clocks
Vector Clocks
| = Class Activity 4 - Total Ordered Multicasting |
= Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion

l 22023 TCss558: Applied Distributed Computing [Winter 2023] \ras

School of Engineering and Technology, University of Washington - Tacoma
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OBJECTIVES - 3/2

= Questions from 2/28
= Assignment 2: Replicated Key Value Store
= Chapter 6: Coordination

= Chapter 6.2: Logical Clocks
Vector Clocks

= Class Activity 4 - Total Ordered Multicasting
= Chapter 6: Coordination

| = Chapter 6.3: Distributed Mutual E |
TCSS558: Applied Distributed Computing [Winter 2023]
l WEEDEETD School of Engineering and Technology, University of Washington - Tacoma e

45

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS

= Coordinating access among distributed processes to a
shared resource requires Distrlbuted Mutual Exclusion

=Algorithms In 6.3
= Token-ring algorithm

= Permisslon-based algorithms:

= Centralized algorithm
= Distributed algorithm (Ricart and Agrawala)

= Decentralized voting algorithm (Lin et al.)

TCSS558: Applied Distributed Computing [Winter 2023]
l U School of Engineering and Technology, University of Washington - Tacoma e
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CH. 6.3: DISTRIBUTED
MUTUAL
EXCLUSION

TOKEN-BASED ALGORITHMS

= Mutual exclusion by passing a “token” between nodes

= Nodes often organized in ring

= Only one token, holder has access to shared resource

= Avoids starvation: everyone gets a chance to obtain lock

= Avoids deadlock: easy to avoid

TCSS558: Applied Distributed Computing [Winter 2023]
l ) School of Engineering and Technology, University of Washington - Tacoma L
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TOKEN-RING ALGORITHM

= Construct overlay network
= Establish logical ring among nodes

W Token
) T D s
Ve ’@/_'Q/_’@/_’\ixh"\‘
\

= Single token circulated around the nodes of the network
= Node having token can access shared resource

= |f no node accesses resource, token is constantly circulated
around ring

TCSS558: Applied Distributed Computing [Winter 2023]
LA S School of Engineering and Technology, University of Washington - Tacoma e
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS - 3

= Permission-based algorithms

= Processes must require permission from other processes
before first acquiring access to the resource
= CONTRAST: Token-ring did not ask nodes for permission

= Centralized algorithm
= Elect a single leader node to coordinate access to shared
resource(s)

= Manage mutual exclusion on a distributed system similar
to how mutual exclusion is managed for a single system

= Nodes must all interact with leader to obtain “the lock”

TCSS558: Applied Distributed Computing [Winter 2023]
March2,2023 School of Engineering and Technology, University of Washington - Tacoma 7t
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CENTRALIZED MUTUAL EXCLUSION - 2

= Issues

= Coordinator is a single point of failure

" Processes can’t distinguish dead coordinator from “blocking”
when resource is unavailable
= No difference between CRASH and BLOCK (for a long time)

= Large systems, coordinator becomes performance bottleneck
= Scalability: Performance does not scale

= Beneflts
= Simplicity:
Easy to implement compared to distributed alternatives

TCSS558: Applied Distributed Computing [Winter 2023]
s School of Engineering and Technology, University of Washington - Tacoma ures

March 2, 2023

TOKEN-RING CHALLENGES

1. If token is lost, token must be regenerated
= Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost
= What is the difference between token being lost and a
node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

= Dead nodes can be detected by adding a receipt message
for when the token passes from node-to-node

= When no receipt is received, node assumed dead
= Dead process can be “jumped” in the ring

TCsS558: Applied Distributed Computing [Winter 2023] L1750
School of Engineering and Technology, University of Washington - Tacoma

‘ March2, 2023
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CENTRALIZED MUTUAL EXCLUSION

Permission granted from coordinator \/ No response from coordinator

REE e R EE

R it
Request | |OK equest Release b
/" No reply
Queue is C j
/ empty
P, executes P, blocks P, finishes; P, executes

= When resource not available, coordinator can block the
requesting process, or respond with a reject message

= P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked

= Requests are granted permission fairly using FIFO queue
= Just three messages: (request, grant (OK), release)

TC5S558: Applied Distributed Computing [Winter 2023] s
School of Engineering and Technology, University of Washington - Tacoma

‘ March 2, 2023
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DISTRIBUTED ALGORITHM

= Ricart and Agrawala [1981], use total ordering of all events
= Leverages Lamport logical clocks

= Package up resource request message (AKA Lock Request)
= Send to all nodes
= Include:

= Name of resource

= Process number

= Current (logical) time

= Assume messages are sent reliably
= No messages are lost

TCSS558: Applied Distributed Computing [Winter 2023]
‘ [EEGZTD School of Engineering and Technology, University of Washington -Tacoma Lt
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DISTRIBUTED ALGORITHM - 2

