
TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.1

Chapter 4 – Communication–III

Chapter 6 - Coordination

Wes J. Lloyd

School of Engineering
& Technology (SET)
University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 2/21

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.2

OBJECTIVES – 2/23

1

2

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.3

ONLINE DAILY FEEDBACK SURVEY

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L15.4

3

4

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.3

 Please classify your perspective on material covered in today’s

class (26 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.42 (- previous 6.03)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.81 (- previous 5.34)

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.5

MATERIAL / PACE

 Is there a relationship between STUBS and Big -Endian?

 Big-Endian notion refers to the ordering of bits in a byte

stream that is exchanged over a network, or the ordering of

bits for bytes stored in memory

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.6

FEEDBACK FROM 2/21

Intel/Linux
Systems

Older
IBM/ARM
Systems

• Typically data is transferred over the network using Big-endian notation

• Marshalling/Unmarshalling involves translating data from a
machine-specific notion for exchange over the network

5

6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.4

 STUBS refer to an interface definition that a client uses to

invoke a remote procedure (RPC)

 Under what circumstances will Multicast RPC be used?

▪ Execute multiple copies of a procedure – in case one fails

▪ Reproduce/verify execution – second call verifies results of the first

▪ Divide and conquer – individual RPC calls operate on a unique data

subset

▪ Race – execute procedure on multiple servers to obtain result faster

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.7

FEEDBACK - 2

 Questions from 2/21

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.8

OBJECTIVES – 2/23

7

8

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.5

 Include readme.txt or doc file with instructions in submission

 Must document membership tracking method

>> please indicate which types to test <<

ID Description

F Static file membership tracking – file is not reread

FD Static file membership tracking DYNAMIC - file is

periodically reread to refresh membership list

T TCP membership tracking – servers are configured to

refer to central membership server

U UDP membership tracking - automatically discovers

nodes with no configuration

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.9

SHORT-HAND-CODES FOR MEMBERSHIP

TRACKING APPROACHES

 Sunday March 12 th

 Goal: Replicated Key Value Store

 Team signup to be posted on Canvas under ‘People’

 Build off of Assignment 1 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking

for extra credit

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.10

ASSIGNMENT 2

9

10

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.6

 Questions from 2/21

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.11

OBJECTIVES – 2/23

Apache ActiveMQ

CH. 4.3: MESSAGE-

ORIENTED

COMMUNICATION

L15.12

11

12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.7

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.13

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

 Servers execute 1st - 4 operations (socket, bind, listen, accept)

 Methods refer to C API functions

 Mappings across dif ferent libraries will vary (e.g. Java)

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.14

SOCKETS - 2

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

13

14

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.8

 Socket: creates new communication end point

 Bind: associated IP and port with end point

 Listen: for connection-oriented communication, non-blocking

call reserves buffers for specified number of pending

connection requests server is willing to accept

 Accept: blocks until connection request arrives

▪ Upon arrival, new socket is created matching original

▪ Server spawns thread, or forks process to service incoming request

▪ Server continues to wait for new connections on original socket

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

SERVER SOCKET OPERATIONS

 Socket: Creates socket client uses for communication

 Connect: Server transport-level address provided, client blocks

until connection established

 Send: Supports sending data (to: server/client)

 Receive: Supports receiving data (from: server/client)

 Close: Closes communication channel

▪ Analogous to closing a file stream

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

CLIENT SOCKET OPERATIONS

15

16

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.9

 Sockets provide primitives for implementing your own

TCP/UDP communication protocols

 Directly using sockets for transient (non -persisted)

messaging is very basic, can be brittle

▪ Easy to make mistakes…

 Any extra communication facilities must be implemented

by the application developer

 More advanced approaches are desirable

▪ E.g. frameworks with support common desirable

functionality

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.17

SOCKET COMMUNICATION

 (0MQ) High performance intelligent socket library

 zero broker, zero latency, zero admin, zero cost, zero waste

 Provides a message queue

 Builds upon functionality of traditional sockets

 Implementation in C++

▪ 30+ language bindings provided

 Enables support for various messaging patterns

 Can support brokered (centralized) and broker -less topologies

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.18

ZEROMQ – SOCKET LIBRARY

17

18

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.10

 ZeroMQ is TCP-connection-oriented communication

 Provides socket-like primitives with more functionality

▪ Basic socket operations abstracted away

▪ Supports many-to-one, one-to-one, and one-to-many

connections

▪Multicast connections (one-to-many – single server socket

simultaneously “connects” to multiple clients)

