
TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.1

Ch. 4 – Communication - II

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.2

OBJECTIVES – 2/21

1

2

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.3

ONLINE DAILY FEEDBACK SURVEY

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L14.4

3

4

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.3

 Please classify your perspective on material covered in today’s

class (~31 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.03 ( - previous 6.70)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.34 ( - previous 5.61)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.5

MATERIAL / PACE

 Tuesday February 21 – 12:30pm – Cherry Parkes room 106

 Thursday February 23 – 12:30pm – Cherry Parkes room 106

 Wednesday March 1 – 12:30pm – Cherry Parkes room TBA

 Friday March 3 – 12:30pm – Cherry Parkes room TBA

 Earn up to 2.5% extra credit added to the overall course grade

 Scored out of 5 total points

 First seminar – earn 2 points

 2nd, 3 rd, 4 th seminar – earn 1 point each

Add to final course grade:

(Total_seminar_points / 5 points) * 2.5%

February 16, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.6

TENURE TRACK FACULTY CANDIDATE

RESEARCH SEMINARS – EXTRA CREDIT

5

6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.4

 For the mid-term question on shared data space implementation
with an unstructured peer -to-peer architecture:

 Is availabil ity/accessibil ity both an advantage and disadvantage ?

 ADVANTAGE: The unstructured peer -to-peer implementation
features multiple nodes. This enables requests to be distributed
across multiple nodes better. The centralized implementation is not
really a “distributed system”. I t can’t really scale, and will be
maxed-out if there are too many client requests.

 DISADVANTAGE: As opposed to accessibility/availability, the
disadvantage is Failure Transparency. I f one node containing a
subset of data is slow or unavailable it is very dif ficult to tell with
unstructured peer -to-peer. I t is easier to tell that the central server
has failed. Either ALL or NONE of the data will be available with
central server. Small amounts of data could become inaccessible
and it may be dif ficult for a user to discern this. The system
remains accessible/available, just some data is missing !

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.7

FEEDBACK FROM 2/16

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.8

OBJECTIVES – 2/21

7

8

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.5

 Team signup posted on Canvas under ‘People’

 GenericNode.tar.gz includes Dockerfile examples

 GenericNode.tar.gz assumes Java 11

 TCP/UDP/RMI Key Value Store

 Implement a “GenericNode” project which assumes the role of

a client or server for a Key/Value Store

 Recommended in Java 11 LTS

 Client node program interacts with server node to put, get,

delete, or list items in a key/value store

February 14, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.9

ASSIGNMENT 1

 In Netbeans IDE, under Tools menu, ‘Java Platforms’, be sure

to install and select JDK 11

 On left-hand Project menu, right-click on ‘GenericNode ’ project

 Select Properties

 Under Build | Compile, be sure Java Platform is JDK 11

 Under Sources, be sure Source/Binary Format is 11

February 14, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.10

USING JAVA 11 IN NETBEANS

9

10

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.6

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.11

OBJECTIVES – 2/21

 Sunday March 12 th

 Goal: Replicated Key Value Store

 Team signup to be posted on Canvas under ‘People’

 Builds off of Assignment 1 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking

for extra credit

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.12

ASSIGNMENT 2

11

12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.7

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.13

OBJECTIVES – 2/21

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.14

CHAPTER 4

Reviews and builds on
content from Ch. 2/3

13

14

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.8

 Middleware is reused by many applications

 Provide needed functions applications are built and

depend upon

▪ For example: communication frameworks/libraries

 Middleware offer many general -purpose protocols

 Middleware protocol examples:

▪ Authentication protocols: supports granting users and

processes access to authorized resources

▪ Doesn’t fit as an “application specific” protocol

▪ Considered a “Middleware protocol”

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.15

MIDDLEWARE PROTOCOLS

 Distributed commit protocols

▪ Coordinate a group of processes (nodes)

▪ Facilitate all nodes carrying out a particular operation

▪ Or abort transaction

▪ Provides distributed atomicity (all-or-nothing) operations

 Distributed locking protocols

▪ Protect a resource from simultaneous access from

multiple nodes

 Remote procedure call

▪ One of the oldest middleware protocols

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.16

MIDDLEWARE PROTOCOLS - 2

15

16

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.9

 Message queueing services

▪ Support synchronization of data

streams

▪ Transfer real-time data

▪ Distributed and scalable

implementation

 Multicast services

▪ Scale communication to thousands of

receivers spread across the Internet

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.17

MIDDLEWARE PROTOCOLS - 3

 Message queueing services

▪ Support synchronization of data

streams

▪ Transfer real-time data

▪ Distributed and scalable

implementation

 Multicast services

▪ Scale communication to thousands of

receivers spread across the Internet

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.18

MIDDLEWARE PROTOCOLS - 3

KEY: middleware protocols offer functionality to satisfy the

software requirements of many applications

Middleware functions are general, application-independent

in nature

Functions are so commonly needed they are offered in
reusable frameworks / libraries

