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UW-Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING OBJECTIVES - 2/28
| |

| = Questlons from 2/23 |

= Assignment 2: Replicated Key Value Store
= Chapter 4.4 - Review / Finish

Chapter 6 - Coordination - Il JC = Chapter 6: Coordination
R ) = Chapter 6.1: Clock Synchronization
Wes J. Lloyd / = Chapter 6.2: Logical Clocks
School of Engineering - Vector Clocks
& Technology (SET) = Class Activity - Total Ordered Multicasting (Thursday)
University of Washington - Tacoma = Chapter 6.3: Distributed Mutual Exclusion
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TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan &6 at 10pm Points 1 Questions 4
ONLINE DAILY FEEDBACK SURVEY Avalable Jan 5 at 1:30pm - Jan 63t 11:59pm 1ey  Tieme Lt None
Question 1 0.5 pts
= Daily Feedback Quiz in Canvas - Available After Each Class Ona scale of 1 o 10, please classify your perspective on material covered in taday's
= Extra credit available for completing surveys ON TIME class
= Tuesday surveys: due by ~ Wed @ 10p 1 2 3 4 & & 7 @ ’ e
= Thursday surveys: due ~ Mon @ 10p Rories To e e o Revien - e

== TCSS558A » Assignments

Home

Question 2 a5 pis

* Upcoming Assignments Please rate the pace of today's class:

% TCSS 538 - Oniine Daily Feedback Survey - 1/5 t oz 3 4 s 8 7T 8 8 30
- ot avalsbie unf Jon 55t :30pm. | Gue Jan 6 at 10pm | /17 o e e
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MATERIAL / PACE TENURE TRACK FACULTY CANDIDATE

RESEARCH SEMINARS - EXTRA CREDIT

= Please classify your perspective on material covered in today’s = Wednesday March 1 - 12:30pm - Cherry Parkes room 106
class (31 respondents): = Dr. Jiaxuan You CS PhD Stanford University

= 1-mostly review, 5-equal new/review, 10-mostly new Talk title: Learning from the Interconnected World with Graphs
= Average - 8.57 (T - previous 6.42) = Friday March 3 - 12:30pm - Cherry Parkes room 106

= Dr. Dongfang Zhao CS PhD lllinois Institute of Technology
= Please rate the pace of today’s class: Talk title: High-Performance Data-Intensive Computing Systems

. ,

= 1-slow, 5-just right, 10-fast = Earn up to 2.5% extra cr.edlt added to the overall course grade
= Average - 5.94 (1 - previous 5.81) pocerediontofisitoralinoints

= First seminar - earn 2 points
= 2nd 3rd 4th seminar - earn 1 point each

Add to final course grade:
(Total_seminar_points / 5 points) * 2.5%

TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ G School of Engineering and Technology, University of Washington -Tacoma ues GG use
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TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

FEEDBACK FROM 2/23

= Where are the m 1 In r-to-peer ms?

= “‘Peer-to-peer” refers to a network topology,
which is how nodes are connected [ / l

= A message queue is a component of a
component-based or n-tier application

= A message queue is an architectural component that facilitates
implementation of distributed applications

= Where could a message queue be located for a distributed system
that exists across a group of nodes with a peer-to-peer network
topology ?
= Is the message queue replicated?
= If numbering nodes from left-to-right, which is most accessible?

February 28, 2023 TCSS558: Applied Distributed Computing [Winter 2023] 67

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 3

= About message floodIng on page 59 of slides. What's the
meaning of a higher dimension? Why Just choose node
1101...?

= If the message arrives at node 1101 on an edge labeled as
level 2

= We then label all outbound edges from 11041, and only forward
the message along edges that are a higher order than that of
the edge that received the message

= This way we can minimize the number of messages for
broadcast of the n-dimensional hypercube

= We will go over this again...

TCSS558: Applied Distributed Computing [Winter 2023]
February 28, 2023 School of Engineering and Technology, University of Washington - Tacoma ues

SHORT-HAND-CODES FOR MEMBERSHIP

TRACKING APPROACHES

= Include readme.txt or doc file with instructions in submission
= Must document membership tracking method

>> please Indicate which types to test <<

ID Description

F Static file membership tracking - file is not reread

FD Static file membership tracking DYNAMIC - file is
periodically reread to refresh membership list

T TCP membership tracking - servers are configured to
refer to central membership server

u UDP membership tracking - automatically discovers
nodes with no configuration

TCSS558: Applied Distributed Computing [Winter 2023]
G School of Engineering and Technology, University of Washington -Tacoma uen
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FEEDBACK - 2

= Is rumor spreading a subset of gossiping spreading, Just with
the addition of the stopping mechanism?

= YES
= Does rumor spreading also apply the push/pull/push-pull
model?

= Yes, it could

= Push/pull/push-pull refers to how data is spread in the system
between nodes

TCss558: Applied Distributed Computing [Winter 2023]
‘ Esbaialyas /202 School of Engineering and Technology, University of Washington - Tacoma s

OBJECTIVES - 2/28

= Questions from 2/23

| = Assignment 2: Replicated Key Value Store |

= Chapter 4.4 - Review / Finish

= Chapter 6: Coordination
= Chapter 6.1: Clock Synchronization
= Chapter 6.2: Logical Clocks

Vector Clocks

= Class Activity - Total Ordered Multicasting (Thursday)

= Chapter 6.3: Distributed Mutual Exclusion

TCSS558: Applied Distributed Computing [Winter 2023]
‘ February28, 2023 School of Engineering and Technology, University of Washington - Tacoma U610

10

ASSIGNMENT 2

= Sunday March 12t
= Goal: Replicated Key Value Store

= Team signup posted on Canvas under ‘People’
= Build off of Assignment 1 GenericNode

= Focus on TCP client/server w/ replication

= How to track membership for data replication?

= Can implement multiple types of membership tracking
for extra credit

TCSS558: Applied Distributed Computing [Winter 2023]
‘ CEAREREHEED School of Engineering and Technology, University of Washington -Tacoma uen
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TCSS 558: Applied Distributed Computing February 28, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 2/28

REVIEW
" Questions from 2/23 = Consider sending a message from node B to D:
= Assignment 2: Replicated Key Value Store = What is the Link Stress at physical node Re ?

| = Chapter 4.4 - Review / Finish |
= Chapter 6: Coordination
= Chapter 6.1: Clock Synchronization
= Chapter 6.2: Logical Clocks Endost
Vector Clocks
= Class Activity - Total Ordered Multicasting (Thursday)
= Chapter 6.3: Distributed Mutual Exclusion

= What is the delay from B to D via the underlying network ?
= What is the delay from B to D via the overlay network ?
= What is the stretch from B to D ?

