
TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.1

Chapter 6 – Coordination - II

Wes J. Lloyd

School of Engineering
& Technology (SET)
University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.2

OBJECTIVES – 2/28

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.3

ONLINE DAILY FEEDBACK SURVEY

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L16.4

 Please classify your perspective on material covered in today’s

class (31 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.57 (- previous 6.42)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.94 (- previous 5.81)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.5

MATERIAL / PACE

 Wednesday March 1 – 12:30pm – Cherry Parkes room 106

▪ Dr. Jiaxuan You CS PhD Stanford University

Talk title: Learning from the Interconnected World with Graphs

 Friday March 3 – 12:30pm – Cherry Parkes room 106

▪ Dr. Dongfang Zhao CS PhD Illinois Institute of Technology

Talk title: High-Performance Data-Intensive Computing Systems

 Earn up to 2.5% extra credit added to the overall course grade

 Scored out of 5 total points

 First seminar – earn 2 points

 2nd, 3 rd, 4 th seminar – earn 1 point each

Add to final course grade:

(Total_seminar_points / 5 points) * 2.5%

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.6

TENURE TRACK FACULTY CANDIDATE

RESEARCH SEMINARS – EXTRA CREDIT

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.2

 Where are the message queues located in peer -to-peer systems?

 “Peer-to-peer” refers to a network topology,
which is how nodes are connected

 A message queue is a component of a
component -based or n-t ier applicat ion

 A message queue is an architectural component that facil itates
implementation of distr ibuted applicat ions

 Where could a message queue be located for a distr ibuted system
that exists across a group of nodes with a peer -to-peer network
topology ?

▪ Is the message queue replicated?

▪ If numbering nodes from left-to-right, which is most accessible?

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.7

FEEDBACK FROM 2/23

 Is rumor spreading a subset of gossiping spreading, just with

the addition of the stopping mechanism?

 YES

 Does rumor spreading also apply the push/pull/push -pull

model?

 Yes, it could

 Push/pull/push-pull refers to how data is spread in the system

between nodes

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.8

FEEDBACK - 2

 About message f looding on page 59 of s l ides. What's the
meaning of a higher d imension? Why just choose node
1101...?

 If the message arrives at node 1101 on an edge labeled as
level 2

 We then label all outbound edges from 1101, and only forward
the message along edges that are a higher order than that of
the edge that received the message

 This way we can minimize the number of messages for
broadcast of the n-dimensional hypercube

 We will go over this again…

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.9

FEEDBACK - 3

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.10

OBJECTIVES – 2/28

 Include readme.txt or doc file with instructions in submission

 Must document membership tracking method

>> please indicate which types to test <<

ID Description

F Static file membership tracking – file is not reread

FD Static file membership tracking DYNAMIC - file is

periodically reread to refresh membership list

T TCP membership tracking – servers are configured to

refer to central membership server

U UDP membership tracking - automatically discovers

nodes with no configuration

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.11

SHORT-HAND-CODES FOR MEMBERSHIP

TRACKING APPROACHES

 Sunday March 12 th

 Goal: Replicated Key Value Store

 Team signup posted on Canvas under ‘People’

 Build off of Assignment 1 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking

for extra credit

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.12

ASSIGNMENT 2

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.3

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.13

OBJECTIVES – 2/28

 Consider sending a message from node B to D:

 What is the Link Stress at physical node Re ?

 What is the delay from B to D via the underlying network ?

 What is the delay from B to D via the overlay network ?

 What is the stretch from B to D ?

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.14

REVIEW

Numbers represent
network delay
between nodes

 Used when no information on the structure of the over lay network

 Assume network can be represented as a Random graph

 Random graphs are described by a probabil ity distribut ion:

1. Given a probabil ity Pedge that two nodes are joined

2. Size of a random overlay network is: ½ * Pedge * N * (N-1) edges

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

RANDOM GRAPHS

Random graphs allow us to assume
some structure (# of nodes, # of edges)
regarding the network by scaling the
Pedge probability

Assumptions may help then to
reason or rationalize about the
network…

Figure estimates
size of a random
overlay network
in nodes & edges
based on Pedge

 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

PROBABILISTIC FLOODING

Washington state in winter?

 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.17

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Washington state in winter?
 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.18

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

Washington state in winter?

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.4

 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.19

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)
½ * (.1) * (10000) * (9999)

Washington state in winter?
 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)
½ * (.1) * (10000) * (9999)

4,999,500 edges

Washington state in winter?