 Asynchronous messaging

 Supports pairing sockets to support communication

patterns: request-reply, pub-sub, pipe (queue)

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.19

ZEROMQ – 2

 Request-reply pattern

▪ Traditional client-server communication (e.g. RPC)

▪ Client: request socket (REQ)

▪ Server: reply socket (REP)

 Publish-subscribe pattern

▪ Clients subscribe to messages published by servers

▪ As in event-based coordination (Ch. 1)

▪ Supports multicasting messages from

server to multiple subscribers (clients)

▪ Client: subscribe socket (SUB)

▪ Server: publish socket (PUB)

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

ZEROMQ - PATTERNS

19

20

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.11

 Pipeline pattern (FIFO-queue)

▪ Analogous to a producer/consumer bounded buffer

▪ Producing processes generate results, push to pipe

▪ Consuming processes consume results,

pull from pipe

▪ Producers: push socket (PUSH socket)

▪ Consumers: pull socket (PULL socket)

▪ Push- distributes messages to all pull

clients evenly

▪ Consumers pull results from pipe and

push results downstream

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.21

ZEROMQ – PATTERNS - 2

Cloud services

▪Amazon Simple Queueing Service (SQS)

▪Azure service bus

Open source frameworks

▪Nanomsg

▪ZeroMQ

▪RabbitMQ

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.22

QUEUEING ALTERNATIVES

21

22

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.12

 MPI introduced – version 1.0 March 1994

 Message passing API for parallel programming: supercomputers

 Communication protocol for parallel programming for:

Supercomputers, High Performance Computing (HPC) clusters

 Point-to-point and collective communication

 Goals: high performance, scalability, portability

 Most implementations

in C, C++, Fortran

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.23

MESSAGE PASSING INTERFACE (MPI)

 Motivation: sockets insufficient for interprocess

communication on large scale HPC compute clusters and

super computers

▪ Sockets at the wrong level of abstraction

▪ Sockets designed to communicate over the network using

general purpose TCP/IP stacks

▪ Not designed for proprietary protocols

▪ Not designed for high-speed interconnection

networks used by supercomputers,

HPC-clusters, etc.

▪ Better buffering and synchronization needed

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

MOTIVATIONS FOR MPI

23

24

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.13

 Supercomputers had proprietary communication libraries

▪ Offer a wealth of efficient communication operations

 All libraries mutually incompatible (vendor lock-in)

 Led to significant portability problems developing parallel

code that could migrate across supercomputers

 Led to development of MPI

▪ To support transient (non-persistent) communication for

parallel programming

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.25

MOTIVATIONS FOR MPI - 2

 Very large library, v1.0 (1994) 128 functions

 v3 (2015) 440+ functions

 MPI data types:

 Provide common mappings

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.26

MPI FUNCTIONS / DATATYPES

25

26

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.14

 MPI - no recovery for process crashes, network partitions

 Communication among grouped processes:(groupID, processID)

 IDs used to route messages in place of IP addresses

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.27

COMMON MPI FUNCTIONS

Operation Description

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send message, wait until copied to local/remote buffer

MPI_ssend Send message, wait until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue

MPI_issend Pass reference to outgoing messages, wait until receipt start

MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!