Numbers represent
network delay
between nodes ( B

Intemet __/
Ao A

TCSS558: Applied Distributed Computing [Winter 2023]
‘ Esbanry282023) School of Engineering and Technology, University of Washington - Tacoma e
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RANDOM GRAPHS PROBABILISTIC FLOODING

= Used when no information on the structure of the overlay network

= When a node is flooding a message m:
= Assume network can be represented as a Random graph

(Priooa) IS the probability that the message is spread to a
= Random graphs are described by a probability distribution: specific neighbor =(p¢q0q)
1. Given a probability Py, that two nodes are joined = Throttle message flooding based on a probability
i is: 15 * * N * (N- ) X .
2 SR 61 @ TEnelom OUREr MERToNs (5 2 3DUPE"€E I (D) eaEes = Implementation needs to considers # of neighbors to
Random graphs allow us to assume g 0 F_igurefestim:tes achieve various pg,,4 SCOTES
=] size of a random
some structure (# of nodes, #of edges) = | ol ook s = With lower py,,y messages may not reach all nodes
regarding the network by scaling the - innodes & edges 2
P, probability % 150 [ based on P, - AR A
- L O B =04 = Efficiency of ili : For random
= .
Assumptions may help then to 3 P /,,m:n{ network with 10,000 nodes
reason or rationalize about the E — i = =
o 5, - Wltf.l Pedge = 0.1 and p,,m.,,j ..01 '
100 500 1000 = Achieves 50-fold reduction in messages vs. full flooding
humber of nodes
TCSS558: Applied Distributed C ing [Wir 2023) TCSS558: Applied Distributed Cor ing [Wir 2023]
[ reomanan s [T el i s Wt 208 - s [ rmanvan o [T diednitioaed s W 08 s e
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PROBABILISTIC FL PROBABILISTIC FLOODING

= When a node is flooding a message m: /¥ashington state in winter:
(Psiooq) i the probability that the message is spread to a
specific neighbor =(Pgo0q)

= When a node is flooding a message m:

(Pfiooq) IS the probability that the message is spread to a
specific neighbor =(pg .

Sy 10,000 nodes have with peye.=0.1?
achie
= With | L Edges = %6 * Py, * N * (N-1)
= Efficlency of probabllistic broadcasting: For random = Efficid
network with 10,000 nodes
= With pegee = 0.1 and pgo,q =.01

= With pege = 0.1 and pgooq =.01
= Achieves 50-fold reduction in messages vs. full flooding

= Achieves 50-fold reduction in messages vs. full flooding

School of Engineering and Technology, University of Washington - Tacoma
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TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

PROBABILISTIC FLOODING

=
Washington state in winter?

= When a node is flooding a message m:
(Pfi00q) IS the probability that the message is spread to a

How many edges does network with
10,000 nodes have with p,4.=0.1?

| Edges = % * Py, * N * (N-1)
1 * (.1) * (10000) * (9999)

= With pegee = 0.1 and pgo,q =.01
= Achieves 50-fold reduction in messages vs. full flooding

TCSS558: Applied Distributed Computing Winter 2023]
l Esbanry282023) School of Engineering and Technology, University of Washington - Tacoma L9
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PROBABILISTIC FLOODING

=
Washington state in winter?

= When a node is flooding a message m:

(Pfi00q) IS the probability that the message is spread to a
How many edges does network with
10,000 nodes have with p.g,,=0.1?

WO Edges = 15 * Pegge * N * (N-1)
. Y * (.1) * (10000) * (9999)
= Effic 4,999,500 edges

= With pegge = 0.1 and pgoeq =01
= Achieves 50-fold reduction in messages vs. full flooding

TCss558: Applied Distributed Computing [Winter 2023]
l Esbaialyas /202 [ School of Engineering and Technology, University of Washington - Tacoma 120
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PROBABILISTIC FLOODING

. . lashington state in winter
= When a node is flooding a message m:

(Pfi00q) IS the probability that the message is spread to a
specific neighbor =(p; ..
LRITY What does it mean to have py, 4 =.01?
= Implg
LWL With lower p,,,, messages may not reach all nodes
oo
with If there are 10,000 nodes and ~5 million edges, how
LN 3iily many messages is full flooding?
> every node sends to all neighbors across all edges
= With pegee = 0.1 and pgo,q =.01
= Achieves 50-fold reduction in messages vs. full flooding

TCSS558: Applied Distributed Computing (Winter 2023]
l o School of Engineering and Technology, University of Washington - Tacoma s
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PROBABILISTIC FLOODING

Washington state in winter’

= When a node is flooding a message m:
(Pfi00q) IS the probability that the message is spread to a
specific neighbor =(p, .

What does it mean to have Prigog =-01?

node Q has n neighbors

Probability that all neighbors don’t forward message
t0 Q is P=(1-Pfis00)"

network with 10,000 nodes
= With pegee = 0.1 and pgo,q =.01

= Achieves 50-fold reduction in messages vs. full flooding

TCss558: Applied Distributed Computing [Winter 2023]
l February28)2023 School of Engineering and Technology, University of Washington - Tacoma 122
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PROBABILISTIC FLOODING

What does it mean to have pg,,q =.01?

node Q has n neighbors
Probability that no neighbors of Q forward the message to Q:

P=(1-Pf00a)" < probability of Q not getting the message

10 nodes: if n=10, p=(1-.01)2°=.904 (small network, few edges, likely Q doesn’t get msg))
100 node: =100, p=(1-.01)1%°=.366 (jess likely Q doesn’t get msg)
298 nodes: if =298, p=(1-.01)2%8=.05 (q probably get msg)

TCsS558: Applied Distributed Computing [Winter 2023]
l T EED School of Engineering and Technology, University of Washington - Tacoma e
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MESSAGE FLOODING W/ HYPERCUBE