 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.21

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

With lower pflood messages may not reach all nodes

If there are 10,000 nodes and ~5 million edges, how
many messages is full flooding?

> every node sends to all neighbors across all edges

Washington state in winter?
 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 Efficiency of probabilistic broadcasting: For random

network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.22

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

node Q has n neighbors

Probability that all neighbors don’t forward message
to Q is p=(1-pflood)n

Washington state in winter?

 When a node is flooding a message m:

(p flood) is the probability that the message is spread to a

specific neighbor =(p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.23

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

node Q has n neighbors
Probability that no neighbors of Q forward the message to Q:

p=(1-pflood)n
 probability of Q not getting the message

10 nodes: if n=10, p=(1-.01)10=.904 (small network, few edges, likely Q doesn’t get msg)
100 nodes: if n=100, p=(1-.01)100=.366 (less likely Q doesn’t get msg)
298 nodes: if n=298, p=(1-.01)298=.05 (Q probably get msg)

Washington state in winter?
 Hypercube: for broadcast send minimum # of messages

Only forward msg along edges with higher d imension

 Node(1101)–neighbors {0101,1100,1001,1111}

 Node (1101) – receives msg on incoming broadcast edge = 2

 Broadcast from 1101 - Label Edges:

 Edge to 0101 – labeled 1 – change the 1 st bit

 Edge to 1100 – labeled 4 – change the 4 th bit *<FORWARD>*

 Edge to 1001 – labeled 2 – change the 2nd bit

 Edge to 1111 – labeled 3 – change the 3 rd bit *<FORWARD>*

 N(1101) broadcast – forward only to N(1100) and N(1111)

 (1100) and (1111) are the higher d imension edges

 Broadcast requires just : N -1 messages, where nodes N=2 n,

n=dimensions of hypercube

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

MESSAGE FLOODING W/ HYPERCUBE

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.5

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another

node

 Node P may loose interest in spreading the rumor with

probability = pstop, let’s say 20% . . . (or 0.20)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.25

RUMOR SPREADING

 pstop, is the probabil ity node wil l stop spreading once contact ing a
node that already has the message

 Rumor spreading does not guarantee all nodes will be updated

 Fraction of nodes s, that remain susceptible grows relative to
the probability that node P
stops propagating when finding
a node already having the
message

 Fraction of nodes not updated
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping →

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.26

RUMOR SPREADING - 2

 Gossiping is good for spreading data

 But how can data be removed from the system?

 Idea is to issue “death certif icates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from

reinitializing from gossip from other nodes

 Death certificates time-out after expected time required

for data element to clear out of entire system

 A few nodes maintain death certificates forever

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.27

REMOVING DATA

 For example:

 Node P keeps death certificates forever

 I tem X is removed from the system

 Node P receives an update request for I tem X, but also holds

the death certificate for Item X

 Node P will recirculate the death certificate across the

network for Item X

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.28

DEATH CERTIFICATE EXAMPLE

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.29

OBJECTIVES – 2/28

 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.30

CHAPTER 6 - COORDINATION

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.6

CH. 6.1: CLOCK

SYNCHRONIZATION

L16.31

 Example:

 “make” is used to compile source files into binary object and

executable files

 As an optimization, make only compiles files when the “last

modified time” of source files is more recent than object and

executables

 Consider if f iles are on a shared disk of a distributed system

where there is no agreement on time

 Consider if the program has 1,000 source files

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.32

CLOCK SYNCHRONIZATION

 Updates from dif ferent machines, may have clocks set to

dif ferent times

 Make becomes confused with which files to recompile

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.33

TIME SYNCHRONIZATION PROBLEM

FOR DISTRIBUTED SYSTEMS

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.34

PHYSICAL CLOCKS

 Computer t imers: precisely machined
quartz crystals

 When under tension, they oscillate at
a well defined frequency

 In analog electronics/communications
crystals once used to set the frequency
of two-way radio transceivers for

 Today, crystals are associated with
a counter and holding register on a digital computer.

