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OBJECTIVES – 2/28

1

2



TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (31 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.57  ( - previous 6.42)  

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.94  ( - previous 5.81)
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MATERIAL / PACE

 Wednesday March 1 – 12:30pm – Cherry Parkes room 106

▪ Dr. Jiaxuan You  CS PhD Stanford University

Talk title: Learning from the Interconnected World with Graphs

 Friday March 3 – 12:30pm – Cherry Parkes room 106

▪ Dr. Dongfang Zhao  CS PhD Illinois Institute of Technology

Talk title: High-Performance Data-Intensive Computing Systems 

 Earn up to 2.5% extra credit added to the overall course grade

 Scored out of 5 total points

 First seminar – earn 2 points

 2nd,  3 rd,  4 th seminar – earn 1 point each

Add to final course grade:

(Total_seminar_points / 5 points) * 2.5%

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.6

TENURE TRACK FACULTY CANDIDATE

RESEARCH SEMINARS – EXTRA CREDIT
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 Where are the message queues located in peer -to-peer systems?

 “Peer-to-peer” refers to a network topology,
which is how nodes are connected

 A message queue is a component of a
component-based or n-tier application

 A message queue is an architectural component that facilitates 
implementation of distributed applications

 Where could a message queue be located for a distributed system 
that exists across a group of nodes with a peer -to-peer network 
topology ?

▪ Is the message queue replicated?

▪ If numbering nodes from left -to-right, which is most accessible?
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FEEDBACK FROM 2/23

 Is rumor spreading a subset of gossiping spreading, just with 

the addition of the stopping mechanism? 

 YES

 Does rumor spreading also apply the push/pull/push -pull 

model?

 Yes, it could

 Push/pull/push-pull refers to how data is spread in the system 

between nodes
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FEEDBACK - 2
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 About message f looding on page 59 of slides. What's the 
meaning of a higher dimension? Why just choose node 
1101...?

 If the message arrives at node 1101 on an edge labeled as 
level 2

 We then label all outbound edges from 1101, and only forward 
the message along edges that are a higher order than that of 
the edge that received the message

 This way we can minimize the number of messages for 
broadcast of the n-dimensional hypercube

 We will go over this again…

February 28, 2023
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FEEDBACK - 3

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L16.10

OBJECTIVES – 2/28
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 Include readme.txt or doc file with instructions in submission

 Must document membership tracking method 

>> please indicate which types to test <<

ID Description

F Static file membership tracking – file is not reread

FD Static file membership tracking DYNAMIC - file is 

periodically reread to refresh membership list

T TCP membership tracking – servers are configured to 

refer to central membership server

U UDP membership tracking - automatically discovers 

nodes with no configuration

February 28, 2023
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SHORT-HAND-CODES FOR MEMBERSHIP 

TRACKING APPROACHES

 Sunday March 12 th

 Goal: Replicated Key Value Store

 Team signup posted on Canvas under ‘People’

 Build off of Assignment 1 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking 

for extra credit

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.12

ASSIGNMENT 2
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 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 2/28

 Consider sending a message from node B to D:

 What is the Link Stress at physical node Re ?

 What is the delay from B to D via the underlying network ?

 What is the delay from B to D via the overlay network ?

 What is the stretch from B to D ?

February 28, 2023
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REVIEW

Numbers represent
network delay 
between nodes
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 Used when no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Random graphs are described by a probability distribution:

1. Given a probability Pedge that two nodes are joined

2. Size of a random overlay network is: ½ * Pedge * N * (N-1) edges

February 28, 2023
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RANDOM GRAPHS

Random graphs allow us to assume
some structure (# of nodes, # of edges)
regarding the network by scaling the
Pedge probability 

Assumptions may help then to 
reason or rationalize about the
network…

Figure estimates
size of a random
overlay network
in nodes & edges
based on Pedge

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a 

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random 

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

Washington state in winter?
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 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a 

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random 

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Washington state in winter?