= Hypercube: for broadcast send minimum # of messages

Only forward msg along edges with higher dimenslon
= Node(1101)-neighbors {0101,1100,1004,1111}
= Node (1101) - receives msg on incoming broadcast edge = 2
= Broadcast from 1101 - Label Edges:
= Edge to 0101 - labeled 1 - change the 15t bit
= Edge to 1100 - labeled 4 - change the 4" bit *<FORWARD>*
Edge to 1001 - labeled 2 - change the 2" bit
Edge to 1111 - labeled 3 - change the 3" bit *<FORWARD>*
N(1101) broadcast - forward only to N(1100) and N(1111)
(1100) and (1111) are the higher dimenslon edges

= Broadcast requires just: N-1 messages, where nodes N=2",
n=dimensions of hypercube

TCs5558: Applied Distributed Computing [Winter 2023]
l GRS D School of Engineering and Technology, University of Washington -Tacoma sz
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TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,

UW-Tacoma

RUMOR SPREADING

= Variant of epidemic protocols
= Provides an approach to “stop” message spreading
= Mimics “gossiping” in real life

= Rumor spreading:
" Node P receives new data Iltem X
= Contacts an arbitrary node Q to push update

node

probability = p,,, let’s say 20% ... (or 0.20)

= Node Q reports already receiving Item X from another

= Node P may loose interest in spreading the rumor with

TCSS558: Applied Distributed Computing [Winter 2023]

‘ ERbeuary28,2022 School of Engineering and Technology, University of Washington - Tacoma

us2s

February 28, 2023

RUMOR SPREADING - 2

Pstops 1S the probability node will stop spreading once contacting a
node that already has the message

Rumor spreading does not guarantee all nodes will be updated

Fraction of nodes s, that remain susceptible grows relative to
the probability that node P

. Lo .20
stops propagating when finding 020
a node already having the .15
message )
i 10—
= Fraction of nodes not updated 5 0.10
remains < 0.20 with high pg,, .08l P
= Susceptible nodes (s) vs. 7
robability of stoppin > 000 —— . .
P y pping 00 02 04 06 08 10
TCSS558: Applied Distributed Computing [Winter 2023] |
‘ Esbaialyas /202 School of Engineering and Technalagy: Univelrs\ty of Washington - Tacoma 126
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REMOVING DATA

= Gossiping is good for spreading data
= But how can data be removed from the system?

= |dea is to issue “death certificates”

= Act like data records, which are spread like data
= When death certificate is received, data is deleted

= Certificate is held to prevent data element from
reinitializing from gossip from other nodes

for data element to clear out of entire system
= A few nodes maintain death certificates forever

= Death certificates time-out after expected time required

TCSS558: Applied Distributed Computing [Winter 2023]

‘ February 28, 2023 School of Engineering and Technology, University of Washington - Tacoma

us27
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DEATH CERTIFICATE EXAMPLE

= For example:

= Node P keeps death certificates forever

= |tem X is removed from the system

Node P receives an update request for Item X, but also holds
the death certificate for Item X

Node P will recirculate the death certificate across the
network for Item X

TCSS558: Applied Distributed Computing [Winter 2023]
‘ February28, 2023 School of Engineering and Technology, University of Washington - Tacoma Ls28
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OBJECTIVES - 2/28

= Questions from 2/23

= Assignment 2: Replicated Key Value Store
= Chapter 4.4 - Review / Finish
= Chapter 6: Coordination
| =Chapter 6.1: Clock Synchronization |

= Chapter 6.2: Logical Clocks
Vector Clocks

= Chapter 6.3: Distributed Mutual Exclusion

= Class Activity - Total Ordered Multicasting (Thursday)

TCs5558: Applied Distributed Computing [Winter 2023]

G School of Engineering and Technology, University of Washington - Tacoma

U629
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CHAPTER 6 - COORDINATION

= 6.1 Clock Synchronization
= Physical clocks

= Clock synchronization algorithms
= 6.2 Logical clocks

= Lamport clocks

= Vector clocks

® 6.3 Mutual exclusion

= 6.4 Election algorithms

= 6.6 Distributed event matching (light)
= 6.7 Gossip-based coordination (light)

TCSS558: Applied Distributed Computing [Winter 2023]
‘ CEAREREHEED School of Engineering and Technology, University of Washington -Tacoma 1630
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TCSS 558: Applied Distributed Computing February 28, 2023
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

CLOCK SYNCHRONIZATION

= Example:

= “make” is used to compile source files into binary object and
executable files

= As an optimization, make only compiles files when the “last

CH. 6-1 CLOCK g(:ii::ﬁlteir;e" of source files is more recent than object and
SYNCHRONIZATION

= Consider if files are on a shared disk of a distributed system
where there is no agreement on time

= Consider if the program has 1,000 source files

School of Engineering and Technology, University of Washington - Tacoma

‘ moey 281202 TCss558: Applied Distributed Computing [Winter 2023] .
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TIME SYNCHRONIZATION PROBLEM % PHYSICAL CLOCKS

FOR DISTRIBUTED SYSTEMS

ﬁ.’?ﬁi‘.ﬂzﬂe, z‘v“ 21.45 21.45 o< E’mmﬂm = Computer timers: precisely machined
s ™ output o created quartz crystals
N = When under tension, they oscillate at
o edor e e o o E’?f:i."é&ﬁ!“g a well defined frequency
" ™ cptoorseind = In analog electronics/communications

crystals once used to set the frequency
of two-way radio transceivers for

= Today, crystals are associated with
a counter and holding register on a digital computer.

1960s ERA radio crystal >
= Each oscillation decrements a counter by one
= When counter gets to zero, an interrupt fires
= Can program timer to generate interrupt, let's say 60

times a second, or another frequency to track time ! !

TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ (o 2D School of Engineering and Technology, University of Washington - Tacoma e G ST School of Engineering and Technology, University of Washington - Tacoma e

= Updates from different machines, may have clocks set to
different times

= Make becomes confused with which files to recompile

33 34

COMPUTER CLOCKS UNIVERSAL COORDINATED TIME

= Universal Coordinated Time (UTC)

= Digital clock on computer sets base time

= Crystal clock tracks forward progress of time = Worldwide standard for time keeping
= Translation of wave “ticks” to clock pulses = Equivalent to Greenwich Mean Time (United Kingdom)
= CMOS battery on motherboard maintains clock on power loss = 40 shortwave radio stations around the world broadcast a
short pulse at the start of each second (WWV)
= Clock skew: physical clock crystals are not exactly the same = World wide “atomic” clocks powered by constant
= Some run at slightly different rates transitions of the non-radioactive caesium-133 atom

= Time differences accumulate as clocks
drift forward or backward slightly

9,162,631,770 transitions per second

= Computers track time using UTC as a base
= Avoid thinking in local time, which can lead to
coordination issues
= Operating systems may translate to show local time

‘ February 28, 2023 TCSS558: Applied Distributed Computing [Winter 2023] L1636

= |[n an automobile, where there is no
clock synchronization, clock skew may
become noticeable over months, years

TCsS558: Applied Distributed Computing [Winter 202:

3]
‘ T EED School of Engineering and Technology, University of Washington - Tacoma -

35 36
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TCSS 558: Applied Distributed Computing

[Winter 2023] School of Engineering and Technology,

UW-Tacoma

real-world clocks?

each other?