 Each oscillation decrements a counter by one

 When counter gets to zero, an interrupt fires

 Can program timer to generate interrupt, let’s say 60
times a second, or another frequency to track time

1960s ERA radio crystal →

 Digital clock on computer sets base time

 Crystal clock tracks forward progress of time

▪ Translation of wave “ticks” to clock pulses

 CMOS battery on motherboard maintains clock on power loss

 Clock skew: physical clock crystals are not exactly the same

 Some run at slightly dif ferent rates

 Time dif ferences accumulate as clocks

drif t forward or backward slightly

 In an automobile, where there is no

clock synchronization, clock skew may

become noticeable over months, years

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.35

COMPUTER CLOCKS

 Universal Coordinated Time (UTC)

▪Worldwide standard for time keeping

▪ Equivalent to Greenwich Mean Time (United Kingdom)

▪ 40 shortwave radio stations around the world broadcast a
short pulse at the start of each second (WWV)

▪World wide “atomic” clocks powered by constant
transitions of the non-radioactive caesium-133 atom

▪ 9,162,631,770 transitions per second

 Computers track time using UTC as a base

▪ Avoid thinking in local time, which can lead to
coordination issues

▪ Operating systems may translate to show local time

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.36

UNIVERSAL COORDINATED TIME

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.7

How do we synchronize computer clocks with

real-world clocks?

How do we synchronize computer clocks with

each other?

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.37

COMPUTING: CLOCK CHALLENGES

 UTC services: use radio and satellite signals to provide time

accuracy to 50ns

 Time servers: Server computers with UTC receivers that

provide accurate time

 Precision () : how close together a set of clocks may be

 Accuracy: how correct to actual time clocks may be

 Internal synchronization: Sync local computer clocks

 External synchronization: Sync to UTC clocks

 Clock dr ift : clocks on dif ferent machines gradually become

out of sync due to crystal imperfections, temperature

dif ferences, etc.

 Clock dr ift rate: typical is 31.5s per year

 Maximum clock drif t rate () : clock specifications include one

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.38

CLOCK SYNCHRONIZATION

 If two clocks drift from UTC in opposite directions,

after time t after synchronization, they may be 2 apart.

▪ - clock drift rate, - clock precision (max 50ns)

 Clocks must be resynchronized every /2 seconds

 Network time protocol

 Provide coordination of

time for servers

 Leverage distributed network

of time servers

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.39

CLOCK SYNCHRONIZATION - 2

 Servers organized
into stratums

 Stratum-1 servers
have UTC receivers
and are sync’d
with atomic clocks

 Servers connect
with closest NTP
server for time
synchronization

 Servers assume
role as NTP server
at stratum+1

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.40

NETWORK TIME PROTOCOL

Atomic
clocks

 Must est imate network delays when synchronizing with remote UTC
receiver clocks / t ime servers

Time server B

Client A

1. A sends message to B, with t imestamp T1

2. B records t ime of receipt T2 (from local clock)

3. B returns response with send t ime T3, and receipt t ime T2

4. A records arrival of T4

 Assuming propagation delay of A→B→A is the same

 Est imate propagation delay:

 Add delay to t ime

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.41

NTP - 2

 Cannot set clocks backwards (recall “make” file example)

 Instead, temporarily slow the progress of time to allow fast
clock to align with actual time

 Change rate of clock interrupt routine

 Slow progress of time until synchronized

 NTP accuracy is within 1-50ms

 In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

 Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst

server bigben.cac.washington.edu iburst

 Shutdown service (sudo service ntp stop)

 Run ntpdate: (sudo ntpdate time.u.washington.edu)

 Startup service (sudo service ntp start)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.42

NTP - 3

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.8

 Berkeley time daemon server actively polls network to

determine average time across servers

 Suitable when no machine has a UTC receiver

 Time daemon instructs servers how much to adjust clocks

to achieve precision

 Accuracy can not be guaranteed

 Berkeley is an internal clock synchronization algorithm

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.43

BERKELEY ALGORITHM

 Sensor networks bring unique challenges for clock synchronizat ion

▪ Address resource constraints : limited power, multihop routing slow

 Reference broadcast synchronization (RBS)

 Provides t ime precision, not accuracy as in Berkeley

 No UTC clock available

 RBS sender broadcasts a reference message to allow receivers to

adjust clocks

 No mult i -hop rout ing

 Time to propagate a signal to nodes is roughly constant

 Message propagation t ime does not consider t ime spent wait ing in

NIC for message to send

▪ Wireless network resource contention may force wait before message

even can be sent

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.44

CLOCK SYNCHRONIZATION

IN WIRELESS NETWORKS

 Node broadcasts reference message k

 Each node p records time Tp,k when k is received

 Tp,k is read from node p’s clock

 Two nodes p and q can exchange delivery times to estimate

mutual relative offset

 Then calculate relative average offset for the network:

 Where M is the total number of reference messages sent

 Nodes can simply store offsets instead of frequently

synchronizing clocks to save energy

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.45

REFERENCE BROADCAST

SYNCHRONIZATION (RBS)

 Cloud skew: over time clocks drif t apart

 Averages become less precise

 Elson et al. propose using standard linear regression to

predict of fsets, rather than calculating them

 IDEA: Use node’s history of message times in a simple linear

regression to continuously refine a formula with coefficients

to predict time offsets:

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.46

REFERENCE BROADCAST

SYNCHRONIZATION (RBS) - 2

WE WILL RETURN AT

3:01 PM

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.48

OBJECTIVES – 2/28

43 44

45 46

47 48

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.9

 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.49

CHAPTER 6 - COORDINATION

CH. 6.2: LOGICAL

CLOCKS

L16.50

 In distr ibuted systems, synchronizing to actual t ime may not be

required…

 It may be sufficient for every node to simply agree on a current

t ime (e.g. logical)

 Logical c locks provide a mechanism for capturing chronological

and causal relat ionships in a distr ibuted system

 Think counters . . .

 Leslie Lamport [1978] seminal paper showed that absolute clock

synchronizat ion often is not required

 Processes simply need to agree on the order in which events occur

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.51

LOGICAL CLOCKS

 Happens-before relation

 A→B: Event A, happens before event B…

 All processes must agree that event A occurs first

 Then afterward, event B

 Actual time not important. . .

 If event A is the event of proc P1 sending a msg to a proc P2,

and event B is the event of proc P2 receiving the msg, then

A→B is also true. . .

 The assumption here is that message delivery takes time

 Happens before is a transitive relation :

 A→B, B→C, therefore A→C

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.52

LOGICAL CLOCKS - 2

 If two events, say event X and event Y do not exchange

messages, not even via third parties, then the sequence of

X→Y vs. Y→X can not be determined!!

 Within the system, these events appear concurrent

 Concurrent: nothing can be said about when the events

happened, or which event occurred first

 Clock time, C, must always go forward (increasing), never

backward (decreasing)

 Corrections to time can be made by adding a positive value,

but never by subtracting one

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.53

LOGICAL CLOCKS – 3

 Three processes each with local clocks

 Lamport’s algorithm corrects process clock values

 Always propagate the most recent known value of logical time

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.54

LOGICAL CLOCKS - 4

49 50

51 52

53 54

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.10

 Events:

6: P1 send m1 to P2

16: P2 receives m1

24: P2 sends m2 to P3

40: P3 receives m2

60: P3 sends m3 to P2

56: P2 receives m3

56: P2 clock reset=61

69: P2 sends m4 to P1

54: P1 receives m4

70: P1 clock reset=70

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.55

LOGICAL CLOCKS

 Negative values not possible

 When a message is received, and the local clock is before the
timestamp when then message was sent, the local clock is
updated to message_sent_time + 1

1. Clock is incremented before an event: (sending-a-message,
receiving-a-message, some-other-internal-event)
Pi increments Ci: Ci Ci + 1

2. When Pi send msg m to Pj , m’s timestamp is set to Ci

3. When Pj receives msg m, Pj adjusts its local clock
Cj max{Cj, timestamp(m)}

4. Ties broken by considering Proc ID: i<j; <40,i> < <40,j>
Both Lamport clocks are = 40
The winner has a higher alphanumeric Process ID
J (winner) is greater than i, alphabetically

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.56

LAMPORT LOGICAL CLOCKS -

IMPLEMENTATION

 Consider concurrent updates to a replicated database

 Communication latency between DB1 and DB2 is 250ms

 Initial Account balance: $1,000

 Update #1: Deposit $100

 Update #2: Add 1% Interest

 Total Ordered Multicasting needed

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.57

TOTAL-ORDERED MULTICASTING

DB1 DB2

 Two messages (m 1, m2) must be distributed,

to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the

Lamport clock timestamp

 In each queue, each message must be acknowledged by every

process in the system before operations can be applied to the

local database

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.58

TOTAL-ORDERED MULTICASTING

EXAMPLE

 Two messages (m 1, m2) must be distributed,

to two processes (p1, p2)

 We assume messages have correct lamport clock timestamps

 m1(10, p1, add $100)

 m2(12, p2, add 1% interest)

 Each process maintains a queue of messages

 Arriving messages are placed into queues ordered by the

Lamport clock timestamp

 In each queue, each message must be acknowledged by every

process in the system before operations can be applied to the

local database

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.59

TOTAL-ORDERED MULTICASTING

EXAMPLE

Key point:

Multicast messages are also received by the sender (itself)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10) 1

3

4

2

2

4

3

1

55 56

57 58

59 60

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.11

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE

(12)

(12)

(10)

What is the final account balance?

