
TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.1

Chapter 6 – Coordination - II

Wes J. Lloyd

School of Engineering
& Technology (SET)
University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.2

OBJECTIVES – 2/28

1

2

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.3

ONLINE DAILY FEEDBACK SURVEY

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L16.4

3

4

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.3

 Please classify your perspective on material covered in today’s

class (31 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.57 ( - previous 6.42)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.94 ( - previous 5.81)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.5

MATERIAL / PACE

 Wednesday March 1 – 12:30pm – Cherry Parkes room 106

▪ Dr. Jiaxuan You CS PhD Stanford University

Talk title: Learning from the Interconnected World with Graphs

 Friday March 3 – 12:30pm – Cherry Parkes room 106

▪ Dr. Dongfang Zhao CS PhD Illinois Institute of Technology

Talk title: High-Performance Data-Intensive Computing Systems

 Earn up to 2.5% extra credit added to the overall course grade

 Scored out of 5 total points

 First seminar – earn 2 points

 2nd, 3 rd, 4 th seminar – earn 1 point each

Add to final course grade:

(Total_seminar_points / 5 points) * 2.5%

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.6

TENURE TRACK FACULTY CANDIDATE

RESEARCH SEMINARS – EXTRA CREDIT

5

6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.4

 Where are the message queues located in peer -to-peer systems?

 “Peer-to-peer” refers to a network topology,
which is how nodes are connected

 A message queue is a component of a
component-based or n-tier application

 A message queue is an architectural component that facilitates
implementation of distributed applications

 Where could a message queue be located for a distributed system
that exists across a group of nodes with a peer -to-peer network
topology ?

▪ Is the message queue replicated?

▪ If numbering nodes from left -to-right, which is most accessible?

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.7

FEEDBACK FROM 2/23

 Is rumor spreading a subset of gossiping spreading, just with

the addition of the stopping mechanism?

 YES

 Does rumor spreading also apply the push/pull/push -pull

model?

 Yes, it could

 Push/pull/push-pull refers to how data is spread in the system

between nodes

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.8

FEEDBACK - 2

7

8

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.5

 About message f looding on page 59 of slides. What's the
meaning of a higher dimension? Why just choose node
1101...?

 If the message arrives at node 1101 on an edge labeled as
level 2

 We then label all outbound edges from 1101, and only forward
the message along edges that are a higher order than that of
the edge that received the message

 This way we can minimize the number of messages for
broadcast of the n-dimensional hypercube

 We will go over this again…

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.9

FEEDBACK - 3

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.10

OBJECTIVES – 2/28

9

10

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.6

 Include readme.txt or doc file with instructions in submission

 Must document membership tracking method

>> please indicate which types to test <<

ID Description

F Static file membership tracking – file is not reread

FD Static file membership tracking DYNAMIC - file is

periodically reread to refresh membership list

T TCP membership tracking – servers are configured to

refer to central membership server

U UDP membership tracking - automatically discovers

nodes with no configuration

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.11

SHORT-HAND-CODES FOR MEMBERSHIP

TRACKING APPROACHES

 Sunday March 12 th

 Goal: Replicated Key Value Store

 Team signup posted on Canvas under ‘People’

 Build off of Assignment 1 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking

for extra credit

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.12

ASSIGNMENT 2

11

12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.7

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.13

OBJECTIVES – 2/28

 Consider sending a message from node B to D:

 What is the Link Stress at physical node Re ?

 What is the delay from B to D via the underlying network ?

 What is the delay from B to D via the overlay network ?

 What is the stretch from B to D ?

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.14

REVIEW

Numbers represent
network delay
between nodes

13

14

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.8

 Used when no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Random graphs are described by a probability distribution:

1. Given a probability Pedge that two nodes are joined

2. Size of a random overlay network is: ½ * Pedge * N * (N-1) edges

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

RANDOM GRAPHS

Random graphs allow us to assume
some structure (# of nodes, # of edges)
regarding the network by scaling the
Pedge probability

Assumptions may help then to
reason or rationalize about the
network…

Figure estimates
size of a random
overlay network
in nodes & edges
based on Pedge

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

PROBABILISTIC FLOODING

Washington state in winter?