COMPUTING: CLOCK CHALLENGES

= How do we synchronize computer clocks with

= How do we synchronize computer clocks with

TCSS558: Applied Distributed Computing [Winter 2023]

‘ ERbeuary28,2022 School of Engineering and Technology, University of Washington - Tacoma

37
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CLOCK SYNCHRONIZATION -

= p - clock drift rate, T - clock precision (max 50ns)

P

= If two clocks drift from UTC in opposite directions,
after time At after synchronization, they may be 2p apart.

= Clocks must be resynchronized every ©/2p seconds

= Network time protocol
= Provide coordination of
time for servers

Clock time, C

= Leverage distributed network
of time servers

ESt0)

a7 oac

uTe, t

TCS5558: Applied Distributed Computing [Winter 2023]

‘ February 28, 2023 School of Engineering and Technology, University of Washington - Tacoma
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NTP - 2

receiver clocks / time servers

B T, T,
Time server B -
/
/
0/
Client A '
b —
oT,,

1. A sends message to B, with timestamp T1

2. Brecords time of receipt T2 (from local clock)
3

4

A records arrival of T4
= Assuming propagation delay of A>B—>A is the same

=T,

= Must estimate network delays when synchronizing with remote UTC

B returns response with send time T3, and receipt time T2

= Estimate propagation delay: LR (T Ty
2

] =
= Add delay to time

(h-T)+ (T3 - Ty)
z

TCs5558: Applied Distributed Computing [Winter 2023]

G School of Engineering and Technology, University of Washington - Tacoma
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February 28, 2023

CLOCK SYNCHRONIZATION

= UTC services: use radio and satellite signals to provide time
accuracy to 50ns

= Time servers: Server computers with UTC receivers that
provide accurate time

= Preclslon (x): how close together a set of clocks may be

= Accuracy: how correct to actual time clocks may be

Internal synchronlzatlon: Sync local computer clocks

External synchronization: Sync to UTC clocks

Clock drlift: clocks on different machines gradually become

out of sync due to crystal imperfections, temperature
differences, etc.

Clock drift rate: typical is 31.5s per year
= Maximum clock drlft rate (p): clock specifications include one

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma 138

‘ February 28, 2023
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NETWORK TIME PROTOCOL

and are sync’d
with atomic clocks

99999

R Stratum 0
= Servers organized Atomic
into stratums clocks
= Stratum-1 servers o crm JE
have UTC receivers Stratum 1

‘.@‘F4

Servers connect
with closest NTP
server for time

synchronization

Nlmtmclo\

g—0g o)

Servers assume
role as NTP server
at stratum+1

Stratum 3

TCSS558: Applied Distributed Computing [Winter 2023]

School of Engineering and Technology, University of Washington - Tacoma Lo

‘ February 28, 2023 ‘
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NTP - 3

Cannot set clocks backwards (recall “make” file example)
Instead, temporarily slow the progress of time to allow fast
clock to align with actual time

Change rate of clock interrupt routine

Slow progress of time until synchronized

NTP accuracy is within 1-50ms

In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst
server bigben.cac.washington.edu iburst

= Shutdown service (sudo service ntp stop)
®= Run ntpdate: (sudo ntpdate time.u.washington.edu)
= Startup service (sudo service ntp start)

TCSS558: Applied Distributed Computing [Winter 2023]

‘ CEAREREHEED School of Engineering and Technology, University of Washington -Tacoma

a2

42

L16.7
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February 28, 2023

BERKELEY ALGORITHM

= Berkeley time daemon server actively polls network to
determine average time across servers

= Suitable when no machine has a UTC receiver

= Time daemon instructs servers how much to adjust clocks
to achieve precision

= Accuracy can not be guaranteed

= Berkeley is an internal clock synchronization algorithm

‘ February 28, 2023

TCS5558: Applied Distributed Computing [Winter 2023 L6as
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REFERENCE BROADCAST
SYNCHRONIZATION (RBS)

= Node broadcasts reference message k
= Each node p records time Tp,k when k is received
= Tp,k is read from node p’s clock

= Two nodes p and q can exchange delivery times to estimate
mutual relative offset

= Then calculate relative average offset for the network:

M
Offset[p, q] = ):k:'l(Tx Tq,#:)

= Where M is the total number of reference messages sent

= Nodes can simply store offsets instead of frequently
synchronizing clocks to save energy

‘ February 28, 2023

TCSS558: Applied Distributed Computing [Winter 2023] weas
School of Engineering and Technology, University of Washington - Tacoma
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WE WILL RETURN AT

3:01 PM

47
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CLOCK SYNCHRONIZATION N
IN WIRELESS NETWORKS .

= Sensor networks bring unique challenges for clock synchronization
= Address resource constralnts: limited power, multihop routing slow

* Reference broadcast synchronlzation (RBS)
= Provides time precision, not accuracy as in Berkeley
No UTC clock available

RBS sender broadcasts a reference message to allow receivers to
adjust clocks

No multi-hop routing
Time to propagate a signal to nodes is roughly constant

= Message propagation time does not consider time spent waiting in
NIC for message to send

= Wireless network resource contention may force wait before message
even can be sent

TCsS558: Applied Distributed Computing [Winter 2023] Leas
School of Engineering and Technology, University of Washington - Tacoma

‘ February 28, 2023
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REFERENCE BROADCA

SYNCHRONIZATION (RBS) - 2

= Cloud skew: over time clocks drift apart
= Averages become less precise

= Elson et al. propose using standard linear regression to
predict offsets, rather than calculating them

= |DEA: Use node’s history of message times in a simple linear
regression to continuously refine a formula with coefficients
to predict time offsets:

Offset[p,q](f) = at + B

TCSS558: Applied Distributed Computing [Winter 2023]
‘ February28)2023 School of Engineering and Technology, University of Washington - Tacoma 11646
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OBJECTIVES - 2/28