 Message-queueing systems

▪ Provide extensive support for persistent asynchronous

communication

▪ In contrast to transient systems

▪ Temporally decoupled: messages are eventually delivered

to recipient queues

 Message transfers may take minutes vs. sec or ms

 Each application has its own private queue to which other

applications can send messages

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.28

MESSAGE-ORIENTED-MIDDLEWARE

27

28

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.15

 Enables communication between applications, or sets of

processes

▪ User applications

▪ App-to-database

▪ To support distributed real-time computations

 Use cases

▪ Batch processing, Email, workflow, groupware, routing

subqueries

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.29

MESSAGE QUEUEING SYSTEMS:

USE CASES

 Scenarios:

(a) Sender/receiver

both running

(b) Sender running,

receiver offline

(c) Sender offline,

receiver running

(d) Sender/receiver

both offline

 Queue persists msgs,

and attempts to send

them but no one may be available to receive them…

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.30

MESSAGE QUEUEING SYSTEMS

SENDS

READS

29

30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.16

 Key: Truly persistent messaging

 Message queueing systems can persist messages for awhile

and senders and receivers can be offline

 Messages

 Contain any data, may have size limit

 Are properly addressed, to a destination queue

 Basic Inteface

 PUT: called by sender to append msg to specified queue

 GET: blocking call to remove oldest msg from specified queue

▪ Blocked if queue is empty

 POLL: Non-blocking, gets msg from specified queue

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.31

MESSAGE QUEUEING SYSTEMS - 2

 Basic interface cont’d

 NOTIFY: install a callback function, for when msg is placed

into a queue. Notifies receivers

 Queue managers: manage individual message queues as a

separate process/library

 Applications get/put messages only from local queues

 Queue manager and apps share local network

 ISSUES:

 How should we reference the destination queue?

 How should names be resolved (looked-up)?

▪ Contact address (host, port) pairs

▪ Local look-up tables can be stored at each queue manager

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.32

MESSAGE QUEUEING SYSTEMS

ARCHITECTURE

31

32

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.17

 ISSUES:

 How do we route traffic between queue managers?

▪ How are name-to-address mappings efficiently kept?

▪ Each queue manager should be known to all others

 Message brokers

 Handle message conversion among different users/formats

 Addresses cases when senders and receivers don’t speak the

same protocol (language)

 Need arises for message protocol converters

▪ “Reformatter” of messages

 Act as application-level gateway

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.33

MESSAGE QUEUEING SYSTEMS

ARCHITECTURE - 2

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.34

MESSAGE BROKER ORGANIZATION

Plugins to convert
messages between APPs Application-level

Queues

33

34

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.18

 Message-queueing systems initially developed to enable
legacy applications to interoperate

 Decouple inter-application communication using “open”
messaging-middleware

 Many msg-queues are proprietary solutions, so not very open

 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP) , 2006

 Address openness/interoperability of proprietary solutions

 Open wire protocol for messaging with powerful routing
capabilities

 Help abstract messaging and application interoperability by
means of a generic open protocol

 Suffer from incompatibil ity among protocol versions

 pre-1.0, 1.0+

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.35

AMQP PROTOCOL

 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with

potentially many channels, stable, reused by many

channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two

channels

 Link: provide fine-grained flow-control of message

transfer/status between applications and queue manager

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.36

AMQP - 2

35

36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.19

 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to

recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.37

AMQP MESSAGING

 Some examples:

 RabbitMQ, Apache QPid

▪ Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka – more of a pub/sub than plain msg queue

▪ Dumb broker (message store), similar to a distributed log file

▪ Smart consumers – intelligence pushed off to the clients

▪ Stores stream of records in categories called topics

▪ Supports voluminous data, many consumers, with minimal O/H

▪ Kafka does not track which messages were read by each consumer

▪ Messages are removed after timeout

▪ Clients must track their own consumption (Kafka doesn’t help)

▪ Messages have key, value, timestamp

▪ Supports high volume pub/sub messaging and streams

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.38

MESSAGE-ORIENTED-MIDDLEWARE

EXAMPLES:

37

38

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.20

 Questions from 2/21

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.39

OBJECTIVES – 2/23

Apache ActiveMQ

CH. 4.4: MULTICAST

COMMUNICATION

L15.40

39

40

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.21

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.41

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

 Sending data to multiple receivers (one to many)

 Many failed proposals for network-level / transport-level
protocols to support multicast communication

 Problem: How to set up communication paths for
information dissemination?