15

16

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.9

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.17

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Washington state in winter?

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.18

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

Washington state in winter?

17

18

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.10

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.19

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

½ * (.1) * (10000) * (9999)

Washington state in winter?

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

½ * (.1) * (10000) * (9999)
4,999,500 edges

Washington state in winter?

19

20

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.11

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.21

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

With lower pflood messages may not reach all nodes

If there are 10,000 nodes and ~5 million edges, how
many messages is full flooding?

> every node sends to all neighbors across all edges

Washington state in winter?

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.22

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

node Q has n neighbors
Probability that all neighbors don’t forward message

to Q is p=(1-pflood)n

Washington state in winter?

21

22

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.12

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.23

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

node Q has n neighbors

Probability that no neighbors of Q forward the message to Q:

p=(1-pflood)n
 probability of Q not getting the message

10 nodes: if n=10, p=(1-.01)10=.904 (small network, few edges, likely Q doesn’t get msg)

100 nodes: if n=100, p=(1-.01)100=.366 (less likely Q doesn’t get msg)
298 nodes: if n=298, p=(1-.01)298=.05 (Q probably get msg)

Washington state in winter?

 Hypercube: for broadcast send minimum # of messages

Only forward msg along edges with higher dimension

 Node(1101)–neighbors {0101,1100,1001,1111}

 Node (1101) – receives msg on incoming broadcast edge = 2

 Broadcast from 1101 - Label Edges:

 Edge to 0101 – labeled 1 – change the 1 st bit

 Edge to 1100 – labeled 4 – change the 4 th bit *<FORWARD>*

 Edge to 1001 – labeled 2 – change the 2nd bit

 Edge to 1111 – labeled 3 – change the 3 rd bit *<FORWARD>*

 N(1101) broadcast – forward only to N(1100) and N(1111)

 (1100) and (1111) are the higher dimension edges

 Broadcast requires just: N -1 messages, where nodes N=2 n,

n=dimensions of hypercube

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

MESSAGE FLOODING W/ HYPERCUBE

23

24

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.13

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another

node

 Node P may loose interest in spreading the rumor with

probability = pstop, let’s say 20% . . . (or 0.20)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.25

RUMOR SPREADING

 pstop, is the probability node will stop spreading once contacting a
node that already has the message

 Rumor spreading does not guarantee all nodes will be updated

 Fraction of nodes s, that remain susceptible grows relative to
the probability that node P
stops propagating when finding
a node already having the
message

 Fraction of nodes not updated
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping →

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.26

RUMOR SPREADING - 2

25

26

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.14

 Gossiping is good for spreading data

 But how can data be removed from the system?

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from

reinitializing from gossip from other nodes

 Death certificates time-out after expected time required

for data element to clear out of entire system

 A few nodes maintain death certificates forever

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.27

REMOVING DATA

 For example:

 Node P keeps death certificates forever

 Item X is removed from the system

 Node P receives an update request for Item X, but also holds

the death certificate for Item X

 Node P will recirculate the death certificate across the

network for Item X

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.28

DEATH CERTIFICATE EXAMPLE

27

28

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.15

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.29

OBJECTIVES – 2/28

 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.30

CHAPTER 6 - COORDINATION

29

30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.16

CH. 6.1: CLOCK

SYNCHRONIZATION

L16.31

 Example:

 “make” is used to compile source files into binary object and

executable files

 As an optimization, make only compiles files when the “last

modified time” of source files is more recent than object and

executables

 Consider if files are on a shared disk of a distributed system

where there is no agreement on time

 Consider if the program has 1,000 source files

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.32

CLOCK SYNCHRONIZATION

31

32

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.17

 Updates from different machines, may have clocks set to

different times

 Make becomes confused with which files to recompile

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.33

TIME SYNCHRONIZATION PROBLEM

FOR DISTRIBUTED SYSTEMS

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.34

PHYSICAL CLOCKS

 Computer timers: precisely machined
quartz crystals

 When under tension, they oscillate at
a well defined frequency

 In analog electronics/communications
crystals once used to set the frequency
of two-way radio transceivers for

 Today, crystals are associated with
a counter and holding register on a digital computer.