17

18

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.10

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.19

ADAPTED REFERENCE MODEL

Combines network
and transport

Physical and
Data link

 Persistent communication

▪ Message submitted for transmission is stored by communication

middleware as long as it takes to deliver it

▪ Example: email system (SMTP)

▪ Receiver can be offline when message sent

▪ Temporal decoupling (delayed message delivery)

 Transient communication

▪ Message stored by middleware only as long as sender/receiver

applications are running

▪ If recipient is not active, message is dropped

▪ Transport level protocols typically are transient (no msg storage)

 What OSI protocol level is the SMTP Protocol?

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.20

TYPES OF COMMUNICATION

19

20

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.11

 Asynchronous communication

▪ Client does not block, continues doing other work

 Synchronous communication

▪ Client blocks and waits

 Three types of blocking (synchronous)

1. Until middleware notifies it will take over delivering request

2. Sender may block until request has been delivered

3. Sender waits until request is processed and result is returned

 Persistence + synchronization (blocking)

▪ Common scheme for message-queueing systems

▪ Publish message to queue : block until message delivered to queue

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.21

TYPES OF COMMUNICATION - 2

21

22

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.12

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.23

OBJECTIVES – 2/21

CH. 4.2: RPC (LIGHT-

OVERVIEW)

L14.24

23

24

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.13

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.25

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

 In a nutshell,

 Allow programs to call procedures on other machines

 Process on machine A calls procedure on machine B

 Calling process on machine A is suspended

 Execution of the called procedure takes place on machine B

 Data transported from caller (A) to provider (B) and back (A).

 No message passing is visible to the programmer

 Distribution transparency : make remote procedure call look

like a local one

 newlist = append(data, dbList)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

RPC – REMOTE PROCEDURE CALL

25

26

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.14

 Transparency enabled with client and server “stubs”

 Client has “stub” implementation of the server -side function

 Interface exactly same as server side

 But client DOES NOT HAVE THE IMPLEMENTATION

 Client stub: packs parameters into message, sends request to

server. Call blocks and waits for reply

 Server stub: transforms incoming

request into local procedure call

 Blocks to wait for reply

 Server stub unpacks request ,

calls server procedure

 It’s as if the routine were called locally

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.27

RPC - 2

 Server packs procedure results and sends back to client.

 Client “request” call unblocks and data is unpacked

 Client can’t tell method was called remotely over the

network… except for network latency…

 Call abstraction enables clients to invoke functions in

alternate languages, on different machines

 Differences are handled by the RPC “framework”

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

RPC - 3

27

28

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.15

1. Client procedure calls client stub

2. Client stub builds message and calls OS

3. Client’s OS send message to remote OS

4. Server OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server performs work, returns results to server -side stub

7. Server stub packs results in messages, calls server OS

8. Server OS sends message to client’s OS

9. Client’s OS delivers message to client stub

10.Client stub unpacks result, returns to client

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

RPC STEPS

 STUBS: take parameters, pack into a message, send across

network

 Parameter marshaling:

 newlist = append(data, dbList)

 Two parameters must be sent over network and correctly

interpreted

 Message is transferred as a series of bytes

 Data is serialized into a “stream” of bytes

 Must understand how to unmarshal (unserialize) data

 Processor architectures vary with how bytes are numbered:

Intel (right→left), older ARM (left→right)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.30

PARAMETER PASSING

29

30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.16

 Big-Endian: write bytes left to right (ARM)

 Little-endian: write bytes right to left (Intel)

 Networks: typically transfer data in Big -Endian form

 Solution: transform data to machine/network independent

format

 Marshaling/unmarshaling:

transform data to neutral

format

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

RPC: BYTE ORDERING

 Passing by value is straightforward

 Passing by reference is challenging

 Pointers only make sense on local machine owning the data

 Memory space of client and server are dif ferent

 Solutions to RPC pass-by -reference:

1. Forbid pointers altogether

2. Replace pass-by-reference with pass-by-value

▪ Requires transferring entire object/array data over network

▪ Read-only optimization: don’t return data if unchanged on server

3. Passing global references

▪ Example: file handle to file accessible by client and server
via shared file system

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.32

RPC: PASS-BY-REFERENCE

31

32

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.17

 Let developer specify which routines will be called

remotely

▪ Automate client/server side stub generation for these

routines

 Embed remote procedure call mechanism into the

programming language

▪ E.g. Java RMI

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

RPC: DEVELOPMENT SUPPORT

void func(char x; float y; int z[5])

 1-byte character transmits with 3-padded bytes

 Float sent as whole word (4-bytes)

▪ Array as group of words, proceed by word describing
length

▪ Client stub must package data in specific format

▪ Server stub must receive and unpackage in specific format

 Client and server must agree on representation of simple
data structures: int, char, floats w/ little endian

 RPC clients/servers: must agree on protocol

▪ TCP? UDP?