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a 

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random 

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

Washington state in winter?
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 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a 

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random 

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

½ * (.1) * (10000) * (9999)

Washington state in winter?

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a 

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random 

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

½ * (.1) * (10000) * (9999)
4,999,500 edges

Washington state in winter?
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 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a 

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random 

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

With lower pflood messages may not reach all nodes

If there are 10,000 nodes and ~5 million edges, how
many messages is full flooding?

> every node sends to all neighbors across all edges

Washington state in winter?

 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a 

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random 

network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

node Q has n neighbors
Probability that all neighbors don’t forward message

to Q is p=(1-pflood)n

Washington state in winter?
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 When a node is flooding a message m:

(pflood) is the probability that the message is spread to a 

specific neighbor =(pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

node Q has n neighbors

Probability that no neighbors of Q forward the message to Q:

p=(1-pflood)n   
 probability of Q not getting the message

10 nodes: if n=10, p=(1-.01)10=.904  (small network, few edges, likely Q doesn’t get msg)

100 nodes: if n=100, p=(1-.01)100=.366 (less likely Q doesn’t get msg)
298 nodes: if n=298, p=(1-.01)298=.05 (Q probably get msg)   

Washington state in winter?

 Hypercube: for broadcast send minimum # of messages

Only forward msg along edges with higher dimension

 Node(1101)–neighbors {0101,1100,1001,1111} 

 Node (1101) – receives msg on incoming broadcast edge = 2

 Broadcast from 1101 - Label Edges:

 Edge to 0101 – labeled 1 – change the 1 st bit

 Edge to 1100 – labeled 4 – change the 4 th bit *<FORWARD>*

 Edge to 1001 – labeled 2 – change the 2nd bit

 Edge to 1111 – labeled 3 – change the 3 rd bit *<FORWARD>*

 N(1101) broadcast – forward only to N(1100) and N(1111)

 (1100) and (1111) are the higher dimension edges

 Broadcast requires just: N -1 messages, where nodes N=2 n,  

n=dimensions of hypercube

February 23, 2023
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MESSAGE FLOODING W/ HYPERCUBE
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 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another 

node

 Node P may loose interest in spreading the rumor with 

probability = pstop, let’s say 20% . . .  (or 0.20)

February 28, 2023
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RUMOR SPREADING

 pstop,  is the probability node will stop spreading once contacting a 
node that already has the message

 Rumor spreading does not guarantee all nodes will be updated

 Fraction of nodes s, that remain susceptible grows relative to 
the probability that node P 
stops propagating when finding 
a node already having the 
message

 Fraction of nodes not updated 
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping      →

February 28, 2023
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RUMOR SPREADING - 2
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 Gossiping is good for spreading data

 But how can data be removed from the system? 

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from 

reinitializing from gossip from other nodes

 Death certificates time-out after expected time required 

for data element to clear out of entire system

 A few nodes maintain death certificates forever

February 28, 2023
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REMOVING DATA

 For example:

 Node P keeps death certificates forever

 Item X is removed from the system

 Node P receives an update request for Item X, but also holds 

the death certificate for Item X

 Node P will recirculate the death certificate across the 

network for Item X

February 28, 2023
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DEATH CERTIFICATE EXAMPLE
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 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 2/28

 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

February 28, 2023
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CHAPTER 6 - COORDINATION
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CH. 6.1: CLOCK

SYNCHRONIZATION

L16.31

 Example:

 “make” is used to compile source files into binary object and 

executable files

 As an optimization, make only compiles files when the “last 

modified time” of source files is more recent than object and 

executables

 Consider if files are on a shared disk of a distributed system 

where there is no agreement on time

 Consider if the program has 1,000 source files

February 28, 2023
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CLOCK SYNCHRONIZATION
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 Updates from different machines, may have clocks set to 

different times

 Make becomes confused with which files to recompile

February 28, 2023
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TIME SYNCHRONIZATION PROBLEM 

FOR DISTRIBUTED SYSTEMS
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PHYSICAL CLOCKS

 Computer timers: precisely machined
quartz crystals

 When under tension, they oscillate at 
a well defined frequency

 In analog electronics/communications
crystals once used to set the frequency
of two-way radio transceivers for 

 Today, crystals are associated with 
a counter and holding register on a digital computer.