= Questions from 2/23
= Assignment 2: Replicated Key Value Store
= Chapter 4.4 - Review / Finish
= Chapter 6: Coordination
= Chapter 6.1: Clock Synchronization

| = Chapter ogical Clocks |
Vector Clocks
= Class Activity - Total Ordered Multicasting (Thursday)
= Chapter 6.3: Distributed Mutual Exclusion

TCSS558: Applied Distributed Computing [Winter 2023]
‘ GG School of Engineering and Technology, University of Washington - Tacoma v
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February 28, 2023

CHAPTER 6 - COORDINATION

= 6.1 Clock Synchronization

= Physical clocks

= Clock synchronization algorithms
= 6.2 Logical clocks

= Lamport clocks

= Vector clocks

= 6.3 Mutual exclusion

= 6.4 Election algorithms

= 6.6 Distributed event matching (light)
= 6.7 Gossip-based coordination (light)

TCSS558: Applied Distributed Computing [Winter 2023]
‘ Esbanry282023) School of Engineering and Technology, University of Washington - Tacoma Ledo

CH. 6.2: LOGICAL

CLOCKS

49

50

LOGICAL CLOCKS

= |n distributed systems, synchronizing to actual time may not be
required...

= It may be sufficient for every node to simply agree on a current
time (e.g. logical)

= Logical clocks provide a mechanism for capturing chronological
and causal relationships in a distributed system

= Think counters. ..

= Leslie Lamport [1978] seminal paper showed that absolute clock
synchronization often is not required

= Processes simply need to agree on the order in which events occur

inter 2023]
rsity of Washington - Tacoma Lest

TCSs558; Applied Distributed Computing
School of Engineering and Technology, U

‘ February 28, 2023

LOGICAL CLOCKS - 2

= Happens-before relation

= A->B: Event A, happens before event B...

= All processes must agree that event A occurs first
= Then afterward, event B

= Actual time not important. . .

= |f event A is the event of proc P1 sending a msg to a proc P2,
and event B is the event of proc P2 receiving the msg, then
A->B is also true. . .

= The assumption here is that message delivery takes time
= Happens before is a transitive relatlon:
= A>B, B>C, therefore A>C

TCSS558: Applied Distributed Computing [Winter 2023]
February28)2023 School of Engineering and Technology, University of Washington - Tacoma Les2
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LOGICAL CLOCKS - 3

= |f two events, say event X and event Y do not exchange
messages, not even via third parties, then the sequence of
XY vs. Y>X can not be determined!!

= Within the system, these events appear concurrent

= Concurrent: nothing can be said about when the events
happened, or which event occurred first

= Clock time, C, must always go forward (increasing), never
backward (decreasing)

= Corrections to time can be made by adding a positive value,
but never by subtracting one

TCSS558: Applied Distributed Computing [Winter 2023]
‘ T EED School of Engineering and Technology, University of Washington - Tacoma vess

LOGICAL CLOCKS - 4

= Three processes each with local clocks

= Lamport’s algorithm corrects process clock values

= Always propagate the most recent known value of logical time

TCSS558: Applied Distributed Computing [Winter 2023]
GG School of Engineering and Technology, University of Washington -Tacoma ues
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LOGICAL CLOCKS

= Events:

6: P1send m1 to P2
16: P2 receives m1
24: P2 sends m2 to P3
40: P3 receives m2
60: P3 sends m3 to P2
56: P2 receives m3
56: P2 clock reset=61
69: P2 sends m4 to P1
54: P1 receives m4
70: P1 clock reset=70

.

BEEEREEEERE

Bl
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LAMPORT LOGICAL CLOCKS -
IMPLEMENTATION

= Negative values not possible

= When a message is received, and the local clock is before the
timestamp when then message was sent, the local clock is
updated to message_sent_time + 1

1. Clock is incremented before an event: (sending-a-message,
receiving-a-message, some-other-internal-event)
Piincrements Ci: Ci € Ci+ 1

2. When Pi send msg m to Pj, m’s timestamp is set to Ci
3. When Pj receives msg m, Pj adjusts its local clock
Cj € max{Cj, timestamp(m)}

4. Ties broken by considering Proc ID: i<j; <40,i> < <40,j>
Both Lamport clocks are = 40
The winner has a higher alphanumeric Process ID
J (winner) is greater than i, alphabetically

TCsS558: Applied Distributed Computing [Winter 2023] L1656
School of Engineering and Technology, University of Washington - Tacoma

‘ February 28, 2023
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TOTAL-ORDERED MULTICASTING

= Consider concurrent updates to a replicated database

\

i Update 1 Update 2 i
e
¥

Update 1 is Replicated database Update 2is
performed before performed before
update 2 update 1

= Initial Account balance: $1,000

= Update #1: Deposit $100

= Update #2: Add 1% Interest

= Total Ordered Multicasting needed

= Communication latency between DB1 and DB2 is 250ms

TCS5558: Applied Distributed Computing [Winter 2023]

‘ February28/2023 School of Engineering and Technology, University of Washington - Tacoma
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TOTAL-ORDERED MULTICASTING

EXAMPLE

= Two messages (m,, m,) must be distributed,
to two processes (p4, Py)
= We assume messages have correct lamport clock timestamps
= m,(10, p,, add $100)
" m,(12, p,, add 1% interest)

= Each process maintains a queue of messages

= Arriving messages are placed into queues ordered by the
Lamport clock timestamp

= |[n each queue, each message must be acknowledged by every

process in the system before operations can be applied to the
local database

TC5S558: Applied Distributed Computing [Winter 2023] Less
School of Engineering and Technology, University of Washington - Tacoma

‘ February 28, 2023
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TOTAL-ORDERED MULTICASTING

EXAMPLE

= Two messages (m,, m,) must be distributed,
to two processes (p4, Py)

= m,(10, p,, add $100)

Key point:

Lamport clock timestamp

local database

= We assume messages have correct lamport clock timestamps

Multicast messages are also received by the sender (itself)

= |[n each queue, each message must be acknowledged by every
process in the system before operations can be applied to the

TCs5558: Applied Distributed Computing [Winter 2023]

‘ G School of Engineering and Technology, University of Washington -Tacoma
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TOTAL-ORDERED MULTICASTING EXAMPLE
) ‘ TOTAL-ORDERED MULTICASTING - 2