(12)

(12)

(10) 1

3

4

2

2

4

3

1

 Each message timestamped with local logical clock of sender

 Multicast messages are also received by the sender (i tself)

 Assumptions:

▪ Messages from same sender received in order they were sent

▪ No messages are lost

 When messages arrive they are placed in local queue ordered
by timestamp

 Receiver multicasts acknowledgement of message receipt to
other processes

▪ Time stamp of message receipt is lower the acknowledgement

 This process replicates queues across sites

 Messages delivered to application (database) only when
message at the head of the queue has been acknowledged by
every process in the system

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.62

TOTAL-ORDERED MULTICASTING - 2

 Can be used to implement replicated state machines (RSMs)

 Concept is to replicate event queues at each node

 (1) Using logical c locks and (2) exchanging acknowledgement

messages, allows for events to be “totally” ordered in

replicated event queues

 Events can be applied “ in order” to each (distributed)

replicated state machine (RSM)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.63

TOTAL-ORDERED MULTICASTING - 3

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.64

OBJECTIVES – 2/28

 Lamport clocks don’t help to determine causal ordering of

messages

 Vector clocks capture causal histories and can be used as an

alternative

 But what is causality? …

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.65

VECTOR CLOCKS

 Having a causal relationship between two events (A and E)

indicates that event E results from the occurrence of event A.

 When one event results from another, there is a causal

relationship between the two events.

 This is also referred to as cause and ef fect .

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.66

WHAT IS CAUSALITY?

Proc 1

Proc 2

A B C

D E

m1

61 62

63 64

65 66

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.12

 Disclaimer:

 Without knowing actual information contained in messages, it

is not possible to state with certainty that there is a causal

relationship or perhaps a conflict

 Lamport/Vector clocks can help us suggest possible causality

 But we never know for sure…

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.67

CAUSALITY - 2

 Consider the messages:

 P2 receives m1, and subsequently sends m3

 Causality: Sending m3 may depend on what’s contained in m1

 P2 receives m2, receiving m2 is not related to receiving m1

 Is sending m3 causally dependent on receiving m2?

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.68

CAUSALITY - 3

 Vector clocks help keep track of causal history

 If two local events happened at process P, then the

causal history H(p2) of event p2 is {p1,p2}

 P sends messages to Q (event p3)

 Q previously performed event q1

 Q records arrival of message as q2

 Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q2}

 Fortunately, can simply store history of last event,

as a vector clock → H(q2) = (3,2)

 Each entry corresponds to the last event at the process

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.69

VECTOR CLOCKS

 Each process maintains a vector clock which

▪ Captures number of events at the local process (e.g. logical clock)

▪ Captures number of events at all other processes

 Causality is captured by:

▪ For each event at Pi, the vector clock (VCi) is incremented

▪ The msg is timestamped with VCi; and sending the msg is recorded

as a new event at P i

▪ Pj adjusts its VCj choosing the max of: the message timestamp –or-

the local vector clock (VCj)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.70

VECTOR CLOCKS - 2

P1

P2

(1,0) (2,0) (3,0)

(0,1) (3,2)

m1

 Pj knows the # of events at Pi based on the timestamps of the

received message

 Pj learns how many events have occurred at other processes

based on timestamps in the vector

 These events “may be causally dependent“

 In other words: they may have been necessary for the

message(s) to be sent…

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.71

VECTOR CLOCKS - 3

 Local clock is underlined

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.72

VECTOR CLOCKS EXAMPLE

m2 m4 m2 < m4 m2 > m4 Conclusion

(2,1,0) (4,3,0) Yes No m2 may causally precede m4

CAUSALITY

67 68

69 70

71 72

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.13

 P3 can’t determine if m4 may be causally dependent on m2

 Is m4 causally dependent on m3 ?