 Each oscillation decrements a counter by one

 When counter gets to zero, an interrupt fires

 Can program timer to generate interrupt, let’s say 60 
times a second, or another frequency to track time

1960s ERA radio crystal →
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 Digital clock on computer sets base time

 Crystal clock tracks forward progress of time

▪ Translation of wave “ticks” to clock pulses

 CMOS battery on motherboard maintains clock on power loss

 Clock skew: physical clock crystals are not exactly the same

 Some run at slightly dif ferent rates

 Time differences accumulate as clocks

drif t forward or backward slightly

 In an automobile, where there is no

clock synchronization, clock skew may

become noticeable over months, years
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COMPUTER CLOCKS

 Universal Coordinated Time (UTC)

▪Worldwide standard for time keeping

▪ Equivalent to Greenwich Mean Time (United Kingdom)

▪ 40 shortwave radio stations around the world broadcast a 
short pulse at the start of each second (WWV)

▪World wide “atomic” clocks powered by constant 
transitions of the non-radioactive caesium-133 atom 

▪ 9,162,631,770 transitions per second

 Computers track time using UTC as a base

▪ Avoid thinking in local time, which can lead to 
coordination issues

▪ Operating systems may translate to show local time

February 28, 2023
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UNIVERSAL COORDINATED TIME
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How do we synchronize computer clocks with 

real-world clocks?

How do we synchronize computer clocks with 

each other?

February 28, 2023
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COMPUTING: CLOCK CHALLENGES

 UTC services: use radio and satellite signals to provide time 

accuracy to 50ns

 Time servers: Server computers with UTC receivers that 

provide accurate time

 Precision () : how close together a set of clocks may be

 Accuracy: how correct to actual time clocks may be

 Internal synchronization: Sync local computer clocks

 External synchronization: Sync to UTC clocks

 Clock drif t : clocks on dif ferent machines gradually become 

out of sync due to crystal imperfections, temperature 

dif ferences, etc.

 Clock drif t rate: typical is 31.5s per year

 Maximum clock drif t rate (): clock specifications include one

February 28, 2023
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CLOCK SYNCHRONIZATION
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 If two clocks drift from UTC in opposite directions, 

after time t after synchronization, they may be 2 apart.

▪  - clock drift rate,  - clock precision (max 50ns)

 Clocks must be resynchronized every /2 seconds

 Network time protocol

 Provide coordination of 

time for servers

 Leverage distributed network 

of time servers
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CLOCK SYNCHRONIZATION - 2

 Servers organized 
into stratums

 Stratum-1 servers
have UTC receivers
and are sync’d 
with atomic clocks

 Servers connect
with closest NTP 
server for time 
synchronization

 Servers assume 
role as NTP server
at stratum+1
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NETWORK TIME PROTOCOL

Atomic
clocks
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 Must estimate network delays when synchronizing with remote UTC 
receiver clocks / time servers

Time server B

Client A

1. A sends message to B, with timestamp T1

2. B records time of receipt T2 (from local clock)

3. B returns response with send time T3, and receipt time T2 

4. A records arrival of T4

 Assuming propagation delay of A→B→A is the same

 Estimate propagation delay:

 Add delay to time

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.41

NTP - 2

 Cannot set clocks backwards (recall “make” file example)

 Instead, temporarily slow the progress of time to allow fast 
clock to align with actual time