 Each oscillation decrements a counter by one

 When counter gets to zero, an interrupt fires

 Can program timer to generate interrupt, let’s say 60
times a second, or another frequency to track time

1960s ERA radio crystal →

33

34

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.18

 Digital clock on computer sets base time

 Crystal clock tracks forward progress of time

▪ Translation of wave “ticks” to clock pulses

 CMOS battery on motherboard maintains clock on power loss

 Clock skew: physical clock crystals are not exactly the same

 Some run at slightly dif ferent rates

 Time differences accumulate as clocks

drif t forward or backward slightly

 In an automobile, where there is no

clock synchronization, clock skew may

become noticeable over months, years

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.35

COMPUTER CLOCKS

 Universal Coordinated Time (UTC)

▪Worldwide standard for time keeping

▪ Equivalent to Greenwich Mean Time (United Kingdom)

▪ 40 shortwave radio stations around the world broadcast a
short pulse at the start of each second (WWV)

▪World wide “atomic” clocks powered by constant
transitions of the non-radioactive caesium-133 atom

▪ 9,162,631,770 transitions per second

 Computers track time using UTC as a base

▪ Avoid thinking in local time, which can lead to
coordination issues

▪ Operating systems may translate to show local time

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.36

UNIVERSAL COORDINATED TIME

35

36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.19

How do we synchronize computer clocks with

real-world clocks?

How do we synchronize computer clocks with

each other?

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.37

COMPUTING: CLOCK CHALLENGES

 UTC services: use radio and satellite signals to provide time

accuracy to 50ns

 Time servers: Server computers with UTC receivers that

provide accurate time

 Precision () : how close together a set of clocks may be

 Accuracy: how correct to actual time clocks may be

 Internal synchronization: Sync local computer clocks

 External synchronization: Sync to UTC clocks

 Clock drif t : clocks on dif ferent machines gradually become

out of sync due to crystal imperfections, temperature

dif ferences, etc.

 Clock drif t rate: typical is 31.5s per year

 Maximum clock drif t rate (): clock specifications include one

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.38

CLOCK SYNCHRONIZATION

37

38

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.20

 If two clocks drift from UTC in opposite directions,

after time t after synchronization, they may be 2 apart.

▪  - clock drift rate,  - clock precision (max 50ns)

 Clocks must be resynchronized every /2 seconds

 Network time protocol

 Provide coordination of

time for servers

 Leverage distributed network

of time servers

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.39

CLOCK SYNCHRONIZATION - 2

 Servers organized
into stratums

 Stratum-1 servers
have UTC receivers
and are sync’d
with atomic clocks

 Servers connect
with closest NTP
server for time
synchronization

 Servers assume
role as NTP server
at stratum+1

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.40

NETWORK TIME PROTOCOL

Atomic
clocks

39

40

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.21

 Must estimate network delays when synchronizing with remote UTC
receiver clocks / time servers

Time server B

Client A

1. A sends message to B, with timestamp T1

2. B records time of receipt T2 (from local clock)

3. B returns response with send time T3, and receipt time T2

4. A records arrival of T4

 Assuming propagation delay of A→B→A is the same

 Estimate propagation delay:

 Add delay to time

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.41

NTP - 2

 Cannot set clocks backwards (recall “make” file example)

 Instead, temporarily slow the progress of time to allow fast
clock to align with actual time

 Change rate of clock interrupt routine

 Slow progress of time until synchronized

 NTP accuracy is within 1-50ms

 In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

 Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst

server bigben.cac.washington.edu iburst

 Shutdown service (sudo service ntp stop)

 Run ntpdate: (sudo ntpdate time.u.washington.edu)