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.73

VECTOR CLOCKS EXAMPLE - 2

m2 m4 m2 < m4 m2 > m4 Conclusion

(4,1,0) (2,3,0) No No m2 and m4 may conflict

 Provide a vector clock label for unlabeled events

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.74

VECTOR CLOCKS EXAMPLE - 3

 TRUE/FALSE:

 The sending of message m 3 is causally dependent on the
sending of message m 1.

 The sending of message m 2 is causally dependent on the
sending of message m 1.

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.75

VECTOR CLOCKS EXAMPLE - 4

 TRUE/FALSE:

 P1 (1,0,0) and P3 (0,0,1) may be concurrent events.

 P2 (0,1,1) and P3 (0,0,1) may be concurrent events.

 P1 (1,0,0) and P2 (0,1,1) may be concurrent events.

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.76

VECTOR CLOCKS EXAMPLE - 5

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.77

OBJECTIVES – 2/28

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.78

OBJECTIVES – 2/28

73 74

75 76

77 78

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.14

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4.4 - Review / Finish

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

▪ Chapter 6.2: Logical Clocks

Vector Clocks

 Class Activity – Total Ordered Multicasting (Thursday)

▪ Chapter 6.3: Distributed Mutual Exclusion

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.79

OBJECTIVES – 2/28

CH. 6.3: DISTRIBUTED

MUTUAL

EXCLUSION

L16.80

 Coordinating access among distributed processes to a

shared resource requires Distributed Mutual Exclusion

Algorithms in 6.3

 Token-ring algorithm

 Permission-based algorithms:

 Centralized algorithm

 Distributed algorithm (Ricart and Agrawala)

 Decentralized voting algorithm (Lin et al.)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.81

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS

 Mutual exclusion by passing a “token” between nodes

 Nodes often organized in ring

 Only one token, holder has access to shared resource

 Avoids starvation: everyone gets a chance to obtain lock

 Avoids deadlock: easy to avoid

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.82

TOKEN-BASED ALGORITHMS

 Construct overlay network

 Establish logical r ing among nodes

 Single token circulated around the nodes of the network

 Node having token can access shared resource

 If no node accesses resource, token is constantly circulated

around ring

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.83

TOKEN-RING ALGORITHM

1. If token is lost, token must be regenerated

▪ Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

▪What is the difference between token being lost and a

node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

▪ Dead nodes can be detected by adding a receipt message

for when the token passes from node-to-node

▪When no receipt is received, node assumed dead

▪ Dead process can be “jumped” in the ring

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.84

TOKEN-RING CHALLENGES

79 80

81 82

83 84

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.15

Permission-based algorithms

 Processes must require permission from other processes

before first acquiring access to the resource

▪ CONTRAST: Token-ring did not ask nodes for permission

 Centralized algorithm

 Elect a single leader node to coordinate access to shared

resource(s)

 Manage mutual exclusion on a distributed system similar

to how it mutual exclusion is managed for a single system

 Nodes must all interact with leader to obtain “the lock”

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.85

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS - 3

 When resource not available, coordinator can block the

requesting process, or respond with a reject message

 P2 must poll the coordinator if it responds with reject

otherwise can wait if simply blocked

 Requests granted permission fairly using FIFO queue

 Just three messages: (request, grant (OK), release)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.86

CENTRALIZED MUTUAL EXCLUSION

P1 executes P2 blocks P1 finishes; P2 executes

Permission granted from coordinator \/ No response from coordinator

 Issues

 Coordinator is a single point of failure

 Processes can’t distinguish dead coordinator from “blocking”

when resource is unavailable

▪ No difference between CRASH and Block (for a long time)

 Large systems, coordinator becomes performance bottleneck

▪ Scalability: Performance does not scale

 Benefits

 Simplicity:

Easy to implement compared to distributed alternatives

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.87

CENTRALIZED MUTUAL EXCLUSION - 2

 Ricart and Agrawala [1981], use total ordering of all events

▪ Leverages Lamport logical clocks

 Package up resource request message (AKA Lock Request)

 Send to all nodes

 Include:

▪ Name of resource

▪ Process number

▪ Current (logical) time

 Assume messages are sent reliably

▪ No messages are lost

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.88

DISTRIBUTED ALGORITHM

 When each node receives a request message they will:

1. Say OK (i f the node doesn’t need the resource)

2. Make no reply, queue request (node is using the resource)

3. I f node is a lso waiting to access the resource: perform a

timestamp comparison -

1. Send OK if requester has lower logical clock value

2. Make no reply if requester has higher logical clock value

 Nodes sit back and wait for all nodes to grant permission

 Requirement: every node must know the entire membership

list of the distributed system

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.89

DISTRIBUTED ALGORITHM - 2

 Node 0 and Node 2 simultaneously request access to resource

 Node 0’s time stamp is lower (8) than Node 2 (12)

 Node 1 and Node 2 grant Node 0 access

 Node 1 is not interested in the resource, it OKs both requests

 In case of conflict, lowest t imestamp wins!