 Change rate of clock interrupt routine

 Slow progress of time until synchronized

 NTP accuracy is within 1-50ms

 In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

 Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst

server bigben.cac.washington.edu iburst

 Shutdown service (sudo service ntp stop)

 Run ntpdate: (sudo ntpdate time.u.washington.edu)

 Startup service (sudo service ntp start)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.42

NTP - 3
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 Berkeley time daemon server actively polls network to 

determine average time across servers

 Suitable when no machine has a UTC receiver

 Time daemon instructs servers how much to adjust clocks 

to achieve precision

 Accuracy can not be guaranteed

 Berkeley is an internal clock synchronization algorithm
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BERKELEY ALGORITHM

 Sensor networks bring unique challenges for clock synchronization

▪ Address resource constraints : limited power, multihop routing slow

 Reference broadcast synchronization (RBS)

 Provides time precision, not accuracy as in Berkeley

 No UTC clock available

 RBS sender broadcasts a reference message to allow receivers to 

adjust clocks

 No multi -hop routing

 Time to propagate a signal to nodes is roughly constant

 Message propagation time does not consider time spent waiting in 

NIC for message to send

▪ Wireless network resource contention may force wait before message 

even can be sent
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CLOCK SYNCHRONIZATION

IN WIRELESS NETWORKS
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 Node broadcasts reference message k

 Each node p records time Tp,k when k is received

 Tp,k is read from node p’s clock

 Two nodes p and q can exchange delivery times to estimate 

mutual relative offset

 Then calculate relative average offset for the network:

 Where M is the total number of reference messages sent

 Nodes can simply store offsets instead of frequently 

synchronizing clocks to save energy
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REFERENCE BROADCAST 

SYNCHRONIZATION (RBS)

 Cloud skew: over time clocks drif t apart

 Averages become less precise

 Elson et al. propose using standard linear regression to 

predict offsets, rather than calculating them

 IDEA: Use node’s history of message times in a simple linear 

regression to continuously refine a formula with coefficients 

to predict time offsets:
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REFERENCE BROADCAST 

SYNCHRONIZATION (RBS) - 2
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WE WILL RETURN AT 

3:01 PM

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 2/28
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 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)
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CHAPTER 6 - COORDINATION

CH. 6.2: LOGICAL

CLOCKS

L16.50
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 In distributed systems, synchronizing to actual time may not be 

required…

 I t may be suf ficient for every node to simply agree on a current 

time  (e.g. logical)

 Logical clocks provide a mechanism for capturing chronological 

and causal relationships in a distributed system

 Think counters .  .  .  

 Leslie Lamport [1978] seminal paper showed that absolute clock 

synchronization often is not required

 Processes simply need to agree on the order in which events occur
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LOGICAL CLOCKS

 Happens-before relation

 A→B:  Event A, happens before event B…

 All processes must agree that event A occurs first

 Then afterward, event B

 Actual time not important. . .  

 If event A is the event of proc P1 sending a msg to a proc P2, 

and event B is the event of proc P2 receiving the msg, then 

A→B is also true. . . 

 The assumption here is that message delivery takes time

 Happens before is a transitive relation :

 A→B, B→C, therefore A→C
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LOGICAL CLOCKS - 2
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 If two events, say event X and event Y do not exchange 

messages, not even via third parties, then the sequence of 

X→Y vs. Y→X  can not be determined!!

 Within the system, these events appear concurrent

 Concurrent: nothing can be said about when the events 

happened, or which event occurred first

 Clock time, C, must always go forward (increasing), never 

backward (decreasing)

 Corrections to time can be made by adding a positive value, 

but never by subtracting one
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LOGICAL CLOCKS – 3

 Three processes each with local clocks

 Lamport’s algorithm corrects process clock values

 Always propagate the most recent known value of logical time
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LOGICAL CLOCKS - 4
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 Events: 