 Startup service (sudo service ntp start)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.42

NTP - 3

41

42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.22

 Berkeley time daemon server actively polls network to

determine average time across servers

 Suitable when no machine has a UTC receiver

 Time daemon instructs servers how much to adjust clocks

to achieve precision

 Accuracy can not be guaranteed

 Berkeley is an internal clock synchronization algorithm

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.43

BERKELEY ALGORITHM

 Sensor networks bring unique challenges for clock synchronization

▪ Address resource constraints : limited power, multihop routing slow

 Reference broadcast synchronization (RBS)

 Provides time precision, not accuracy as in Berkeley

 No UTC clock available

 RBS sender broadcasts a reference message to allow receivers to

adjust clocks

 No multi -hop routing

 Time to propagate a signal to nodes is roughly constant

 Message propagation time does not consider time spent waiting in

NIC for message to send

▪ Wireless network resource contention may force wait before message

even can be sent

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.44

CLOCK SYNCHRONIZATION

IN WIRELESS NETWORKS

43

44

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.23

 Node broadcasts reference message k

 Each node p records time Tp,k when k is received

 Tp,k is read from node p’s clock

 Two nodes p and q can exchange delivery times to estimate

mutual relative offset

 Then calculate relative average offset for the network:

 Where M is the total number of reference messages sent

 Nodes can simply store offsets instead of frequently

synchronizing clocks to save energy

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.45

REFERENCE BROADCAST

SYNCHRONIZATION (RBS)

 Cloud skew: over time clocks drif t apart

 Averages become less precise

 Elson et al. propose using standard linear regression to

predict offsets, rather than calculating them

 IDEA: Use node’s history of message times in a simple linear

regression to continuously refine a formula with coefficients

to predict time offsets:

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.46

REFERENCE BROADCAST

SYNCHRONIZATION (RBS) - 2

45

46

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.24

WE WILL RETURN AT

3:01 PM

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.48

OBJECTIVES – 2/28

47

48

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.25

 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.49

CHAPTER 6 - COORDINATION

CH. 6.2: LOGICAL

CLOCKS

L16.50

49

50

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.26

 In distributed systems, synchronizing to actual time may not be

required…

 I t may be suf ficient for every node to simply agree on a current

time (e.g. logical)

 Logical clocks provide a mechanism for capturing chronological

and causal relationships in a distributed system

 Think counters . . .

 Leslie Lamport [1978] seminal paper showed that absolute clock

synchronization often is not required

 Processes simply need to agree on the order in which events occur

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.51

LOGICAL CLOCKS

 Happens-before relation

 A→B: Event A, happens before event B…

 All processes must agree that event A occurs first

 Then afterward, event B

 Actual time not important. . .

 If event A is the event of proc P1 sending a msg to a proc P2,

and event B is the event of proc P2 receiving the msg, then

A→B is also true. . .

 The assumption here is that message delivery takes time

 Happens before is a transitive relation :

 A→B, B→C, therefore A→C

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.52

LOGICAL CLOCKS - 2

51

52

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.27

 If two events, say event X and event Y do not exchange

messages, not even via third parties, then the sequence of

X→Y vs. Y→X can not be determined!!

 Within the system, these events appear concurrent

 Concurrent: nothing can be said about when the events

happened, or which event occurred first

 Clock time, C, must always go forward (increasing), never

backward (decreasing)

 Corrections to time can be made by adding a positive value,

but never by subtracting one

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.53

LOGICAL CLOCKS – 3

 Three processes each with local clocks

 Lamport’s algorithm corrects process clock values

 Always propagate the most recent known value of logical time

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.54

LOGICAL CLOCKS - 4

53

54

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.28

 Events:

6: P1 send m1 to P2

16: P2 receives m1

24: P2 sends m2 to P3

40: P3 receives m2

60: P3 sends m3 to P2

56: P2 receives m3

56: P2 clock reset=61

69: P2 sends m4 to P1

54: P1 receives m4

70: P1 clock reset=70

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.55

LOGICAL CLOCKS

 Negative values not possible

 When a message is received, and the local clock is before the
timestamp when then message was sent, the local clock is
updated to message_sent_time + 1