▪ Node 2 rejects its own request (1@) in favor of node 0 (8)

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.90

DISTRIBUTED ALGORITHM - 3

85 86

87 88

89 90

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.16

 Problem: Algorithm has N points of failure !

 Where N = Number of Nodes in the system

 No Reply Problem: When node is accessing the resource,

it does not respond

▪ Lack of response can be confused with failure

▪ Possible Solution: When node receives request for

resource it is accessing, always send a reply either

granting or denying permission (ACK)

▪ Enables requester to determine when nodes have died

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.91

CHALLENGES WITH

DISTRIBUTED ALGORITHM

 Problem: Multicast communication required –or- each node
must maintain full group membership

▪ Track nodes entering, leaving, crashing…

 Problem: Every process is involved in reaching an agreement
to grant access to a shared resource

▪ This approach may not scale on resource-constrained systems

 Solution: Can relax total agreement requirement and proceed
when a s imple majority of nodes grant permission

▪ Presumably any one node locking the resource prevents agreement

▪ If one node gets majority of acknowledges no other can

▪ Requires every node to know size of system (# of nodes)

 Distributed algorithm for mutual exclusion works best for:

▪ Small groups of processes

▪ When memberships rarely change

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.92

CHALLENGES WITH

DISTRIBUTED ALGORITHM - 2

 Lin et al. [2004], decentralized voting algorithm

 Resource is replicated N times

 Each replica has its own coordinator …(N coordinators)

 Accessing resource requires majority vote:

total votes (m) > N/2 coordinators

 Assumption #1: When coordinator does not give

permission to access a resource (because it is busy) it will

inform the requester

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.93

DECENTRALIZED ALGORITHM

 Assumption #2: When a coordinator crashes, it recovers

quickly, but will have forgotten votes before the crash.

 Approach assumes coordinators reset arbitrarily at any time

 Risk: on crash, coordinator forgets it previously granted

permission to the shared resource, and on recovery it errantly

grants permission again

 The Hope: if coordinator crashes, upon recovery , the node

granted access to the resource has already f inished before the

restored coordinator grants access again . . .

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.94

DECENTRALIZED ALGORITHM - 2

 With 99.167% coordinator availability (30 sec downtime/hour)

chance of violating correctness is so low it can be neglected in

comparison to other types of failure

 Leverages fact that a new node must obtain a majority vote to

access resource, which requires t ime

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.95

DECENTRALIZED ALGORITHM - 3

N = number of resource replicas, m = required “majority” vote
p=seconds per hour coordinator is offline

 Back-off Polling Approach for permission-denied:

 If permission to access a resource is denied via majority vote,

process can poll to gain access again with a random delay

(known as back-off)

 Node waits for a random amount, retries…

 If too many nodes compete to gain access to a resource,

majority vote can lead to low resource utilization

▪ No one can achieve majority vote to obtain access to the

shared resource

▪ Mimics elections where with too many candidates, where no

one candidate can get >50% of the total vote

 Problem Solution detailed in [Lin et al. 2014]

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.96

DECENTRALIZED ALGORITHM - 4

91 92

93 94

95 96

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 28, 2023

Slides by Wes J. Lloyd L16.17

 Which algorithm offers the best scalability to support

distributed mutual exclusion in a large distributed

system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.97

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW

 Which algorithm(s) involve blocking when a resource is

not available?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.98

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 2

 Which algorithm(s) involve arriving at a consensus to

determine whether a node should be granted access to a

resource?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.99

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 3

 Which algorithm(s) have N points of failure,

where N = Number of Nodes in the system?

