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TCSS 558: 

APPLIED DISTRIBUTED COMPUTING

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication
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 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (~31 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.03  ( - previous 6.70)  

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.34  ( - previous 5.61)
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MATERIAL / PACE

 Tuesday February 21 – 12:30pm – Cherry Parkes room 106

 Thursday February 23 – 12:30pm – Cherry Parkes room 106

 Wednesday March 1 – 12:30pm – Cherry Parkes room TBA

 Friday March 3 – 12:30pm – Cherry Parkes room TBA

 Earn up to 2.5% extra credit added to the overall course grade

 Scored out of 5 total points

 First seminar – earn 2 points

 2nd, 3 rd, 4 th seminar – earn 1 point each

Add to final course grade:

(Total_seminar_points / 5 points) * 2.5%
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TENURE TRACK FACULTY CANDIDATE

RESEARCH SEMINARS – EXTRA CREDIT
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 For the mid-term question on shared data space implementation 
with an unstructured peer -to-peer architecture:

 Is availabil ity/accessibil ity both an advantage and disadvantage ?

 ADVANTAGE: The unstructured peer -to-peer implementation
features multiple nodes. This enables requests to be distributed 
across multiple nodes better. The centralized implementation is not 
really a “distributed system”. I t can’t really scale, and will be 
maxed-out if  there are too many client requests.

 DISADVANTAGE: As opposed to accessibility/availability, the 
disadvantage is Failure Transparency. I f one node containing a 
subset of data is slow or unavailable it is very dif ficult to tell with 
unstructured peer -to-peer. I t is easier to tell that the central server 
has failed.  Either ALL or NONE of the data will be available with 
central server.  Small amounts of data could become inaccessible
and it may be dif ficult for a user to discern this.  The system 
remains accessible/available, just some data is missing !
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FEEDBACK FROM 2/16

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication
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 Team signup posted on Canvas under ‘People’

 GenericNode.tar.gz includes Dockerfile examples

 GenericNode.tar.gz assumes Java 11

 TCP/UDP/RMI Key Value Store

 Implement a “GenericNode” project which assumes the role of 

a client or server for a Key/Value Store

 Recommended in Java 11 LTS

 Client node program interacts with server node to put, get, 

delete, or list items in a key/value store
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ASSIGNMENT 1

 In Netbeans IDE, under Tools menu, ‘Java Platforms’, be sure

to install and select JDK 11

 On left-hand Project menu, right-click on ‘GenericNode ’  project

 Select Properties

 Under Build | Compile, be sure Java Platform is JDK 11

 Under Sources, be sure Source/Binary Format is 11 

February 14, 2023
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USING JAVA 11 IN NETBEANS
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 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication
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OBJECTIVES – 2/21

 Sunday March 12 th

 Goal: Replicated Key Value Store

 Team signup to be posted on Canvas under ‘People’

 Builds off of Assignment 1 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking 

for extra credit

February 21, 2023
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ASSIGNMENT 2
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 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication
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OBJECTIVES – 2/21

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 21, 2023
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CHAPTER 4

Reviews and builds on
content from Ch. 2/3
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 Middleware is reused by many applications

 Provide needed functions applications are built and 

depend upon

▪ For example: communication frameworks/libraries

 Middleware offer many general -purpose protocols

 Middleware protocol examples:

▪ Authentication protocols: supports granting users and 

processes access to authorized resources

▪ Doesn’t fit as an “application specific” protocol

▪ Considered a “Middleware protocol”

February 21, 2023
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MIDDLEWARE PROTOCOLS

 Distributed commit protocols

▪ Coordinate a group of processes (nodes)

▪ Facilitate all nodes carrying out a particular operation

▪ Or abort transaction

▪ Provides distributed atomicity (all-or-nothing) operations

 Distributed locking protocols

▪ Protect a resource from simultaneous access from 

multiple nodes

 Remote procedure call

▪ One of the oldest middleware protocols

February 21, 2023
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MIDDLEWARE PROTOCOLS - 2
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 Message queueing services

▪ Support synchronization of data 

streams

▪ Transfer real-time data

▪ Distributed and scalable 

implementation

 Multicast services

▪ Scale communication to thousands of 

receivers spread across the Internet

February 21, 2023
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MIDDLEWARE PROTOCOLS - 3

 Message queueing services

▪ Support synchronization of data 

streams

▪ Transfer real-time data

▪ Distributed and scalable 

implementation

 Multicast services

▪ Scale communication to thousands of 

receivers spread across the Internet
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MIDDLEWARE PROTOCOLS - 3

KEY: middleware protocols offer functionality to satisfy the

software requirements of many applications

Middleware functions are general, application-independent

in nature

Functions are so commonly needed they are offered in
reusable frameworks / libraries
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ADAPTED REFERENCE MODEL

Combines network
and transport 

Physical and
Data link

 Persistent communication

▪ Message submitted for transmission is stored by communication 

middleware as long as it takes to deliver it

▪ Example: email system (SMTP)

▪ Receiver can be offline when message sent

▪ Temporal decoupling (delayed message delivery)

 Transient communication

▪ Message stored by middleware only as long as sender/receiver 

applications are running

▪ If recipient is not active, message is dropped

▪ Transport level protocols typically are transient (no msg storage)

 What OSI protocol level is the SMTP Protocol?