1. Clock is incremented before an event: (sending-a-message,
receiving-a-message, some-other-internal-event)
Pi increments Ci: Ci  Ci + 1

2. When Pi send msg m to Pj, m’s timestamp is set to Ci

3. When Pj receives msg m, Pj adjusts its local clock
Cj  max{Cj, timestamp(m)}

4. Ties broken by considering Proc ID: i<j; <40,i> < <40,j>
Both Lamport clocks are = 40
The winner has a higher alphanumeric Process ID
J (winner) is greater than i, alphabetically

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.56

LAMPORT LOGICAL CLOCKS -

IMPLEMENTATION

55

56

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.29

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Initial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.57

TOTAL-ORDERED MULTICASTING

DB1 DB2

 Two messages (m1, m2) must be distributed,

to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the

Lamport clock timestamp

 In each queue, each message must be acknowledged by every

process in the system before operations can be applied to the

local database

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.58

TOTAL-ORDERED MULTICASTING

EXAMPLE

57

58

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.30

 Two messages (m1, m2) must be distributed,

to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the

Lamport clock timestamp

 In each queue, each message must be acknowledged by every

process in the system before operations can be applied to the

local database

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.59

TOTAL-ORDERED MULTICASTING

EXAMPLE

Key point:

Multicast messages are also received by the sender (itself)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10) 1

3

4

2

2

4

3

1

59

60

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.31

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10)

What is the final account balance?

(12)

(12)

(10) 1

3

4

2

2

4

3

1

 Each message timestamped with local logical clock of sender

 Multicast messages are also received by the sender (itself)

 Assumptions:

▪ Messages from same sender received in order they were sent

▪ No messages are lost

 When messages arrive they are placed in local queue ordered
by timestamp

 Receiver multicasts acknowledgement of message receipt to
other processes

▪ Time stamp of message receipt is lower the acknowledgement

 This process replicates queues across sites

 Messages delivered to application (database) only when
message at the head of the queue has been acknowledged by
every process in the system

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.62

TOTAL-ORDERED MULTICASTING - 2

61

62

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.32

 Can be used to implement replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical clocks and (2) exchanging acknowledgement

messages, allows for events to be “totally” ordered in

replicated event queues

 Events can be applied “in order” to each (distributed)

replicated state machine (RSM)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.63

TOTAL-ORDERED MULTICASTING - 3

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.64

OBJECTIVES – 2/28

63

64

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.33

 Lamport clocks don’t help to determine causal ordering of

messages

 Vector clocks capture causal histories and can be used as an

alternative

 But what is causality? …

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.65

VECTOR CLOCKS

 Having a causal relationship between two events (A and E)

indicates that event E results from the occurrence of event A.

 When one event results from another, there is a causal

relationship between the two events.

 This is also referred to as cause and effect .

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.66

WHAT IS CAUSALITY?

Proc 1

Proc 2

A B C

D E

m1

65

66

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.34

 Disclaimer:

 Without knowing actual information contained in messages, it

is not possible to state with certainty that there is a causal

relationship or perhaps a conflict

 Lamport/Vector clocks can help us suggest possible causality

 But we never know for sure…

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.67

CAUSALITY - 2

 Consider the messages:

 P2 receives m1, and subsequently sends m3

 Causality: Sending m3 may depend on what’s contained in m1

 P2 receives m2, receiving m2 is not related to receiving m1

 Is sending m3 causally dependent on receiving m2?