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.34

STUB GENERATION

33

34

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.18

 Interfaces are specified using an Interface Definition

Language (IDL)

 Interface specifications in IDL are used to generate language

specific stubs

 IDL is compiled into client and server -side stubs

 Much of the plumbing for RPC involves maintaining

boilerplate-code

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.35

STUB GENERATION - 2

 Leads to simpler application development

 Helps with providing access transparency

▪ Differences in data representation, and how object is

accessed

▪ Inter-language parameter passing issues resolved:

→ just 1 language

 Well known example: Java Remote Method Invocation

RPC equivalent embedded in Java

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.36

LANGUAGE BASED SUPPORT

35

36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.19

 RPC: client typically blocks until reply is returned

 Strict blocking unnecessary when there is no result

 Asynchronous RPCs

▪ When no result, server can immediately send reply

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.37

RPC VARIATIONS

Client/server synchronous RPC Client/server asynchronous RPC

 What are tradeoffs for synchronous vs. asynchronous

procedure calls?

▪ For a local program

▪ For a distributed program (system)

 Use cases for asynchronous procedure calls

▪ Long running jobs allow client to perform alternate work

in background (in parallel)

▪ Client may need to make multiple service calls to multiple

server backends at the same time…

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

RPC VARIATIONS – 2

37

38

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.20

 Deferred synchronous RPC

▪ Server performs CALLBACK to client

▪ Client, upon making call, spawns separate thread which blocks and

waits for call

 One-way RPCs

▪ Client does not wait for any server acknowledgement – it just goes…

 Client poll ing

▪ Client (using separate thread) continually polls server for result

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

TYPES OF ASYNCHRONOUS RPC

 Send RPC request simultaneously to group of servers

 Hide that multiple servers are involved

 Consideration:

Does the client need all results or just one?

 Use cases:

▪ Fault tolerance – wait for just one

▪ Replicate execution – verify

results, use first result

▪ Divide and conquer - multiple

RPC calls work in parallel on

different parts of dataset,

client aggregates results

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

MULTICAST RPC

39

40

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.21

 DCE : basis for Microsoft’s distributed computing object model
(DCOM)

 Used in Samba, cross-platform file and print sharing via RPC

 Middleware system – provides layer of abstraction between OS
and distributed applications

 Designed for Unix, ported to all major operating systems

 Install DCE middleware on set of heterogeneous machines –
distributed applications can then access shared resources to:

▪ Mount a windows file system on Linux

▪ Share a printer connected to a Windows server

 Uses client/server model

 All communication via RPC

 DCE daemon tracks participating machines, ports

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

RPC EXAMPLE: DISTRIBUTED

COMPUTING ENVIRONMENT (DCE)

 Server name comes from directory server

 Server port comes from DCE daemon

▪ DCE daemon has a well known port # client already knows

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.42

DCE CLIENT-TO-SERVER BINDING

41

42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.22

1. Create Interface definition language (IDL) files

▪ IDL files contain Globally unique identifier (GUID)

▪ GUIDs must match: client and server compare GUIDs to
verify proper versions of the distributed object

▪ 128-bit binary number

2. Next, add names of remote procs and params to IDL

3. Then compile the IDL files
Compiler generates:

▪ Header file (interface.h in C)

▪ Client stub

▪ Server stub

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.43

EXTRA: DCE – CLIENT/SERVER DEVELOPMENT

 For a client to call a server, server must be registered

▪ Java: uses RMI registry

 Client process to search for RMI server:

1. Locate the server’s host machine

2. Locate the server (i.e. process) on the host

 Client must discover the server’s RPC port

 DCE daemon: maintains table of (server,port) pairs

 When servers boot:

1. Server asks OS for a port, registers port with DCE daemon

2. Also, server registers with directory server, separate server

that tracks DCE servers

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

EXTRA: DCE – BINDING CLIENT TO SERVER

43

44

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.23

WE WILL RETURN AT

2:40 PM

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.46

OBJECTIVES – 2/21

45

46

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.24

Apache ActiveMQ

CH. 4.3: MESSAGE-

ORIENTED

COMMUNICATION

L14.47

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.48

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

47

48

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.25

 RPC assumes that the client and server are running

at the same time… (temporally coupled)

 RPC communication is typically synchronous

 When client and server are not running at the same time

 Or when communications should not be blocked…

 This is a use case for message-oriented communication

▪ Synchronous vs. asynchronous

▪Messaging systems

▪Message-queueing systems

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.49

MESSAGE ORIENTED COMMUNICATION

 Communication end point

 Applications can read / write data to

 Analogous to file streams for I/O, but network streams

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.50

SOCKETS

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

49

50

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.26

 Servers execute 1st - 4 operations (socket, bind, listen, accept)

 Methods refer to C API functions

 Mappings across different libraries will vary (e.g. Java)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.51

SOCKETS - 2

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Socket: creates new communication end point

 Bind: associated IP and port with end point

 Listen: for connection-oriented communication, non-blocking

call reserves buffers for specified number of pending

connection requests server is willing to accept

 Accept: blocks until connection request arrives

▪ Upon arrival, new socket is created matching original

▪ Server spawns thread, or forks process to service incoming request

▪ Server continues to wait for new connections on original socket

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.52

SERVER SOCKET OPERATIONS

51

52

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.27

 Socket: Creates socket client uses for communication

 Connect: Server transport-level address provided, client blocks

until connection established

 Send: Supports sending data (to: server/client)

 Receive: Supports receiving data (from: server/client)

 Close: Closes communication channel

▪ Analogous to closing a file stream

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.53

CLIENT SOCKET OPERATIONS

 Sockets provide primitives for implementing your own

TCP/UDP communication protocols

 Directly using sockets for transient (non -persisted)

messaging is very basic, can be brittle

▪ Easy to make mistakes…

 Any extra communication facilities must be implemented

by the application developer

 More advanced approaches are desirable

▪ E.g. frameworks with support common desirable

functionality

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.54

SOCKET COMMUNICATION

53

54

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.28

 (0MQ) High performance intelligent socket library

 zero broker, zero latency, zero admin, zero cost, zero waste

 Provides a message queue

 Builds upon functionality of traditional sockets

 Implementation in C++

▪ 30+ language bindings provided

 Enables support for various messaging patterns

 Can support brokered (centralized) and broker -less topologies

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.55

ZEROMQ – SOCKET LIBRARY

 ZeroMQ is TCP-connection-oriented communication

 Provides socket-like primitives with more functionality

▪ Basic socket operations abstracted away

▪ Supports many-to-one, one-to-one, and one-to-many

connections

▪Multicast connections (one-to-many – single server socket

simultaneously “connects” to multiple clients)

 Asynchronous messaging

 Supports pairing sockets to support communication

patterns

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.56

ZEROMQ – 2

55

56

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.29

 Request-reply pattern

▪ Traditional client-server communication (e.g. RPC)

▪ Client: request socket (REQ)

▪ Server: reply socket (REP)

 Publish-subscribe pattern

▪ Clients subscribe to messages published by servers

▪ As in event-based coordination (Ch. 1)

▪ Supports multicasting messages from

server to multiple

▪ Client: subscribe socket (SUB)

▪ Server: publish socket (PUB)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.57

ZEROMQ - PATTERNS

 Pipeline pattern (FIFO-queue)

▪ Analogous to a producer/consumer bounded buffer

▪ Producing processes generate results, push to pipe

▪ Consuming processes consume results,

pull from pipe

▪ Producers: push socket (PUSH socket)

▪ Consumers: pull socket (PULL socket)

▪ Push- distributes messages to all pull

clients evenly

▪ Consumers pull results from pipe and

push results downstream

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.58

ZEROMQ – PATTERNS - 2

57

58

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.30

Cloud services

▪Amazon Simple Queueing Service (SQS)

▪Azure service bus

Open source frameworks

▪Nanomsg

▪ZeroMQ

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.59

QUEUEING ALTERNATIVES

 MPI introduced – version 1.0 March 1994

 Message passing API for parallel programming: supercomputers

 Communication protocol for parallel programming for:

Supercomputers, High Performance Computing (HPC) clusters

 Point-to-point and collective communication

 Goals: high performance, scalability, portability

 Most implementations

in C, C++, Fortran

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.60

MESSAGE PASSING INTERFACE (MPI)

59

60

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.31

 Motivation: sockets insufficient for interprocess

communication on large scale HPC compute clusters and

super computers

▪ Sockets at the wrong level of abstraction

▪ Sockets designed to communicate over the network using

general purpose TCP/IP stacks

▪ Not designed for proprietary protocols

▪ Not designed for high-speed interconnection

networks used by supercomputers,

HPC-clusters, etc.