 Solutions: require huge management effort, human
intervention

 Focus shifted more recently to peer-to-peer networks

▪ Structured overlay networks can be setup easily and
provide efficient communication paths

▪ Application-level multicasting techniques more successful

▪ Gossip-based dissemination: unstructured p2p networks

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.42

MULTICAST COMMUNICATION

41

42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.22

 Overlay network

▪ Virtual network implemented on top of an actual physical network

 Underlying network

▪ The actual physical network that implements the overlay

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.43

NETWORK STRUCTURE

 Application level multi -casting

▪ Nodes organize into an overlay network

▪ Network routers not involved in group membership

▪ Group membership is managed at the application level (A2)

 Downside:

▪ Application-level routing likely less efficient than network -level

▪ Necessary tradeoff until having better multicasting protocols at

lower layers

 Overlay topologies

▪ TREE: top-down, unique paths between nodes

▪ MESH: nodes have multiple neighbors; multiple paths between nodes

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.44

APPLICATION LEVEL

TREE-BASED MULTICASTING

43

44

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.23

 Measure quality of application-level multicast tree

 Link stress: is defined per link, counts how often a packet

crosses same link (ideally not more than 1)

 Stretch: ratio in delay between two nodes in the overlay vs.

the underlying networks

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.45

MULTICAST TREE METRICS

Numbers represent
network delay
between nodes

 Stretch (Relative Delay Penalty RDP)

 CONSIDER routing from B to C

 What is the Stretch?

 Stretch (delay ratio) = Overlay -delay / Underlying-delay

 Overlay: B→Rb→Ra→Re→E→Re→Rc→Rd→D→Rd→Rc→ C

= 73

 Underlying: B→Rb→Rd→Rc→C = 47

 Stretch = 73 / 47 = 1.55

 Captures additional time (stretch) to transfer msg on overlay net

 Tree cost: Overall cost of the overlay network

 Ideally would like to minimize network costs

 Find a minimal spanning tree which minimizes total time for

disseminating information to all nodes

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.46

MULTICAST TREE METRICS - 2

45

46

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.24

 Broadcasting: every node in overlay network receives message

 How many nodes are in the overlay network?

 How many nodes are in the underlying network?

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.47

FLOOD-BASED MULTICASTING

 Broadcasting: every node in overlay network receives message

 Key design issue: minimize the use of intermediate nodes for
which the message is not intended

 If only leaf nodes are to receive the multicast message, many
intermediate nodes are involved in storing and forwarding the
message not meant for them

 Solution: construct an overlay network for each multicast
group

▪ Sending a message to the group, becomes the same as broadcasting
to the multicast group (group of nodes that listen and receive traffic
for a shared IP address)

 Flooding: each node simply forwards a message to each of its
neighbors, except to the message originator

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.48

FLOOD-BASED MULTICASTING

47

48

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.25

 Used when no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Random graphs are described by a probability distribution

 Probability Pedge that two nodes are joined

 Overlay network will have: ½ * Pedge * N * (N-1) edges

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.49

RANDOM GRAPHS

Random graphs allow us to assume
some structure (# of nodes, # of edges)
regarding the network by scaling the
Pedge probability

Assumptions may help then to
reason or rationalize about the
network…

 When a node is flooding a message, the concept is to

enforce a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.50

PROBABILISTIC FLOODING

Washington state in winter?

49

50

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.26

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.51

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.52

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

Washington state in winter?

51

52

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.27

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.53

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

½ * (.1) * (10000) * (9999)

Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.54

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

½ * (.1) * (10000) * (9999)
4,999,500 edges

Washington state in winter?

53

54

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.28

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.55

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.56

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message

to Q is p=(1-pflood)n

Washington state in winter?

55

56

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.29

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.57

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message

to Q is p=(1-pflood)n

if n=10, p=(1-.01)10=.904 (pretty likely)
if n=100, p=(1-.01)100=.366 (less likely)

if n=298, p=(1-.01)298=.05 (unlikely)

Washington state in winter?