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.68

CAUSALITY - 3

67

68

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.35

 Vector clocks help keep track of causal history

 If two local events happened at process P, then the

causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event,

as a vector clock → H(q2) = (3,2)

 Each entry corresponds to the last event at the process

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.69

VECTOR CLOCKS

 Each process maintains a vector clock which

▪ Captures number of events at the local process (e.g. logical clock)

▪ Captures number of events at all other processes

 Causality is captured by:

▪ For each event at Pi, the vector clock (VC i) is incremented

▪ The msg is timestamped with VCi; and sending the msg is recorded

as a new event at P i

▪ P j adjusts its VC j choosing the max of: the message timestamp –or-

the local vector clock (VCj)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.70

VECTOR CLOCKS - 2

P1

P2

(1,0) (2,0) (3,0)

(0,1) (3,2)

m1

69

70

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.36

 Pj knows the # of events at Pi based on the timestamps of the

received message

 Pj learns how many events have occurred at other processes

based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the

message(s) to be sent…

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.71

VECTOR CLOCKS - 3

 Local clock is underlined

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.72

VECTOR CLOCKS EXAMPLE

m2 m4 m2 < m4 m2 > m4 Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

71

72

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.37

 P3 can’t determine if m4 may be causally dependent on m2

 Is m4 causally dependent on m3 ?

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.73

VECTOR CLOCKS EXAMPLE - 2

m2 m4 m2 < m4 m2 > m4 Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

 Provide a vector clock label for unlabeled events

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.74

VECTOR CLOCKS EXAMPLE - 3

73

74

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.38

 TRUE/FALSE:

 The sending of message m3 is causally dependent on the
sending of message m1.

 The sending of message m2 is causally dependent on the
sending of message m1.

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.75

VECTOR CLOCKS EXAMPLE - 4

 TRUE/FALSE:

 P1 (1,0,0) and P3 (0,0,1) may be concurrent events.

 P2 (0,1,1) and P3 (0,0,1) may be concurrent events.

 P1 (1,0,0) and P2 (0,1,1) may be concurrent events.

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.76

VECTOR CLOCKS EXAMPLE - 5

75

76

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.39

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.77

OBJECTIVES – 2/28

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.78

OBJECTIVES – 2/28

77

78

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.40

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.79

OBJECTIVES – 2/28

CH. 6.3: DISTRIBUTED

MUTUAL

EXCLUSION

L16.80

79

80

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.41

 Coordinating access among distributed processes to a

shared resource requires Distributed Mutual Exclusion

Algorithms in 6.3

 Token-ring algorithm

 Permission-based algorithms:

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.81

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.82

TOKEN-BASED ALGORITHMS

81

82

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.42

 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated

around ring

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.83

TOKEN-RING ALGORITHM

1. If token is lost, token must be regenerated

▪ Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

▪What is the difference between token being lost and a

node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

▪ Dead nodes can be detected by adding a receipt message

for when the token passes from node-to-node

▪When no receipt is received, node assumed dead

▪ Dead process can be “jumped” in the ring

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.84

TOKEN-RING CHALLENGES

83

84

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.43

Permission-based algorithms

 Processes must require permission from other processes

before first acquiring access to the resource

▪ CONTRAST: Token-ring did not ask nodes for permission

 Centralized algorithm

 Elect a single leader node to coordinate access to shared

resource(s)

 Manage mutual exclusion on a distributed system similar

to how it mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.85

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS - 3

 When resource not available, coordinator can block the

requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject

otherwise can wait if simply blocked

 Requests granted permission fairly using FIFO queue

 Just three messages: (request, grant (OK), release)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.86

CENTRALIZED MUTUAL EXCLUSION

P1 executes P2 blocks P1 finishes; P2 executes

Permission granted from coordinator \/ No response from coordinator

85

86

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.44

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “blocking”

when resource is unavailable

▪ No difference between CRASH and Block (for a long time)

 Large systems, coordinator becomes performance bottleneck

▪ Scalability: Performance does not scale

 Benefits

 Simplicity:

Easy to implement compared to distributed alternatives

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.87

CENTRALIZED MUTUAL EXCLUSION - 2

 Ricart and Agrawala [1981], use total ordering of all events

▪ Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:

▪ Name of resource

▪ Process number

▪ Current (logical) time

 Assume messages are sent reliably

▪ No messages are lost

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.88

DISTRIBUTED ALGORITHM

87

88

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.45

 When each node receives a request message they will:

1. Say OK (if the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. If node is also waiting to access the resource: perform a

timestamp comparison -

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership

list of the distributed system

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.89

DISTRIBUTED ALGORITHM - 2

 Node 0 and Node 2 simultaneously request access to resource

 Node 0’s time stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Node 1 is not interested in the resource, it OKs both requests

 In case of conflict, lowest timestamp wins!