▪ Better buffering and synchronization needed

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.61

MOTIVATIONS FOR MPI

 Supercomputers had proprietary communication libraries

▪ Offer a wealth of efficient communication operations

 All libraries mutually incompatible

 Led to significant portability problems developing parallel

code that could migrate across supercomputers

 Led to development of MPI

▪ To support transient (non-persistent) communication for

parallel programming

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.62

MOTIVATIONS FOR MPI - 2

61

62

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.32

 Very large library, v1.0 (1994) 128 functions

 Version 3 (2015) 440+

 MPI data types:

 Provide common mappings

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.63

MPI FUNCTIONS / DATATYPES

 MPI - no recovery for process crashes, network partitions

 Communication among grouped processes:(groupID, processID)

 IDs used to route messages in place of IP addresses

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.64

COMMON MPI FUNCTIONS

Operation Description

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send message, wait until copied to local/remote buffer

MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue

MPI_issend Pass reference to outgoing messages, wait until receipt start

MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!

63

64

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.33

 Message-queueing systems

▪ Provide extensive support for persistent asynchronous

communication

▪ In contrast to transient systems

▪ Temporally decoupled: messages are eventually delivered

to recipient queues

 Message transfers may take minutes vs. sec or ms

 Each application has its own private queue to which other

applications can send messages

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.65

MESSAGE-ORIENTED-MIDDLEWARE

 Enables communication between applications, or sets of

processes

▪ User applications

▪ App-to-database

▪ To support distributed real-time computations

 Use cases

▪ Batch processing, Email, workflow, groupware, routing

subqueries

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.66

MESSAGE QUEUEING SYSTEMS:

USE CASES

65

66

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.34

 Scenarios:

(a) Sender/receiver

both running

(b) Sender running,

receiver offline

(c) Sender offline,

receiver running

(d) Sender/receiver

both offline

 Queue persists msgs,

and attempts to send

them but no one may be available to receive them…

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.67

MESSAGE QUEUEING SYSTEMS

SENDS

READS

 Key: Truly persistent messaging

 Message queueing systems can persist messages for awhile

and senders and receivers can be offline

 Messages

 Contain any data, may have size limit

 Are properly addressed, to a destination queue

 Basic Inteface

 PUT: called by sender to append msg to specified queue

 GET: blocking call to remove oldest msg from specified queue

▪ Blocked if queue is empty

 POLL: Non-blocking, gets msg from specified queue

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.68

MESSAGE QUEUEING SYSTEMS - 2

67

68

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.35

 Basic interface cont’d

 NOTIFY: install a callback function, for when msg is placed

into a queue. Notifies receivers

 Queue managers: manage individual message queues as a

separate process/library

 Applications get/put messages only from local queues

 Queue manager and apps share local network

 ISSUES:

 How should we reference the destination queue?

 How should names be resolved (looked-up)?

▪ Contact address (host, port) pairs

▪ Local look-up tables can be stored at each queue manager

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.69

MESSAGE QUEUEING SYSTEMS

ARCHITECTURE

 ISSUES:

 How do we route traffic between queue managers?

▪ How are name-to-address mappings efficiently kept?

▪ Each queue manager should be known to all others

 Message brokers

 Handle message conversion among dif ferent users/formats

 Addresses cases when senders and receivers don’t speak the

same protocol (language)

 Need arises for message protocol converters

▪ “Reformatter” of messages

 Act as application-level gateway

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.70

MESSAGE QUEUEING SYSTEMS

ARCHITECTURE - 2

69

70

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.36

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.71

MESSAGE BROKER ORGANIZATION

Plugins to convert
messages between APPs Application-level

Queues

 Message-queueing systems initially developed to enable
legacy applications to interoperate

 Decouple inter-application communication to “open”
messaging-middleware

 Many are proprietary solutions, so not very open

 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP) , 2006

 Address openness/interoperability of proprietary solutions

 Open wire protocol for messaging with powerful routing
capabilities

 Help abstract messaging and application interoperability by
means of a generic open protocol

 Suffer from incompatibil ity among protocol versions

 pre-1.0, 1.0+

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.72

AMQP PROTOCOL

71

72

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.37

 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with

potentially many channels, stable, reused by many

channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two

channels

 Link: provide fine-grained flow-control of message

transfer/status between applications and queue manager

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.73

AMQP - 2

 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to

recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.74

AMQP MESSAGING

73

74

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.38

 Some examples:

 RabbitMQ, Apache QPid

▪ Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka

▪ Dumb broker (message store), similar to a distributed log file

▪ Smart consumers – intelligence pushed off to the clients

▪ Stores stream of records in categories called topics

▪ Supports voluminous data, many consumers, with minimal O/H

▪ Kafka does not track which messages were read by each consumer

▪ Messages are removed after timeout

▪ Clients must track their own consumption (Kafka doesn’t help)

▪ Messages have key, value, timestamp

▪ Supports high volume pub/sub messaging and streams

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.75

MESSAGE-ORIENTED-MIDDLEWARE

EXAMPLES:

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.76

OBJECTIVES – 2/21

75

76

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.39

Apache ActiveMQ

CH. 4.4: MULTICAST

COMMUNICATION

L14.77

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.78

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

77

78

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.40

 Sending data to multiple receivers

 Many failed proposals for network-level / transport-level
protocols to support multicast communication

 Problem: How to set up communication paths for
information dissemination?

 Solutions: require huge management effort, human
intervention

 Focus shifted more recently to peer-to-peer networks

▪ Structured overlay networks can be setup easily and
provide efficient communication paths

▪ Application-level multicasting techniques more successful

▪ Gossip-based dissemination: unstructured p2p networks

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.79

MULTICAST COMMUNICATION

 Overlay network

▪ Virtual network implemented on top of an actual physical network

 Underlying network

▪ The actual physical network that implements the overlay

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.80

NETWORK STRUCTURE

79

80

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.41

 Application level multi -casting

▪ Nodes organize into an overlay network

▪ Network routers not involved in group membership

▪ Group membership is managed at the application level (A2)

 Downside:

▪ Application-level routing likely less efficient than network -level

▪ Necessary tradeoff until having better multicasting protocols at

lower layers

 Overlay topologies

▪ TREE: top-down, unique paths between nodes

▪ MESH: nodes have multiple neighbors; multiple paths between nodes

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.81

APPLICATION LEVEL

TREE-BASED MULTICASTING

 Measure quality of application-level multicast tree

 Link stress: is defined per link, counts how often a packet

crosses same link (ideally not more than 1)

 Stretch: ratio in delay between two nodes in the overlay vs.

the underlying networks

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.82

MULTICAST TREE METRICS

Numbers represent
network delay
between nodes

81

82

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.42

 Stretch (Relative Delay Penalty RDP)

 CONSIDER routing from B to C

 What is the Stretch?

 Stretch (delay ratio) = Overlay -delay / Underlying-delay

 Overlay: B→Rb→Ra→Re→E→Re→Rc→Rd→D→Rd→Rc→ C

= 73

 Underlying: B→Rb→Rd→Rc→C = 47

 Stretch = 73 / 47 = 1.55

 Captures additional time (stretch) to transfer msg on overlay net

 Tree cost: Overall cost of the overlay network

 Ideally would like to minimize network costs

 Find a minimal spanning tree which minimizes total time for

disseminating information to all nodes

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.83

MULTICAST TREE METRICS - 2

 Broadcasting: every node in overlay network receives message

 How many nodes are in the overlay network?

 How many nodes are in the underlying network?

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.84

FLOOD-BASED MULTICASTING

83

84

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.43

 Broadcasting: every node in overlay network receives message

 Key design issue: minimize the use of intermediate nodes for
which the message is not intended

 If only leaf nodes are to receive the multicast message, many
intermediate nodes are involved in storing and forwarding the
message not meant for them

 Solution: construct an overlay network for each multicast
group

▪ Sending a message to the group, becomes the same as broadcasting
to the multicast group (group of nodes that listen and receive traffic
for a shared IP address)

 Flooding: each node simply forwards a message to each of its
neighbors, except to the message originator

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.85

FLOOD-BASED MULTICASTING

 When there is no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Random graphs are described by a probability distribution

 Probability Pedge that two nodes are joined

 Overlay network will have: ½ * Pedge * N * (N-1) edges

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.86

RANDOM GRAPHS

Random graphs allow us to assume
some structure (# of nodes, # of edges)
regarding the network by scaling the
Pedge probability

Assumptions may help then to
reason or rationalize about the
network…

85

86

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.44

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.87

PROBABILISTIC FLOODING

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.88

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

87

88

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.45

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.89

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.90

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

½ * (.1) * (10000) * (9999)