 (A) Token-ring algorithm

 (B) Centralized algorithm

 (C) Distributed algorithm

 (D) Decentralized voting algorithm

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.100

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 4

QUESTIONS

February 28, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.10
1

97 98

99 100

101

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 2/28
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Tenure track faculty candidate research seminars – EXTRA CREDIT
	Slide 7: Feedback from 2/23
	Slide 8: Feedback - 2
	Slide 9: Feedback - 3
	Slide 10: OBJECTIVES – 2/28
	Slide 11: Short-hand-codes for Membership Tracking Approaches
	Slide 12: Assignment 2
	Slide 13: OBJECTIVES – 2/28
	Slide 14: Review
	Slide 15: Random graphs
	Slide 16: Probabilistic flooding
	Slide 17: Probabilistic flooding
	Slide 18: Probabilistic flooding
	Slide 19: Probabilistic flooding
	Slide 20: Probabilistic flooding
	Slide 21: Probabilistic flooding
	Slide 22: Probabilistic flooding
	Slide 23: Probabilistic flooding
	Slide 24: Message flooding w/ hypercube
	Slide 25: Rumor spreading
	Slide 26: Rumor spreading - 2
	Slide 27: Removing data
	Slide 28: Death certificate example
	Slide 29: OBJECTIVES – 2/28
	Slide 30: Chapter 6 - Coordination
	Slide 31: Ch. 6.1: clock synchronization
	Slide 32: Clock synchronization
	Slide 33: Time synchronization problem for distributed systems
	Slide 34: Physical clocks
	Slide 35: Computer clocks
	Slide 36: Universal coordinated time
	Slide 37: Computing: clock challenges
	Slide 38: Clock synchronization
	Slide 39: Clock synchronization - 2
	Slide 40: Network time protocol
	Slide 41: NTP - 2
	Slide 42: Ntp - 3
	Slide 43: Berkeley algorithm
	Slide 44: Clock synchronization in wireless networks
	Slide 45: Reference broadcast synchronization (RBS)
	Slide 46: Reference broadcast synchronization (RBS) - 2
	Slide 47: We will return at 3:01 pm
	Slide 48: OBJECTIVES – 2/28
	Slide 49: Chapter 6 - Coordination
	Slide 50: Ch. 6.2: logical clocks
	Slide 51: Logical clocks
	Slide 52: Logical clocks - 2
	Slide 53: Logical clocks – 3
	Slide 54: Logical clocks - 4
	Slide 55: Logical clocks
	Slide 56: Lamport logical clocks - implementation
	Slide 57: Total-ordered multicasting
	Slide 58: Total-ordered multicasting example
	Slide 59: Total-ordered multicasting example
	Slide 60: Total-ordered multicasting example
	Slide 61: Total-ordered multicasting example
	Slide 62: Total-ordered multicasting - 2
	Slide 63: Total-ordered multicasting - 3
	Slide 64: OBJECTIVES – 2/28
	Slide 65: Vector clocks
	Slide 66: What is causality?
	Slide 67: Causality - 2
	Slide 68: causality - 3
	Slide 69: Vector clocks
	Slide 70: Vector clocks - 2
	Slide 71: Vector clocks - 3
	Slide 72: Vector clocks example
	Slide 73: Vector clocks example - 2
	Slide 74: Vector clocks example - 3
	Slide 75: Vector clocks example - 4
	Slide 76: Vector clocks example - 5
	Slide 77: OBJECTIVES – 2/28
	Slide 78: OBJECTIVES – 2/28
	Slide 79: OBJECTIVES – 2/28
	Slide 80: Ch. 6.3: distributed mutual exclusion
	Slide 81: Distributed mutual exclusion algorithms
	Slide 82: token-based algorithms
	Slide 83: Token-ring algorithm
	Slide 84: Token-ring challenges
	Slide 85: Distributed mutual exclusion algorithms - 3
	Slide 86: Centralized mutual exclusion
	Slide 87: Centralized mutual exclusion - 2
	Slide 88: Distributed algorithm
	Slide 89: Distributed algorithm - 2
	Slide 90: Distributed algorithm - 3
	Slide 91: Challenges with Distributed algorithm
	Slide 92: Challenges with Distributed algorithm - 2
	Slide 93: Decentralized algorithm
	Slide 94: Decentralized algorithm - 2
	Slide 95: Decentralized algorithm - 3
	Slide 96: Decentralized algorithm - 4
	Slide 97: Distributed mutual exclusion algorithms review
	Slide 98: Distributed mutual exclusion algorithms review - 2
	Slide 99: Distributed mutual exclusion algorithms review - 3
	Slide 100: Distributed mutual exclusion algorithms review - 4
	Slide 101: Questions