= When each node receives a request message they will:
1. Say OK (if the node doesn’t need the resource)
2. Make no reply, queue request (node is using the resource)
3. If node Is also walting to access the resource: perform a
timestamp comparison -
1. Send OK if requester has lower logical clock value
2. Make no reply if requester has higher logical clock value
= Nodes sit back and wait for all nodes to grant permission

= Requirement: every node must know the entire membership
list of the distributed system

TCSS558: Applied Distributed Computing [Winter 2023]
‘ LA S School of Engineering and Technology, University of Washington - Tacoma s

DISTRIBUTED ALGORITHM - 3

= Node O and Node 2 simultaneously request access to resource
= Node O’s time stamp is lower (8) than Node 2 (12)
= Node 1 and Node 2 grant Node O access
= Node 1 is not interested in the resource, it OKs both requests
Accasses
(o) (o)
oA * ok

O] (2" Accesses
! / resource

= In case of conflict, lowest timestamp wins!

= Node 2 rejects its own request (12) in favor of node 0 (8)

TCsS558: Applied Distributed Computing [Winter 2023] L17s6
School of Engineering and Technology, University of Washington - Tacoma

‘ March2, 2023
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CHALLENGES WITH

DISTRIBUTED ALGORITHM

= Problem: Algorithm has N points of failure !
= Where N = Number of Nodes in the system

= No Reply Problem: When node is accessing the resource,
it does not respond
= Lack of response can be confused with fallure
= Possible Solution: When node receives request for
resource it is accessing, always send a reply either
granting or denying permission (ACK)
= Enables requester to determine when nodes have died

TCSS558: Applied Distributed Computing [Winter 2023]
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DECENTRALIZED ALGORITHM

= Lin et al. [2004], decentralized voting algorithm
= Resource is replicated N times
= Each replica has its own coordinator ...(N coordinators)

= Accessing resource requires majority vote:
total votes (m) > N/2 coordinators

= Assumption #1: When coordinator does not give
permission to access a resource (because it is busy) it will
inform the requester

TCSS558: Applied Distributed Computing [Winter 2023]
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CHALLENGES WITH
DISTRIBUTED ALGORITHM - 2

= Problem: Multicast communication required -or- each node must
maintain full group membership
= Track nodes entering, leaving, crashing...

= Problem: Every process is involved in reaching an agreement to
grant access to a shared resource
= This approach may not scale on resource-constrained systems
= Solution: Can relax total agreement requirement and proceed when
a simple majority of nodes grant permission (>50%)
= Presumably any one node locking the resource prevents agreement
= If one node gets majority of acknowledges no other can
= Requires every node to know size of system (# of nodes)
= Problem: 2 concurrent transactions get 50% permission > deadlock?

= Distributed algorithm for mutual exclusion works best for:
= Small groups of processes
= When memberships rarely change

TCSS558: Applied Distributed Computing [Winter 2023]
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DECENTRALIZED ALGORITHM - 2

= Assumption #2: When a coordinator crashes, it recovers
quickly, but will have forgotten votes before the crash.

= Approach assumes coordinators reset arbitrarily at any time

= Risk: on crash, coordinator forgets it previously granted
permission to the shared resource, and on recovery it errantly
grants permission again

= The Hope: if coordinator crashes, upon recovery, the node
granted access to the resource has already finished before the
restored coordinator grants access again . . .
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DECENTRALIZED ALGORITHM - 3

= With 99.167% coordinator availability (30 sec downtime/hour)
chance of violating correctness Is so low it can be neglected in
comparison to other types of failure

= Leverages fact that a new node must obtain a majority vote to
access resource, which requlires time

N | m p Violation N | m p Violation
8 | 5 | 3sec/hour | < 10-F 8 | 5 | 30 sec/hour | < 10~
8 | 6 | 3sechour | < 10 18 8 | 6 | 30sechour | < 10 11
16 | 9 | 3secthour | < 10~ 16 | 9 | 30 sec/hour | < 10-18
16 | 12 | 3sechour | < 107% 16 | 12 | 30 sec/hour | < 10724
32 [ 17 | 3sec/hour | <10 % 32 [ 17 | 30 sec/hour | < 10
32 | 24 | 3secthour | <1077 32 | 24 | 30 sec/hour | < 107%

N = number of resource replicas, m = required “majority” vote

DECENTRALIZED ALGORITHM - 4

= Back-off Polling Approach for permission-denled:

= |f permission to access a resource is denied via majority vote,
process can poll to gain access again with a random delay
(known as back-off)

= Node waits for a random amount, retries...

= |f too many nodes compete to gain access to a resource,
majority vote can lead to low resource utilization
= No one can achieve majority vote to obtain access to the

shared resource

= Mimics elections where with too many candidates, where no
one candidate can get >50% of the total vote

= Problem Solution detailed in [Lin et al. 2014]

p: ds per hour coordi is offline
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1) < Activities €3 visual settings & edit < >
ol

@ when poll is active, respond at PollEv.com/wesleylloyd6a1
#= Text WESLEYLLOYDE41 to 22333 once to join

Which algorithm offers the best scalability to support

W distributed mutual exclusion in a large distributed
system?