89

90

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.46

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.91

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

½ * (.1) * (10000) * (9999)
4,999,500 edges

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.92

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

91

92

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.47

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.93

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message

to Q is p=(1-pflood)n

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.94

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message

to Q is p=(1-pflood)n

if n=10, p=(1-.01)10=.904 (pretty likely)
if n=100, p=(1-.01)100=.366 (less likely)

if n=1000, p=(1-.01)298=.05 (unlikely)

93

94

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.48

 For deterministic topologies (such as hypercube), design of

efficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a

deterministic topology

 Schlosser et al [2002] – offer simple and efficient

broadcasting scheme that relies on keeping track of neighbors

per dimension

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.95

MESSAGE FLOODING

 Hypercube Broadcast

 N(1001) starts the network broadcast

 N(1001) neighbors {0001,1000,1011,1101}

 N(1001) Sends message to all neighbors

 >>Edge Labels (which bit is changed?, 1 st, 2nd, 3 rd, 4 th…)

 Edge to 0001 – labeled 1 – change the 1st bit

 Edge to 1000 – labeled 4 – change the 4 th bit

 Edge to 1011 – labeled 3 – change the 3 rd bit

 Edge to 1101 – labeled 2 – change the 2nd bit

 RULE: nodes only forward along edges with a higher dimension

 Node 1101 receives message on edge labeled 2

 Broadcast msg is only forwarded on higher valued edges (>2)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.96

MESSAGE

FLOODING - 2

95

96

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.49

 Hypercube: forward msg along edges with higher dimension

 Node(1101)–neighbors {0101,1100,1001,1111}

 Node (1101) - incoming broadcast edge = 2

 Label Edges:

 Edge to 0101 – labeled 1 – change the 1st bit

 Edge to 1100 – labeled 4 – change the 4 th bit *<FORWARD>*

 Edge to 1001 – labeled 2 – change the 2nd bit

 Edge to 1111 – labeled 3 – change the 3 rd bit *<FORWARD>*

 N(1101) broadcast – forward only to N(1100) and N(1111)

 (1100) and (1111) are the higher dimension edges

 Broadcast requires just: N-1 messages, where nodes N=2n,
n=dimensions of hypercube

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.97

MESSAGE FLOODING - 3

 When structured peer-to-peer topologies are not available

 Gossip based approaches support multicast communication
over unstructured peer-to-peer networks

 General approach is to
leverage how gossip
spreads across a group

 This is also called
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.98

GOSSIP BASED DATA DISSEMINATION

97

98

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.50

 Epidemic algorithms: algorithms for large-scale distributed

systems that spread information

 Goal: “infect” all nodes with new information as fast as

possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.99

INFORMATION DISSEMINATION

Gossiping

Nodes are randomly selected

One node, randomly selects any other node in the

network to propagate the network

Complete set of nodes is known to each member

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.100

EPIDEMIC PROTOCOLS

99

100

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.51

 Anti-entropy: Propagation model where node P picks node Q at
random and exchanges message updates

 Akin to random walk

 Types of message exchange:

 PUSH: P only pushes its own updates to Q

 PULL: P only pulls in new updates from Q

 T WO-WAY: P and Q send updates to each other
(i.e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden
susceptible nodes

 Pull: better because susceptible nodes can pull updates from
infected nodes

 Push-pull is better still

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.101

ANTI ENTROPY DISSEMINATION MODEL

FOR GOSSIPING

P Q

P Q

P Q

 Round: span of time during which every node takes initiative

to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all

nodes requires O(log(N)), where N=number of nodes

 Let p i denote probability that

node P has not received

msg m after the i th round.

 For pull, push, and push-pull

based approaches:

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.102

ANTI ENTROPY EFFECTIVENESS

10,000 nodes →

101

102

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.52

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another

node

 Node P may loose interest in spreading the rumor with

probability = pstop, let’s say 20% . . . (or 0.20)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.103

RUMOR SPREADING

 pstop, is the probability node will stop spreading once contacting a
node that already has the message

 Does not guarantee all nodes will be updated

 The fraction of nodes s, that remain susceptible grows relative
to the probability that node P
stops propagating when finding
a node already having the
message

 Fraction of nodes not updated
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping →

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.104

RUMOR SPREADING - 2

103

104

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.53

 Gossiping is good for spreading data

 But how can data be removed from the system?