 For deterministic topologies (such as hypercube), design of

efficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a

deterministic topology

 Schlosser et al [2002] – offer simple and efficient

broadcasting scheme that relies on keeping track of neighbors

per dimension

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.58

MESSAGE FLOODING

57

58

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.30

 Hypercube Broadcast

 N(1001) starts the network broadcast

 N(1001) neighbors {0001,1000,1011,1101}

 N(1001) Sends message to all neighbors

 >>Edge Labels (which bit is changed?, 1 st, 2nd, 3 rd, 4 th…)

 Edge to 0001 – labeled 1 – change the 1st bit

 Edge to 1000 – labeled 4 – change the 4 th bit

 Edge to 1011 – labeled 3 – change the 3 rd bit

 Edge to 1101 – labeled 2 – change the 2nd bit

 RULE: nodes only forward along edges with a higher dimension

 Node 1101 receives message on edge labeled 2

 Broadcast msg is only forwarded on higher valued edges (>2)

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.59

MESSAGE

FLOODING - 2

 Hypercube: forward msg along edges with higher dimension

 Node(1101)–neighbors {0101,1100,1001,1111}

 Node (1101) - incoming broadcast edge = 2

 Label Edges:

 Edge to 0101 – labeled 1 – change the 1st bit

 Edge to 1100 – labeled 4 – change the 4 th bit *<FORWARD>*

 Edge to 1001 – labeled 2 – change the 2nd bit

 Edge to 1111 – labeled 3 – change the 3 rd bit *<FORWARD>*

 N(1101) broadcast – forward only to N(1100) and N(1111)

 (1100) and (1111) are the higher dimension edges

 Broadcast requires just: N-1 messages, where nodes N=2n,
n=dimensions of hypercube

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.60

MESSAGE FLOODING - 3

59

60

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.31

 When structured peer-to-peer topologies are not available

 Gossip based approaches support multicast communication
over unstructured peer-to-peer networks

 General approach is to
leverage how gossip
spreads across a group

 This is also called
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.61

GOSSIP BASED DATA DISSEMINATION

 Epidemic algorithms: algorithms for large-scale distributed

systems that spread information

 Goal: “infect” all nodes with new information as fast as

possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.62

INFORMATION DISSEMINATION

61

62

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.32

Gossiping

Nodes are randomly selected

One node, randomly selects any other node in the

network to propagate the network

Complete set of nodes is known to each member

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.63

EPIDEMIC PROTOCOLS

 Anti-entropy: Propagation model where node P picks node Q at
random and exchanges message updates

 Akin to random walk

 Types of message exchange:

 PUSH: P only pushes its own updates to Q

 PULL: P only pulls in new updates from Q

 T WO-WAY: P and Q send updates to each other
(i.e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden
susceptible nodes

 Pull: better because susceptible nodes can pull updates from
infected nodes

 Push-pull is better still

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.64

ANTI ENTROPY DISSEMINATION MODEL

FOR GOSSIPING

P Q

P Q

P Q

63

64

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.33

 Round: span of time during which every node takes initiative

to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all

nodes requires O(log(N)), where N=number of nodes

 Let p i denote probability that

node P has not received

msg m after the i th round.

 For pull, push, and push-pull

based approaches:

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.65

ANTI ENTROPY EFFECTIVENESS

10,000 nodes →

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another

node

 Node P may loose interest in spreading the rumor with

probability = pstop, let’s say 20% . . . (or 0.20)

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.66

RUMOR SPREADING

65

66

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.34

 pstop, is the probability node will stop spreading once contacting a
node that already has the message

 Does not guarantee all nodes will be updated

 The fraction of nodes s, that remain susceptible grows relative
to the probability that node P
stops propagating when finding
a node already having the
message

 Fraction of nodes not updated
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping →

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.67

RUMOR SPREADING - 2

 Gossiping is good for spreading data

 But how can data be removed from the system?