Total Results: 0

owered by @) Poll Everywhere
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Which algorithm(s) involve arriving at a consensus

(majority opinion) to determine whether a node should
be granted access to a resource? (check all that apply)

Total Results: 0

owered by @) Poll Everywhere

1) < Activities €3 visual settings & edit
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ol
@ when poll is active, respond at PollEv.com/wesleylloyd6a1
#= Text WESLEYLLOYDE41 to 22333 once to join

W Which algorithm(s) have N points of failure, where N=

Number of Nodes in the system? (check all that apply)

Distributed algorithrr
Tatal Results: 0
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ALGORITHMS REVIEW

distributed mutual exclusion in a large distributed
system?

= (A) Token-ring algorithm

= (B) Centralized algorithm

= (C) Distributed algorithm

= (D) Decentralized voting algorithm

DISTRIBUTED MUTUAL EXCLUSION

= Which algorithm offers the best scalability to support
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DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS REVIEW - 2

= Which algorithm(s) involve blocking (no reply) when a
resource is not available?

= (A) Token-ring algorithm
= (B) Centralized algorithm
= (C) Distributed algorithm

= (D) Decentralized voting algorithm

TCSS558: Applied Distributed Computing [Winter 2023]
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ALGORITHMS REVIEW - 3

= Which algorithm(s) involve arriving at a consensus
granted access to a resource?

= (A) Token-ring algorithm

= (B) Centralized algorithm

= (C) Distributed algorithm

= (D) Decentralized voting algorithm

DISTRIBUTED MUTUAL EXCLUSION

(majority opinion) to determine whether a node should be

TCs5558: Applied Distributed Computing [Winter 2023]
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DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS REVIEW - 4

= Which algorithm(s) have N points of failure,
where N = Number of Nodes in the system?

= (A) Token-ring algorithm
= (B) Centralized algorithm
= (C) Distributed algorithm

= (D) Decentralized voting algorithm

69
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QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington -

March 2, 2023

71

Slides by Wes J. Lloyd

70

L17.12



	Slide 1: TCSS 558:  applied distributed computing
	Slide 2: OBJECTIVES – 3/2
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 2/28
	Slide 7: Feedback from 2/28
	Slide 8: Feedback - 2
	Slide 9: Feedback - 3
	Slide 10: Feedback - 3
	Slide 11: Feedback - 4
	Slide 12: Feedback - 5
	Slide 13: Feedback - 6
	Slide 14: Feedback - 7
	Slide 15
	Slide 16: OBJECTIVES – 3/2
	Slide 17: Short-hand-codes for Membership Tracking Approaches
	Slide 18: Assignment 2
	Slide 19: OBJECTIVES – 3/2
	Slide 20: Chapter 6 - Coordination
	Slide 21: Ch. 6.2: logical clocks
	Slide 22: Total-ordered multicasting
	Slide 23: Total-ordered multicasting example
	Slide 24: Total-ordered multicasting example
	Slide 25: Total-ordered multicasting example
	Slide 26: Total-ordered multicasting example
	Slide 27: Total-ordered multicasting example
	Slide 28: Total-ordered multicasting - 2
	Slide 29: Total-ordered multicasting - 3
	Slide 30: OBJECTIVES – 3/2
	Slide 31: Vector clocks
	Slide 32: What is causality?
	Slide 33: Causality - 2
	Slide 34: causality - 3
	Slide 35: Vector clocks
	Slide 36: Vector clocks - 2
	Slide 37: Vector clocks - 3
	Slide 38: Vector clocks example
	Slide 39: Vector clocks example - 2
	Slide 40: Vector clocks example - 3
	Slide 41: Vector clocks example - 4
	Slide 42: Vector clocks example - 5
	Slide 43: We will return at 2:40 pm
	Slide 44: OBJECTIVES – 3/2
	Slide 45: OBJECTIVES – 3/2
	Slide 46: Ch. 6.3: distributed mutual exclusion
	Slide 47: Distributed mutual exclusion algorithms
	Slide 48: token-based algorithms
	Slide 49: Token-ring algorithm
	Slide 50: Token-ring challenges
	Slide 51: Distributed mutual exclusion algorithms - 3
	Slide 52: Centralized mutual exclusion
	Slide 53: Centralized mutual exclusion - 2
	Slide 54: Distributed algorithm
	Slide 55: Distributed algorithm - 2
	Slide 56: Distributed algorithm - 3
	Slide 57: Challenges with  Distributed algorithm
	Slide 58: Challenges with  Distributed algorithm - 2
	Slide 59: Decentralized algorithm
	Slide 60: Decentralized algorithm - 2
	Slide 61: Decentralized algorithm - 3
	Slide 62: Decentralized algorithm - 4
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Distributed mutual exclusion algorithms review
	Slide 68: Distributed mutual exclusion algorithms review - 2
	Slide 69: Distributed mutual exclusion algorithms review - 3
	Slide 70: Distributed mutual exclusion algorithms review - 4
	Slide 71: Questions