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from

reinitializing from gossip from other nodes

 Death certificates time-out after expected time required

for data element to clear out of entire system

 A few nodes maintain death certificates forever

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.105

REMOVING DATA

 For example:

 Node P keeps death certificates forever

 Item X is removed from the system

 Node P receives an update request for Item X, but also holds

the death certificate for Item X

 Node P will recirculate the death certificate across the

network for Item X

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.106

DEATH CERTIFICATE EXAMPLE

105

106

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.54

QUESTIONS

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.10
7

107

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 2/21
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Tenure track faculty candidate research seminars – EXTRA CREDIT
	Slide 7: Feedback from 2/16
	Slide 8: OBJECTIVES – 2/21
	Slide 9: Assignment 1
	Slide 10: Using java 11 in netbeans
	Slide 11: OBJECTIVES – 2/21
	Slide 12: Assignment 2
	Slide 13: OBJECTIVES – 2/21
	Slide 14: Chapter 4
	Slide 15: Middleware protocols
	Slide 16: Middleware protocols - 2
	Slide 17: Middleware protocols - 3
	Slide 18: Middleware protocols - 3
	Slide 19: Adapted reference model
	Slide 20: Types of communication
	Slide 21: Types of communication - 2
	Slide 22
	Slide 23: OBJECTIVES – 2/21
	Slide 24: Ch. 4.2: RPC (light-overview)
	Slide 25: Chapter 4
	Slide 26: Rpc – remote procedure call
	Slide 27: Rpc - 2
	Slide 28: Rpc - 3
	Slide 29: Rpc steps
	Slide 30: Parameter passing
	Slide 31: Rpc: byte ordering
	Slide 32: Rpc: pass-by-reference
	Slide 33: Rpc: development support
	Slide 34: Stub generation
	Slide 35: Stub generation - 2
	Slide 36: Language based support
	Slide 37: Rpc variations
	Slide 38: Rpc variations – 2
	Slide 39: Types of asynchronous rpc
	Slide 40: Multicast rpc
	Slide 41: RPC Example: distributed computing environment (DCE)
	Slide 42: DCE client-to-server binding
	Slide 43: EXTRA: Dce – client/server development
	Slide 44: EXTRA: Dce – binding client to server
	Slide 45: We will return at 2:40 pm
	Slide 46: OBJECTIVES – 2/21
	Slide 47: Ch. 4.3: message-oriented communication
	Slide 48: Chapter 4
	Slide 49: Message oriented communication
	Slide 50: sockets
	Slide 51: Sockets - 2
	Slide 52: Server Socket operations
	Slide 53: Client socket operations
	Slide 54: Socket communication
	Slide 55: ZeroMq – socket library
	Slide 56: Zeromq – 2
	Slide 57: Zeromq - patterns
	Slide 58: Zeromq – patterns - 2
	Slide 59: Queueing alternatives
	Slide 60: Message passing interface (MPI)
	Slide 61: Motivations for mpi
	Slide 62: Motivations for mpi - 2
	Slide 63: Mpi functions / datatypes
	Slide 64: Common Mpi functions
	Slide 65: Message-oriented-middleware
	Slide 66: Message queueing systems: USE cases
	Slide 67: Message queueing systems
	Slide 68: Message queueing systems - 2
	Slide 69: Message queueing systems architecture
	Slide 70: Message queueing systems architecture - 2
	Slide 71: Message broker organization
	Slide 72: AmqP protocol
	Slide 73: Amqp - 2
	Slide 74: Amqp messaging
	Slide 75: Message-oriented-middleware examples:
	Slide 76: OBJECTIVES – 2/21
	Slide 77: Ch. 4.4: multicast communication
	Slide 78: Chapter 4
	Slide 79: Multicast communication
	Slide 80: Network structure
	Slide 81: Application level tree-based multicasting
	Slide 82: Multicast tree metrics
	Slide 83: Multicast tree metrics - 2
	Slide 84: Flood-based multicasting
	Slide 85: Flood-based multicasting
	Slide 86: Random graphs
	Slide 87: Probabilistic flooding
	Slide 88: Probabilistic flooding
	Slide 89: Probabilistic flooding
	Slide 90: Probabilistic flooding
	Slide 91: Probabilistic flooding
	Slide 92: Probabilistic flooding
	Slide 93: Probabilistic flooding
	Slide 94: Probabilistic flooding
	Slide 95: Message flooding
	Slide 96: Message flooding - 2
	Slide 97: Message flooding - 3
	Slide 98: Gossip based data dissemination
	Slide 99: Information dissemination
	Slide 100: Epidemic protocols
	Slide 101: Anti entropy dissemination model for gossiping
	Slide 102: Anti entropy effectiveness
	Slide 103: Rumor spreading
	Slide 104: Rumor spreading - 2
	Slide 105: Removing data
	Slide 106: Death certificate example
	Slide 107: Questions