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from

reinitializing from gossip from other nodes

 Death certificates time-out after expected time required

for data element to clear out of entire system

 A few nodes maintain death certificates forever

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.68

REMOVING DATA

67

68

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.35

 For example:

 Node P keeps death certificates forever

 Item X is removed from the system

 Node P receives an update request for Item X, but also holds

the death certificate for Item X

 Node P will recirculate the death certificate across the

network for Item X

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.69

DEATH CERTIFICATE EXAMPLE

WE WILL RETURN AT

3:02 PM

69

70

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.36

 Questions from 2/21

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.71

OBJECTIVES – 2/23

 6.1 Clock Synchronization

▪ Physical clocks

▪ Clock synchronization algorithms

 6.2 Logical clocks

▪ Lamport clocks

▪ Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (light)

 6.7 Gossip-based coordination (light)

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.72

CHAPTER 6 - COORDINATION

71

72

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.37

 How can processes synchronize and coordinate data?

 Process synchronization

▪ Coordinate cooperation to grant individual processes temporary

access to shared resources (e.g. a file)

 Data synchronization

▪ Ensure two sets of data are the same (data replication)

 Coordination

▪ Goal is to manage interactions and dependencies between activities

in the distributed system

▪ Encapsulates synchronization

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.73

CHAPTER 6 - COORDINATION

 Synchronization challenges begin with time:

▪ How can we synchronize computers, so they all agree on

the time?

▪ How do we measure and coordinate when things happen?

 Fortunately, for synchronization in distributed systems, it

is often sufficient to only agree on a relative ordering of

events

▪ E.g. not actual time

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.74

COORDINATION - 2

73

74

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.38

 Groups of processes often appoint a coordinator

 Election algorithms can help elect a leader

 Synchronizing access to a shared resource is achieved
with distributed mutual exclusion algorithms

 Also in chapter 6:

▪Matching subscriptions to publications in publish-
subscribe systems

▪ Gossip-based coordination problems:

▪ Aggregation

▪ Peer sampling

▪ Overlay construction

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.75

COORDINATION - 3

 Questions from 2/21

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

 Chapter 6: Coordination

▪ Chapter 6.1: Clock Synchronization

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.76

OBJECTIVES – 2/23

75

76

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.39

CH. 6.1: CLOCK

SYNCHRONIZATION

L15.77

 Example:

 “make” is used to compile source files into binary object and

executable files

 As an optimization, make only compiles files when the “last

modified time” of source files is more recent than object and

executables

 Consider if files are on a shared disk of a distributed system

where there is no agreement on time

 Consider if the program has 1,000 source files

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.78

CLOCK SYNCHRONIZATION

77

78

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.40

 Updates from different machines, may have clocks set to

different times

 Make becomes confused with which files to recompile

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.79

TIME SYNCHRONIZATION PROBLEM

FOR DISTRIBUTED SYSTEMS

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.80

PHYSICAL CLOCKS

 Computer timers: precisely machined
quartz crystals

 When under tension, they oscillate at
a well defined frequency

 In analog electronics/communications
crystals once used to set the frequency
of two-way radio transceivers for

 Today, crystals are associated with
a counter and holding register on a digital computer.

 Each oscillation decrements a counter by one

 When counter gets to zero, an interrupt fires

 Can program timer to generate interrupt, let’s say 60
times a second, or another frequency to track time

1960s ERA radio crystal →

79

80

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.41

 Digital clock on computer sets base time

 Crystal clock tracks forward progress of time

▪ Translation of wave “ticks” to clock pulses

 CMOS battery on motherboard maintains clock on power loss

 Clock skew: physical clock crystals are not exactly the same

 Some run at slightly dif ferent rates

 Time differences accumulate as clocks

drif t forward or backward slightly

 In an automobile, where there is no

clock synchronization, clock skew may

become noticeable over months, years

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.81

COMPUTER CLOCKS

 Universal Coordinated Time (UTC)

▪Worldwide standard for time keeping

▪ Equivalent to Greenwich Mean Time (United Kingdom)

▪ 40 shortwave radio stations around the world broadcast a
short pulse at the start of each second (WWV)

▪World wide “atomic” clocks powered by constant
transitions of the non-radioactive caesium-133 atom

▪ 9,162,631,770 transitions per second

 Computers track time using UTC as a base

▪ Avoid thinking in local time, which can lead to
coordination issues

▪ Operating systems may translate to show local time

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.82

UNIVERSAL COORDINATED TIME

81

82

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.42

How do we synchronize computer clocks with

real-world clocks?