= Each message timestamped with local logical clock of sender
= Multicast messages are also recelved by the sender (itself)
e = Assumptions:
xd (v & ; = Messages from same sender received in order they were sent
i ; = No messages are lost
= When messages arrive they are placed in local queue ordered
by timestamp
2 Aci AL = Receiver multicasts acknowledgement of message receipt to
3 other processes
= Time stamp of message receipt is lower the acknowledgement

= This process replicates queues across sites

= Messages delivered to application (database) only when
message at the head of the queue has been acknowledged by
every process in the system
TCSS558: Applied Distributed Computing [Winter 2023]

What is the final account balance? " February 28,2023 | schao o Engineering and Technolagy, Univerity of Washington - Tocoma
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TOTAL-ORDERED MULTICASTING - 3

OBJECTIVES - 2/28

= Can be used to implement replicated state machines (RSMs) = Questions from 2/23

= Concept is to replicate event queues at each node = Assignment 2: Replicated Key Value Store

= (1 and (2) exch ing ack led, t A -
in;gsﬂgfstoeiﬂzﬂ:iz‘:’;ents(to)be “totally” oar‘;;‘ered in - - GieTpiEn 44 = [ // A
replicated event queues = Chapter 6: Coordination

= Events can be applied “In order” to each (distributed) = Chapter 6.1: Clock Synchronization
replicated state machine (RSM) = Chapter 6.2: Logical Clocks

Vector Clocks |
= Class Activity - Total Ordered Multicasting (Thursday)
= Chapter 6.3: Distributed Mutual Exclusion

ot 1

TCSS558: Applied Distributed Computing [Winter 2023]
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VECTOR CLOCKS WHAT IS CAUSALITY?

= Lamport clocks don’t help to determine causal ordering of ) E E
messages - m
1
X . D E
= Vector clocks capture causal histories and can be used as an Proc2 °
alternative

= Having a causal relationship between two events (A and E)

= But what is causality? indicates that event E results from the occurrence of event A.
= When one event results from another, there is a causal
relationship between the two events.

= This is also referred to as cause and effect.

TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ G School of Engineering and Technology, University of Washington -Tacoma v GG School of Engineering and Technology, University of Washington - Tacoma usses
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CAUSALITY - 2

= Disclalmer:

= Without knowing actual information contained in messages, it
is not possible to state with certainty that there is a causal
relationship or perhaps a conflict

Lamport/Vector clocks can help us suggest possible causality
But we never know for sure...

TCSS558: Applied Distributed Computing [Winter 2023]
‘ ERbeuary28,2022 School of Engineering and Technology, University of Washington - Tacoma Les?

CAUSALITY - 3

= P2 receives m1, and subsequently sends m3
= Causallty: Sending m3 may depend on what’s contained in m1
= P2 receives m2, receiving m2 is not related to receiving m1

= |s sending m3 causally dependent on recelving m2?

‘ moey 281202 TCss558: Applied Distributed Computing [Winter 2023] Less

School of Engineering and Technology, University of Washington - Tacoma
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VECTOR CLOCKS

Vector clocks help keep track of causal history
If two local events happened at process P, then the
causal history H(p2) of event p2 is {p1,p2}

= P sends messages to Q (event p3)

= Q previously performed event q1

Q records arrival of message as q2

Causal histories merged at Q H(q2)= {p1,p2,p3,91,q92}

Fortunately, can simply store history of last event,
as a vector clock 2> H(q2) = (3,2)
Each entry corresponds to the last event at the process

TCSS558: Applied Distributed Computing [Winter 2023]
‘ February 28, 2023 School of Engineering and Technology, University of Washington - Tacoma U669

VECTOR CLOCKS - 2

1.0 20 (39

Wi
(0,1) (3,2)

PZ
= Each process maintains a vector clock which
= Captures number of events at the local process (e.g. logical clock)
= Captures number of events at all other processes
= Causality is captured by:
= For each event at Pi, the vector clock (VC) is incremented
= The msg is timestamped with VC;; and sending the msg is recorded
as a new event at P;
* P, adjusts its VC; choosing the max of: the message timestamp -or-
the local vector clock (VC))

TCSS558: Applied Distributed Computing [Winter 2023]
‘ February28, 2023 School of Engineering and Technology, University of Washington - Tacoma 70
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VECTOR CLOCKS - 3

= Pj knows the # of events at Pi based on the timestamps of the
received message

Pj learns how many events have occurred at other processes
based on timestamps in the vector

= These events “may be causally dependent“

In other words: they may have been necessary for the
message(s) to be sent...

TCSS558: Applied Distributed Computing [Winter 2023]
‘ G School of Engineering and Technology, University of Washington - Tacoma uen

VECTOR CLOCKS EXAMPLE

= Local clock is underlined CAUSALITY
B (1L1.0) @1.0) 31.0) (41.0)
/

m, m, m,

P #30)
o0 42,0)
m,
P,
[ERR0) 432)

‘ m, ‘ m, ‘ my<m, ‘ m,>m, ‘ C ‘
| @10 | @430 |  Yes | No

TCSS558: Applied Distributed Computing [Winter 2023]
‘ CEAREREHEED ‘ School of Engineering and Technology, University of Washington - Tacoma uern
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VECTOR CLOCKS EXAMPLE - 2

(231) (432)
‘ m, ‘ my ‘ my<m, ‘ my>m, ‘
‘ (4,1,0 ‘ (2,3,0) ‘ No ‘ No ‘ m2 and m4 may conflict ‘
= P3 can’t determine if m4 may be causally dependent on m2
= |s m4 causally dependent on m3 ?

TCsS558: Applied Distributed Computing [Winter 2023] w673
School of Engineering and Technology, University of Washington - Tacoma
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VECTOR CLOCKS EXAMPLE - 3

1,0,0
P, (1,0,0)
Z my my
Ps 0.1,1)
«
P, & *

©.0.1)

= Provide a vector clock label for unlabeled events

TCss558: Applied Distributed Computing [Winter 2023]
Esbaialyas /202 School of Engineering and Technology, University of Washington - Tacoma e
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VECTOR CLOCKS EXAMPLE - 4

(1,0,0)
Z my my
. 11y p
©.0.1) " i

= TRUE/FALSE:

= The sending of message m; is causally dependent on the
sending of message m,.

= The sending of message m, is causally dependent on the
sending of message m,.