6: P1 send m1 to P2

16: P2 receives m1

24: P2 sends m2 to P3

40: P3 receives m2

60: P3 sends m3 to P2

56: P2 receives m3

56: P2 clock reset=61

69: P2 sends m4 to P1

54: P1 receives m4

70: P1 clock reset=70
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LOGICAL CLOCKS

 Negative values not possible

 When a message is received, and the local clock is before the 
timestamp when then message was sent, the local clock is 
updated to message_sent_time + 1

1. Clock is incremented before an event: (sending-a-message, 
receiving-a-message, some-other-internal-event) 
Pi increments Ci: Ci  Ci + 1

2. When Pi send msg m to Pj,  m’s timestamp is set to Ci 

3. When Pj receives msg m, Pj adjusts its local clock
Cj  max{Cj, timestamp(m)}

4. Ties broken by considering Proc ID: i<j;  <40,i>  < <40,j>
Both Lamport clocks are = 40
The winner has a higher alphanumeric Process ID 
J (winner) is greater than i, alphabetically 
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LAMPORT LOGICAL CLOCKS -

IMPLEMENTATION

55

56



TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.29

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Initial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed
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TOTAL-ORDERED MULTICASTING

DB1 DB2

 Two messages (m1,  m2) must be distributed,

to two processes (p1,  p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1,  add $100)

 m2(12, p2,  add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the 

Lamport clock timestamp

 In each queue, each message must be acknowledged by every 

process in the system before operations can be applied to the 

local database
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TOTAL-ORDERED MULTICASTING 

EXAMPLE
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 Two messages (m1,  m2) must be distributed,

to two processes (p1,  p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1,  add $100)

 m2(12, p2,  add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the 

Lamport clock timestamp

 In each queue, each message must be acknowledged by every 

process in the system before operations can be applied to the 

local database
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TOTAL-ORDERED MULTICASTING 

EXAMPLE

Key point:

Multicast messages are also received by the sender (itself)
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TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10) 1

3

4

2

2

4

3

1
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TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10)

What is the final account balance?

(12)

(12)

(10) 1

3

4

2

2

4

3

1

 Each message timestamped with local logical clock of sender

 Multicast messages are also received by the sender ( itself)

 Assumptions:

▪ Messages from same sender received in order they were sent

▪ No messages are lost

 When messages arrive they are placed in local queue ordered 
by timestamp

 Receiver multicasts acknowledgement of message receipt to 
other processes

▪ Time stamp of message receipt is lower the acknowledgement

 This process replicates queues across sites

 Messages delivered to application (database) only when 
message at the head of the queue has been acknowledged by 
every process in the system
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TOTAL-ORDERED MULTICASTING - 2
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 Can be used to implement replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical clocks and (2) exchanging acknowledgement 

messages, allows for events to be “totally” ordered in 

replicated event queues  

 Events can be applied “in order” to each (distributed) 

replicated state machine (RSM)
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TOTAL-ORDERED MULTICASTING - 3

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 2/28
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 Lamport clocks don’t help to determine causal ordering of 

messages

 Vector clocks capture causal histories and can be used as an 

alternative

 But what is causality? …
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VECTOR CLOCKS

 Having a causal relationship between two events (A and E)

indicates that event E results from the occurrence of event A.

 When one event results from another, there is a causal 

relationship between the two events. 

 This is also referred to as cause and effect .
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WHAT IS CAUSALITY?

Proc 1

Proc 2

A         B        C

D                      E

m1
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 Disclaimer:

 Without knowing actual information contained in messages, it 

is not possible to state with certainty that there is a causal 

relationship or perhaps a conflict

 Lamport/Vector clocks can help us suggest possible causality

 But we never know for sure…

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.67

CAUSALITY - 2

 Consider the messages:

 P2 receives m1, and subsequently sends m3

 Causality: Sending m3 may depend on what’s contained in m1

 P2 receives m2, receiving m2 is not related to receiving m1

 Is sending m3 causally dependent on receiving m2?
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CAUSALITY - 3
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 Vector clocks help keep track of causal history