▪ Node 2 rejects its own request (1@) in favor of node 0 (8)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.90

DISTRIBUTED ALGORITHM - 3

89

90

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.46

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 No Reply Problem: When node is accessing the resource,

it does not respond

▪ Lack of response can be confused with failure

▪ Possible Solution: When node receives request for

resource it is accessing, always send a reply either

granting or denying permission (ACK)

▪ Enables requester to determine when nodes have died

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.91

CHALLENGES WITH

DISTRIBUTED ALGORITHM

 Problem: Multicast communication required –or- each node
must maintain full group membership

▪ Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement
to grant access to a shared resource

▪ This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed
when a simple majority of nodes grant permission

▪ Presumably any one node locking the resource prevents agreement

▪ If one node gets majority of acknowledges no other can

▪ Requires every node to know size of system (# of nodes)

 Distributed algorithm for mutual exclusion works best for:

▪ Small groups of processes

▪ When memberships rarely change

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.92

CHALLENGES WITH

DISTRIBUTED ALGORITHM - 2

91

92

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.47

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator …(N coordinators)

 Accessing resource requires majority vote:

total votes (m) > N/2 coordinators

 Assumption #1: When coordinator does not give

permission to access a resource (because it is busy) it will

inform the requester

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.93

DECENTRALIZED ALGORITHM

 Assumption #2: When a coordinator crashes, it recovers

quickly, but will have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted

permission to the shared resource, and on recovery it errantly

grants permission again

 The Hope: if coordinator crashes, upon recovery , the node

granted access to the resource has already f inished before the

restored coordinator grants access again . . .

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.94

DECENTRALIZED ALGORITHM - 2

93

94

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.48

 With 99.167% coordinator availability (30 sec downtime/hour)

chance of violating correctness is so low it can be neglected in

comparison to other types of failure

 Leverages fact that a new node must obtain a majority vote to

access resource, which requires time

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.95

DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote

p=seconds per hour coordinator is offline

 Back-off Poll ing Approach for permission-denied :

 If permission to access a resource is denied via majority vote,

process can poll to gain access again with a random delay

(known as back-off)

 Node waits for a random amount, retries…

 If too many nodes compete to gain access to a resource,

majority vote can lead to low resource utilization

▪ No one can achieve majority vote to obtain access to the

shared resource

▪ Mimics elections where with too many candidates, where no

one candidate can get >50% of the total vote

 Problem Solution detailed in [Lin et al. 2014]

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.96

DECENTRALIZED ALGORITHM - 4

95

96

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.49

 Which algorithm offers the best scalability to support

distributed mutual exclusion in a large distributed

system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.97

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW

 Which algorithm(s) involve blocking when a resource is

not available?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.98

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 2

97

98

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.50

 Which algorithm(s) involve arriving at a consensus to

determine whether a node should be granted access to a

resource?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.99

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 3

 Which algorithm(s) have N points of failure,

where N = Number of Nodes in the system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.100