TCs5558: Applied Distributed Computing [Winter 2023] w1675
School of Engineering and Technology, University of Washington - Tacoma

February 28, 2023
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OBJECTIVES - 2/28

= Questions from 2/23
= Assignment 2: Replicated Key Value Store
= Chapter 4.4 - Review / Finish
= Chapter 6: Coordination
= Chapter 6.1: Clock Synchronization
= Chapter 6.2: Logical Clocks
| Vector Clocks |
= Class Activity - Total Ordered Multicasting (Thursday)
= Chapter 6.3: Distributed Mutual Exclusion

TCSS558: Applied Distributed Computing [Winter 2023]
G School of Engineering and Technology, University of Washington - Tacoma uer
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VECTOR CLOCKS EXAMPLE - 5

(1,0,0)
Z my my
. 11y p
©.0.1) " i

= TRUE/FALSE:

= P, (1,0,0) and P; (0,0,1) may be concurrent events.
= P, (0,1,1) and P; (0,0,1) may be concurrent events.
= P, (1,0,0) and P, (0,1,1) may be concurrent events.

TC5S558: Applied Distributed Computing [Winter 2023] w676
School of Engineering and Technology, University of Washington - Tacoma

February 28, 2023
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OBJECTIVES - 2/28

= Questions from 2/23
= Assignment 2: Replicated Key Value Store
= Chapter 4.4 - Review / Finish
= Chapter 6: Coordination
= Chapter 6.1: Clock Synchronization

= Chapter 6.2: Logical Clocks
Vector Clocks

| = Class Actlvity - Total Ordered Multicasting gThursda¥)|

= Chapter 6.3: Distributed Mutual Exclusion

TCSS558: Applied Distributed Computing [Winter 2023]
CEAREREHEED School of Engineering and Technology, University of Washington - Tacoma uers
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‘Matual Exclusion
Algorithms

OBJECTIVES - 2/28

® Questions from 2/23

= Assignment 2: Replicated Key Value Store
= Chapter 4.4 - Review / Finish

Swm e CH. 6.3: DISTRIBUTED
L] Chazter 62 Logicalilocks MUTUAL
EXCLUSION

Vector Clocks
= Class Activity - Total Ordered Multicasting (Thursday)

| = Chapter 6.3: Distributed Mutual Exclusion |

TCSS558: Applied Distributed Computing [Winter 2023]
‘ Esbanry282023) School of Engineering and Technology, University of Washington - Tacoma uers
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DISTRIBUTED MUTUAL EXCLUSION TOKEN-BASED ALGORITHMS

ALGORITHMS

= Coordinating access among distributed processes to a
shared resource requires Distributed Mutual Exclusion

= Algorithms in 6.3
= Token-ring algorithm

= Permission-based algorithms:

= Centralized algorithm = Avoids deadlock: easy to avoid

= Mutual exclusion by passing a “token” between nodes
= Nodes often organized in ring
= Only one token, holder has access to shared resource

= Avoids starvation: everyone gets a chance to obtaln lock

= Distributed algorithm (Ricart and Agrawala)

= Decentralized voting algorithm (Lin et al.)

TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
‘ [February?28,2023 School of Engineering and Technology, University of Washington - Tacoma Lest February28)2023 School of Engineering and Technology, University of Washington - Tacoma L8
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TOKEN-RING ALGORITHM TOKEN-RING CHALLENGES

= Construct overlay network 1. If token is lost, token must be regenerated
= Establish logical ring among nodes = Problem: may accidentally circulate multiple tokens
W Token 2. Hard to determine if token is lost

A (DD
@

= Single token circulated around the nodes of the network

= What is the difference between token being lost and a
node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

= Dead nodes can be detected by adding a receipt message
= Node having token can access shared resource for when the token passes from node-to-node
= |f no node accesses resource, token is constantly circulated =When no receipt is received, node assumed dead

around ring
= Dead process can be “jumped” in the ring

TCSS558: Applied Distributed Computing [Winter 2023] TCs5558: Applied Distributed Computing [Winter 2023]
‘ T EED School of Engineering and Technology, University of Washington - Tacoma v GG School of Engineering and Technology, University of Washington - Tacoma ues
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS - 3

= Permission-based algorithms

= Processes must require permission from other processes
before first acquiring access to the resource
= CONTRAST: Token-ring did not ask nodes for permission

= Centralized algorithm
= Elect a single leader node to coordinate access to shared
resource(s)

= Manage mutual exclusion on a distributed system similar
to how it mutual exclusion is managed for a single system

= Nodes must all interact with leader to obtain “the lock”

TCSS558: Applied Distributed Computing [Winter 2023]
‘ ERbeuary28,2022 School of Engineering and Technology, University of Washington - Tacoma Less
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CENTRALIZED MUTUAL EXCLUSION - 2

= Issues

= Coordinator is a single point of failure

= Processes can’t distinguish dead coordinator from “blocking”
when resource is unavailable
= No difference between CRASH and Block (for a long time)

= Large systems, coordinator becomes performance bottleneck
= Scalability: Performance does not scale

= Beneflts
= Simplicity:
Easy to implement compared to distributed alternatives

TCSS558: Applied Distributed Computing [Winter 2023]
‘ February 28, 2023 School of Engineering and Technology, University of Washington - Tacoma ues?

87

DISTRIBUTED ALGORITHM - 2

= When each node receives a request message they will:
1. Say OK (If the node doesn’t need the resource)
2. Make no reply, queue request (node Is using the resource)
3. If node is also waiting to access the resource: perform a
timestamp comparison -
1. Send OK if requester has lower logical clock value
2. Make no reply if requester has higher logical clock value
= Nodes sit back and wait for all nodes to grant permission

= Requirement: every node must know the entire membership
list of the distributed system

TCSS558: Applied Distributed Computing [Winter 2023]
G School of Engineering and Technology, University of Washington - Tacoma ues

CENTRALIZED MUTUAL EXCLUSION

Permission granted from coordinator \/ No response from coordinator

REE e R EE

Request | |OK Request Release

7 No reply K
Queue is C j e ’_‘

/ empty
P, executes P, blocks P, finishes; P, executes
= When resource not available, coordinator can block the
requesting process, or respond with a reject message

= P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked

= Requests granted permission fairly using FIFO queue
= Just three messages: (request, grant (OK), release)

TCss558: Applied Distributed Computing [Winter 2023]
‘ Esbaialyas /202 School of Engineering and Technology, University of Washington - Tacoma Lese
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DISTRIBUTED ALGORITHM