 If two local events happened at process P, then the 

causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event, 

as a vector clock → H(q2) = (3,2)

 Each entry corresponds to the last event at the process
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VECTOR CLOCKS

 Each process maintains a vector clock which

▪ Captures number of events at the local process (e.g. logical clock)

▪ Captures number of events at all other processes

 Causality is captured by:

▪ For each event at Pi, the vector clock (VC i) is incremented

▪ The msg is timestamped with VCi; and sending the msg is recorded 

as a new event at P i

▪ P j adjusts its VC j choosing the max of: the message timestamp –or-

the local vector clock (VCj)
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VECTOR CLOCKS - 2

P1

P2

(1,0)   (2,0)    (3,0)

(0,1)                    (3,2)

m1
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 Pj knows the # of events at Pi based on the timestamps of the  

received message

 Pj learns how many events have occurred at other processes 

based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the 

message(s) to be sent…
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VECTOR CLOCKS - 3

 Local clock is underlined
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VECTOR CLOCKS EXAMPLE

m2 m4 m2 < m4 m2 > m4 Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY
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 P3 can’t determine if m4 may be causally dependent on m2

 Is m4 causally dependent on m3 ?
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VECTOR CLOCKS EXAMPLE - 2

m2 m4 m2 < m4 m2 > m4 Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

 Provide a vector clock label for unlabeled events
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VECTOR CLOCKS EXAMPLE - 3
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 TRUE/FALSE:

 The sending of message m3 is causally dependent on the 
sending of message m1.

 The sending of message m2 is causally dependent on the 
sending of message m1.
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VECTOR CLOCKS EXAMPLE - 4

 TRUE/FALSE:

 P1 (1,0,0) and P3 (0,0,1) may be concurrent events.

 P2 (0,1,1) and P3 (0,0,1) may be concurrent events.

 P1 (1,0,0) and P2 (0,1,1) may be concurrent events.
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VECTOR CLOCKS EXAMPLE - 5
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 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 2/28

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion
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 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion
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OBJECTIVES – 2/28

CH. 6.3: DISTRIBUTED

MUTUAL

EXCLUSION

L16.80
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 Coordinating access among distributed processes to a 

shared resource requires Distributed Mutual Exclusion

Algorithms in 6.3

 Token-ring algorithm

 Permission-based algorithms:

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid
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TOKEN-BASED ALGORITHMS
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 Construct overlay network

 Establish logical ring among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated 

around ring
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TOKEN-RING ALGORITHM

1. If token is lost, token must be regenerated

▪ Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

▪What is the difference between token being lost and a 

node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

▪ Dead nodes can be detected by adding a receipt message 

for when the token passes from node-to-node

▪When no receipt is received, node assumed dead

▪ Dead process can be “jumped” in the ring
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TOKEN-RING CHALLENGES
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Permission-based algorithms

 Processes must require permission from other processes 

before first acquiring access to the resource

▪ CONTRAST: Token-ring did not ask nodes for permission 

 Centralized algorithm

 Elect a single leader node to coordinate access to shared 

resource(s)

 Manage mutual exclusion on a distributed system similar 

to how it mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.85

DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS - 3

 When resource not available, coordinator can block the 

requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject

otherwise can wait if simply blocked

 Requests granted permission fairly using FIFO queue

 Just three messages: (request, grant (OK), release)
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CENTRALIZED MUTUAL EXCLUSION

P1 executes                                    P2 blocks               P1 finishes; P2 executes

Permission granted from coordinator    \/  No response from coordinator
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 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “blocking”

when resource is unavailable

▪ No difference between CRASH and Block ( for a long time)

 Large systems, coordinator becomes performance bottleneck

▪ Scalability: Performance does not scale

 Benefits

 Simplicity:

Easy to implement compared to distributed alternatives
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CENTRALIZED MUTUAL EXCLUSION - 2