How do we synchronize computer clocks with

each other?

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.83

COMPUTING: CLOCK CHALLENGES

 UTC services: use radio and satellite signals to provide time

accuracy to 50ns

 Time servers: Server computers with UTC receivers that

provide accurate time

 Precision () : how close together a set of clocks may be

 Accuracy: how correct to actual time clocks may be

 Internal synchronization: Sync local computer clocks

 External synchronization: Sync to UTC clocks

 Clock drif t : clocks on dif ferent machines gradually become

out of sync due to crystal imperfections, temperature

dif ferences, etc.

 Clock drif t rate: typical is 31.5s per year

 Maximum clock drif t rate (): clock specifications include one

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.84

CLOCK SYNCHRONIZATION

83

84

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.43

 If two clocks drift from UTC in opposite directions,

after time t after synchronization, they may be 2 apart.

▪ - clock drift rate, - clock precision (max 50ns)

 Clocks must be resynchronized every /2 seconds

 Network time protocol

 Provide coordination of

time for servers

 Leverage distributed network

of time servers

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.85

CLOCK SYNCHRONIZATION - 2

 Servers organized
into stratums

 Stratum-1 servers
have UTC receivers
and are sync’d
with atomic clocks

 Servers connect
with closest NTP
server for time
synchronization

 Servers assume
role as NTP server
at stratum+1

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.86

NETWORK TIME PROTOCOL

Atomic
clocks

85

86

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.44

 Must estimate network delays when synchronizing with remote UTC
receiver clocks / time servers

Time server B

Client A

1. A sends message to B, with timestamp T1

2. B records time of receipt T2 (from local clock)

3. B returns response with send time T3, and receipt time T2

4. A records arrival of T4

 Assuming propagation delay of A→B→A is the same

 Estimate propagation delay:

 Add delay to time

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.87

NTP - 2

 Cannot set clocks backwards (recall “make” file example)

 Instead, temporarily slow the progress of time to allow fast
clock to align with actual time

 Change rate of clock interrupt routine

 Slow progress of time until synchronized

 NTP accuracy is within 1-50ms

 In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

 Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst

server bigben.cac.washington.edu iburst

 Shutdown service (sudo service ntp stop)

 Run ntpdate: (sudo ntpdate time.u.washington.edu)

 Startup service (sudo service ntp start)

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.88

NTP - 3

87

88

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.45

 Berkeley time daemon server actively polls network to

determine average time across servers

 Suitable when no machine has a UTC receiver

 Time daemon instructs servers how much to adjust clocks

to achieve precision

 Accuracy can not be guaranteed

 Berkeley is an internal clock synchronization algorithm

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.89

BERKELEY ALGORITHM

 Sensor networks bring unique challenges for clock synchronization

▪ Address resource constraints : limited power, multihop routing slow

 Reference broadcast synchronization (RBS)

 Provides precision of time, not accuracy as in Berkeley

 No UTC clock available

 RBS sender broadcasts a reference message to allow receivers to

adjust clocks

 No multi -hop routing

 Time to propagate a signal to nodes is roughly constant

 Message propagation time does not consider time spent waiting in

NIC for message to send

▪ Wireless network resource contention may force wait before message

even can be sent

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.90

CLOCK SYNCHRONIZATION

IN WIRELESS NETWORKS

89

90

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.46

 Node broadcasts reference message m

 Each node p records time Tp,m when m is received

 Tp,m is read from node p’s clock

 Two nodes p and q can exchange delivery times to estimate

mutual relative offset

 Then calculate relative average offset for the network:

 Where M is the total number of reference messages sent

 Nodes can simply store offsets instead of frequently

synchronizing clocks to save energy

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.91

REFERENCE BROADCAST

SYNCHRONIZATION (RBS)

 Cloud skew: over time clocks drif t apart

 Averages become less precise

 Elson et al. propose using standard linear regression to

predict offsets, rather than calculating them

 IDEA: Use node’s history of message times in a simple linear

regression to continuously refine a formula with coefficients

to predict time offsets:

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.92

REFERENCE BROADCAST

SYNCHRONIZATION (RBS) - 2

91

92

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 23, 2023

Slides by Wes J. Lloyd L15.47

QUESTIONS

February 23, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L15.93

93

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 2/23
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 2/21
	Slide 7: Feedback - 2
	Slide 8: OBJECTIVES – 2/23
	Slide 9: Short-hand-codes for Membership Tracking Approaches
	Slide 10: Assignment 2
	Slide 11: OBJECTIVES – 2/23
	Slide 12: Ch. 4.3: message-oriented communication
	Slide 13: Chapter 4
	Slide 14: Sockets - 2
	Slide 15: Server Socket operations
	Slide 16: Client socket operations
	Slide 17: Socket communication
	Slide 18: ZeroMq – socket library
	Slide 19: Zeromq – 2
	Slide 20: Zeromq - patterns
	Slide 21: Zeromq – patterns - 2
	Slide 22: Queueing alternatives
	Slide 23: Message passing interface (MPI)
	Slide 24: Motivations for mpi
	Slide 25: Motivations for mpi - 2
	Slide 26: Mpi functions / datatypes
	Slide 27: Common Mpi functions
	Slide 28: Message-oriented-middleware
	Slide 29: Message queueing systems: USE cases
	Slide 30: Message queueing systems
	Slide 31: Message queueing systems - 2
	Slide 32: Message queueing systems architecture
	Slide 33: Message queueing systems architecture - 2
	Slide 34: Message broker organization
	Slide 35: AmqP protocol
	Slide 36: Amqp - 2
	Slide 37: Amqp messaging
	Slide 38: Message-oriented-middleware examples:
	Slide 39: OBJECTIVES – 2/23
	Slide 40: Ch. 4.4: multicast communication
	Slide 41: Chapter 4
	Slide 42: Multicast communication
	Slide 43: Network structure
	Slide 44: Application level tree-based multicasting
	Slide 45: Multicast tree metrics
	Slide 46: Multicast tree metrics - 2
	Slide 47: Flood-based multicasting
	Slide 48: Flood-based multicasting
	Slide 49: Random graphs
	Slide 50: Probabilistic flooding
	Slide 51: Probabilistic flooding
	Slide 52: Probabilistic flooding
	Slide 53: Probabilistic flooding
	Slide 54: Probabilistic flooding
	Slide 55: Probabilistic flooding
	Slide 56: Probabilistic flooding
	Slide 57: Probabilistic flooding
	Slide 58: Message flooding
	Slide 59: Message flooding - 2
	Slide 60: Message flooding - 3
	Slide 61: Gossip based data dissemination
	Slide 62: Information dissemination
	Slide 63: Epidemic protocols
	Slide 64: Anti entropy dissemination model for gossiping
	Slide 65: Anti entropy effectiveness
	Slide 66: Rumor spreading
	Slide 67: Rumor spreading - 2
	Slide 68: Removing data
	Slide 69: Death certificate example
	Slide 70: We will return at 3:02 pm
	Slide 71: OBJECTIVES – 2/23
	Slide 72: Chapter 6 - Coordination
	Slide 73: Chapter 6 - coordination
	Slide 74: Coordination - 2
	Slide 75: Coordination - 3
	Slide 76: OBJECTIVES – 2/23
	Slide 77: Ch. 6.1: clock synchronization
	Slide 78: Clock synchronization
	Slide 79: Time synchronization problem for distributed systems
	Slide 80: Physical clocks
	Slide 81: Computer clocks
	Slide 82: Universal coordinated time
	Slide 83: Computing: clock challenges
	Slide 84: Clock synchronization
	Slide 85: Clock synchronization - 2
	Slide 86: Network time protocol
	Slide 87: NTP - 2
	Slide 88: Ntp - 3
	Slide 89: Berkeley algorithm
	Slide 90: Clock synchronization in wireless networks
	Slide 91: Reference broadcast synchronization (RBS)
	Slide 92: Reference broadcast synchronization (RBS) - 2
	Slide 93: Questions