= Ricart and Agrawala [1981], use total ordering of all events
= Leverages Lamport logical clocks

= Package up resource request message (AKA Lock Request)
= Send to all nodes
® Include:

= Name of resource

= Process number

= Current (logical) time

= Assume messages are sent reliably
= No messages are lost

TCSS558: Applied Distributed Computing [Winter 2023]
‘ February28, 2023 School of Engineering and Technology, University of Washington - Tacoma U688
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DISTRIBUTED ALGORITHM - 3

= Node O and Node 2 simultaneously request access to resource
= Node O’s time stamp is lower (8) than Node 2 (12)

= Node 1 and Node 2 grant Node O access

= Node 1 is not interested in the resource, it OKs both requests

Accasses
resourca

(o) (o)
oK A ™ o \OK

O] (2" Accesses
) “rosourca

(a) () (o)
= In case of conflict, lowest timestamp wins!
= Node 2 rejects its own request (1@) in favor of node 0O (8)

TCSS558: Applied Distributed Computing [Winter 2023]
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CHALLENGES WITH CHALLENGES WITH

DISTRIBUTED ALGORITHM DISTRIBUTED ALGORITHM - 2

. " . = Problem: Multicast communication required -or- each node
0 1 Problem:
= Problem: Algorithm has N points of failure ! DTG moelin i ) S Fremlsersti

= Where N = Number of Nodes in the system = Track nodes entering, leaving, crashing...

= Problem: Every process is involved in reaching an agreement

= No Reply Problem: When node is accessing the resource, to grant access to a shared resource
it does not respond = This approach may not scale on resource-constrained systems
= Lack of response can be confused with fallure = Solution: Can relax total agreement requirement and proceed

. when a simple majorlty of nodes grant permission
" Posslble Solutlon: When node receives request for = Presumably any one node locking the resource prevents agreement

resource it is accessing, always send a reply either = If one node gets majority of acknowledges no other can
granting or denying permission (ACK) = Requires every node to know size of system (# of nodes)

" Enables requester to determine when nodes have died = Distributed algorithm for mutual exclusion works best for:

= Small groups of processes
= When memberships rarely change
‘ February 28, 2023 TCsS558: Applied Distributed Computing [Winter 2023] U691 ‘ February 28, 2023 TCsS558: Applied Distributed Computing [Winter 2023] e
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DECENTRALIZED ALGORITHM DECENTRALIZED ALGORITHM - 2

= Lin et al. [2004], decentralized voting algorithm = Assumptlon #2: When a coordinator crashes, it recovers
quickly, but will have forgotten votes before the crash.

= Resource is replicated N times
= Approach assumes coordinators reset arbltrarlly at any time

= Each replica has its own coordinator ...(N coordinators) X . .
= Risk: on crash, coordinator forgets it previously granted
= Accessing resource requires majority vote: permission t'o t'he shar'ed resource, and on recovery it errantly
total votes (m) > N/2 coordinators SIS POMISEIEn

= The Hope: if coordinator crashes, upon recovery, the node
granted access to the resource has already finished before the
restored coordinator grants access again . . .

= Assumption #1: When coordinator does not give
permission to access a resource (because it is busy) it will
inform the requester

TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
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DECENTRALIZED ALGORITHM - 3 DECENTRALIZED ALGORITHM - 4

= With 99.167% coordinator availability (30 sec downtime/hour) = Back-off Polling Approach for permission-denied:
chance of violating correctness Is so low it can be neglected in )

comparison to other types of failure = |f permission to acces‘s aresource |.s delnled via majority vote,
process can poll to gain access again with a random delay
(known as back-off)

= Node waits for a random amount, retries...

= Leverages fact that a new node must obtain a majority vote to
access resource, which requires time

N | m p Violation N | m p Violation X

ST 5 Sseohonr 10T 5T 5 T 30seomonr | = 1010 = If too many nodes compete to gain access to a resource,

5 ;5 3sechhour | = 10-® 3 ;’ 30 sechour | < 10-T1 majority vote can lead to low resource utilization

16 | 9 | 3sec/hour | < 10— 16 | 9 | 30 sec/hour ; 10-18 = No one can achieve majority vote to obtaln access to the

16 | 12 | 3sec’hour | < 107% 16 | 12 | 30 sec/hour | < 10724 shared resource

32 | 17 | 3 secthour | <10~ 32 | 17 | 30 sec/hour | < 10°% = Mimics elections where with too many candidates, where no
32 | 24 | 3sechour | <1077 32 | 24 | 30 secthour | <107 one candidate can get >50% of the total vote

N = number of resource replicas, m = required “majority” vote
p=seconds per hour coordinator is offline = Problem Solution detailed in [Lin et al. 2014]

TCSS558: Applied Distributed Computing [Winter 2023] TCSS558: Applied Distributed Computing [Winter 2023]
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW

distributed mutual exclusion in a large distributed
system?

= (A) Token-ring algorithm

= (B) Centralized algorithm

= (C) Distributed algorithm

= (D) Decentralized voting algorithm

= Which algorithm offers the best scalability to support

TCSS558: Applied Distributed Computing [Winter 2023]

‘ Esbanry282023) School of Engineering and Technology, University of Washington - Tacoma

U697

February 28, 2023

DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS REVIEW - 2

= Which algorithm(s) involve blocking when a resource is
not available?

= (A) Token-ring algorithm
= (B) Centralized algorithm
= (C) Distributed algorithm

= (D) Decentralized voting algorithm

TCss558: Applied Distributed Computing [Winter 2023]
‘ Esbaialyas /202 School of Engineering and Technology, University of Washington - Tacoma 1698
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 3

resource?

= (A) Token-ring algorithm
= (B) Centralized algorithm
= (C) Distributed algorithm

= (D) Decentralized voting algorithm

= Which algorithm(s) involve arriving at a consensus to
determine whether a node should be granted access to a

TCs5558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

‘ February 28, 2023

1699
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DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS REVIEW - 4

= Which algorithm(s) have N points of failure,
where N = Number of Nodes in the system?

= (A) Token-ring algorithm
= (B) Centralized algorithm
= (C) Distributed algorithm

= (D) Decentralized voting algorithm

99

TCSS558: Applied Distributed Computing [Winter 2023]
‘ February28)2023 School of Engineering and Technology, University of Washington - Tacoma 116100

QUESTIONS
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