 Ricart and Agrawala [1981], use total ordering of all events

▪ Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:

▪ Name of resource

▪ Process number

▪ Current (logical) time

 Assume messages are sent reliably

▪ No messages are lost
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DISTRIBUTED ALGORITHM
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 When each node receives a request message they will:

1. Say OK ( if  the node doesn’t need the resource )

2. Make no reply, queue request (node is using the resource)

3. If node is also waiting to access the resource: perform a 

timestamp comparison -

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership 

list of the distributed system
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DISTRIBUTED ALGORITHM - 2

 Node 0 and Node 2 simultaneously request access to resource

 Node 0’s time stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Node 1 is not interested in the resource, it OKs both requests

 In case of conflict, lowest timestamp wins!

▪ Node 2 rejects its own request (1@) in favor of node 0 (8)
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DISTRIBUTED ALGORITHM - 3
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 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 No Reply Problem: When node is accessing the resource, 

it does not respond

▪ Lack of response can be confused with failure

▪ Possible Solution: When node receives request for 

resource it is accessing, always send a reply either 

granting or denying permission (ACK)

▪ Enables requester to determine when nodes have died
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CHALLENGES WITH 

DISTRIBUTED ALGORITHM

 Problem: Multicast communication required –or- each node 
must maintain full group membership

▪ Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement 
to grant access to a shared resource

▪ This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed 
when a simple majority of nodes grant permission

▪ Presumably any one node locking the resource prevents agreement

▪ If one node gets majority of acknowledges no other can

▪ Requires every node to know size of system (# of nodes)

 Distributed algorithm for mutual exclusion works best for:

▪ Small groups of processes

▪ When memberships rarely change

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.92

CHALLENGES WITH 

DISTRIBUTED ALGORITHM - 2
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 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator      …(N coordinators)

 Accessing resource requires majority vote: 

total votes (m) > N/2 coordinators

 Assumption #1: When coordinator does not give 

permission to access a resource (because it is busy) it will 

inform the requester

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.93

DECENTRALIZED ALGORITHM

 Assumption #2: When a coordinator crashes, it recovers 

quickly, but will have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted 

permission to the shared resource, and on recovery it errantly 

grants permission again

 The Hope: if coordinator crashes, upon recovery ,  the node 

granted access to the resource has already f inished before the 

restored coordinator grants access again .  .  .
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DECENTRALIZED ALGORITHM - 2
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 With 99.167% coordinator availability (30 sec downtime/hour) 

chance of violating correctness is so low it can be neglected in 

comparison to other types of failure

 Leverages fact that a new node must obtain a majority vote to 

access resource, which requires time
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DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote

p=seconds per hour coordinator is offline

 Back-off Poll ing Approach for permission-denied :

 If permission to access a resource is denied via majority vote, 

process can poll to gain access again with a random delay 

(known as back-off)

 Node waits for a random amount, retries…

 If too many nodes compete to gain access to a resource, 

majority vote can lead to low resource utilization

▪ No one can achieve majority vote to obtain access to the 

shared resource

▪ Mimics elections where with too many candidates, where no 

one candidate can get >50% of the total vote

 Problem Solution detailed in [Lin et al. 2014]
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DECENTRALIZED ALGORITHM - 4
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 Which algorithm offers the best scalability to support 

distributed mutual exclusion in a large distributed 

system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS REVIEW

 Which algorithm(s) involve blocking when a resource is 

not available? 

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS REVIEW - 2
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 Which algorithm(s) involve arriving at a consensus to 

determine whether a node should be granted access to a 

resource? 

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS REVIEW - 3

 Which algorithm(s) have N points of failure, 

where N = Number of Nodes in the system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm 

 (D) Decentralized voting algorithm 
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DISTRIBUTED MUTUAL EXCLUSION 

ALGORITHMS REVIEW - 4
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QUESTIONS
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