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 4

99

100

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.51

QUESTIONS

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.10
1

101

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 2/28
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Tenure track faculty candidate research seminars – EXTRA CREDIT
	Slide 7: Feedback from 2/23
	Slide 8: Feedback - 2
	Slide 9: Feedback - 3
	Slide 10: OBJECTIVES – 2/28
	Slide 11: Short-hand-codes for Membership Tracking Approaches
	Slide 12: Assignment 2
	Slide 13: OBJECTIVES – 2/28
	Slide 14: Review
	Slide 15: Random graphs
	Slide 16: Probabilistic flooding
	Slide 17: Probabilistic flooding
	Slide 18: Probabilistic flooding
	Slide 19: Probabilistic flooding
	Slide 20: Probabilistic flooding
	Slide 21: Probabilistic flooding
	Slide 22: Probabilistic flooding
	Slide 23: Probabilistic flooding
	Slide 24: Message flooding w/ hypercube
	Slide 25: Rumor spreading
	Slide 26: Rumor spreading - 2
	Slide 27: Removing data
	Slide 28: Death certificate example
	Slide 29: OBJECTIVES – 2/28
	Slide 30: Chapter 6 - Coordination
	Slide 31: Ch. 6.1: clock synchronization
	Slide 32: Clock synchronization
	Slide 33: Time synchronization problem for distributed systems
	Slide 34: Physical clocks
	Slide 35: Computer clocks
	Slide 36: Universal coordinated time
	Slide 37: Computing: clock challenges
	Slide 38: Clock synchronization
	Slide 39: Clock synchronization - 2
	Slide 40: Network time protocol
	Slide 41: NTP - 2
	Slide 42: Ntp - 3
	Slide 43: Berkeley algorithm
	Slide 44: Clock synchronization in wireless networks
	Slide 45: Reference broadcast synchronization (RBS)
	Slide 46: Reference broadcast synchronization (RBS) - 2
	Slide 47: We will return at 3:01 pm
	Slide 48: OBJECTIVES – 2/28
	Slide 49: Chapter 6 - Coordination
	Slide 50: Ch. 6.2: logical clocks
	Slide 51: Logical clocks
	Slide 52: Logical clocks - 2
	Slide 53: Logical clocks – 3
	Slide 54: Logical clocks - 4
	Slide 55: Logical clocks
	Slide 56: Lamport logical clocks - implementation
	Slide 57: Total-ordered multicasting
	Slide 58: Total-ordered multicasting example
	Slide 59: Total-ordered multicasting example
	Slide 60: Total-ordered multicasting example
	Slide 61: Total-ordered multicasting example
	Slide 62: Total-ordered multicasting - 2
	Slide 63: Total-ordered multicasting - 3
	Slide 64: OBJECTIVES – 2/28
	Slide 65: Vector clocks
	Slide 66: What is causality?
	Slide 67: Causality - 2
	Slide 68: causality - 3
	Slide 69: Vector clocks
	Slide 70: Vector clocks - 2
	Slide 71: Vector clocks - 3
	Slide 72: Vector clocks example
	Slide 73: Vector clocks example - 2
	Slide 74: Vector clocks example - 3
	Slide 75: Vector clocks example - 4
	Slide 76: Vector clocks example - 5
	Slide 77: OBJECTIVES – 2/28
	Slide 78: OBJECTIVES – 2/28
	Slide 79: OBJECTIVES – 2/28
	Slide 80: Ch. 6.3: distributed mutual exclusion
	Slide 81: Distributed mutual exclusion algorithms
	Slide 82: token-based algorithms
	Slide 83: Token-ring algorithm
	Slide 84: Token-ring challenges
	Slide 85: Distributed mutual exclusion algorithms - 3
	Slide 86: Centralized mutual exclusion
	Slide 87: Centralized mutual exclusion - 2
	Slide 88: Distributed algorithm
	Slide 89: Distributed algorithm - 2
	Slide 90: Distributed algorithm - 3
	Slide 91: Challenges with Distributed algorithm
	Slide 92: Challenges with Distributed algorithm - 2
	Slide 93: Decentralized algorithm
	Slide 94: Decentralized algorithm - 2
	Slide 95: Decentralized algorithm - 3
	Slide 96: Decentralized algorithm - 4
	Slide 97: Distributed mutual exclusion algorithms review
	Slide 98: Distributed mutual exclusion algorithms review - 2
	Slide 99: Distributed mutual exclusion algorithms review - 3
	Slide 100: Distributed mutual exclusion algorithms review - 4
	Slide 101: Questions