February 21, 2023
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TYPES OF COMMUNICATION
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 Asynchronous communication

▪ Client does not block, continues doing other work

 Synchronous communication

▪ Client blocks and waits

 Three types of blocking (synchronous)

1. Until middleware notifies it will take over delivering request

2. Sender may block until request has been delivered

3. Sender waits until request is processed and result is returned

 Persistence + synchronization (blocking)

▪ Common scheme for message-queueing systems

▪ Publish message to queue : block until message delivered to queue
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TYPES OF COMMUNICATION - 2
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 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication
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OBJECTIVES – 2/21

CH. 4.2: RPC (LIGHT-

OVERVIEW)

L14.24
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 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination
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CHAPTER 4

These sections feature
many details,  
Our focus is on the
“big picture”

 In a nutshell,

 Allow programs to call procedures on other machines

 Process on machine A calls procedure on machine B

 Calling process on machine A is suspended

 Execution of the called procedure takes place on machine B

 Data transported from caller (A) to provider (B) and back (A).

 No message passing is visible to the programmer

 Distribution transparency : make remote procedure call look 

like a local one

 newlist = append(data, dbList)

February 21, 2023
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RPC – REMOTE PROCEDURE CALL
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 Transparency enabled with client and server “stubs”

 Client has “stub” implementation of the server -side function

 Interface exactly same as server side

 But client DOES NOT HAVE THE IMPLEMENTATION

 Client stub: packs parameters into message, sends request to 

server. Call blocks and waits for reply

 Server stub: transforms incoming 

request into local procedure call

 Blocks to wait for reply

 Server stub unpacks request ,  

calls server procedure

 It’s as if  the routine were called locally

February 21, 2023
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RPC - 2

 Server packs procedure results and sends back to client.

 Client “request” call unblocks and data is unpacked

 Client can’t tell method was called remotely over the 

network… except for network latency…

 Call abstraction enables clients to invoke functions in 

alternate languages, on different machines

 Differences are handled by the RPC “framework”

February 21, 2023
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RPC - 3
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1. Client procedure calls client stub

2. Client stub builds message and calls OS

3. Client’s OS send message to remote OS

4. Server OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server performs work, returns results to server -side stub

7. Server stub packs results in messages, calls server OS

8. Server OS sends message to client’s OS

9. Client’s OS delivers message to client stub

10.Client stub unpacks result, returns to client

February 21, 2023
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RPC STEPS

 STUBS: take parameters, pack into a message, send across 

network

 Parameter marshaling:

 newlist = append(data, dbList)

 Two parameters must be sent over network and correctly 

interpreted

 Message is transferred as a series of bytes

 Data is serialized into a “stream” of bytes

 Must understand how to unmarshal (unserialize) data

 Processor architectures vary with how bytes are numbered: 

Intel (right→left), older ARM (left→right)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.30

PARAMETER PASSING
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 Big-Endian: write bytes left to right (ARM)

 Little-endian: write bytes right to left (Intel)

 Networks: typically transfer data in Big -Endian form

 Solution: transform data to machine/network independent 

format

 Marshaling/unmarshaling: 

transform data to neutral 

format

February 21, 2023
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RPC: BYTE ORDERING

 Passing by value is straightforward

 Passing by reference is challenging

 Pointers only make sense on local machine owning the data

 Memory space of client and server are dif ferent

 Solutions to RPC pass-by -reference:

1. Forbid pointers altogether

2. Replace pass-by-reference with pass-by-value

▪ Requires transferring entire object/array data over network

▪ Read-only optimization: don’t return data if unchanged on server

3. Passing global references

▪ Example: file handle to file accessible by client and server 
via shared file system

February 21, 2023
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RPC: PASS-BY-REFERENCE
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 Let developer specify which routines will be called 

remotely

▪ Automate client/server side stub generation for these 

routines

 Embed remote procedure call mechanism into the 

programming language

▪ E.g. Java RMI

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

RPC: DEVELOPMENT SUPPORT

void func(char x; float y; int z[5])

 1-byte character transmits with 3-padded bytes

 Float sent as whole word (4-bytes)

▪ Array as group of words, proceed by word describing 
length

▪ Client stub must package data in specific format

▪ Server stub must receive and unpackage in specific format

 Client and server must agree on representation of simple 
data structures: int, char, floats w/ little endian 

 RPC clients/servers: must agree on protocol

▪ TCP? UDP?

February 21, 2023
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STUB GENERATION
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 Interfaces are specified using an Interface Definition 

Language (IDL)

 Interface specifications in IDL are used to generate language 

specific stubs

 IDL is compiled into client and server -side stubs

 Much of the plumbing for RPC involves maintaining 

boilerplate-code

February 21, 2023
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STUB GENERATION - 2

 Leads to simpler application development

 Helps with providing access transparency 

▪ Differences in data representation, and how object is 

accessed

▪ Inter-language parameter passing issues resolved: 

→ just 1 language

 Well known example: Java Remote Method Invocation

RPC equivalent embedded in Java

February 21, 2023
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LANGUAGE BASED SUPPORT
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 RPC: client typically blocks until reply is returned

 Strict blocking unnecessary when there is no result

 Asynchronous RPCs

▪ When no result, server can immediately send reply

February 21, 2023
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RPC VARIATIONS

Client/server synchronous RPC         Client/server asynchronous RPC

 What are tradeoffs for synchronous vs. asynchronous 

procedure calls?

▪ For a local program

▪ For a distributed program (system)

 Use cases for asynchronous procedure calls

▪ Long running jobs allow client to perform alternate work 

in background (in parallel)

▪ Client may need to make multiple service calls to multiple 

server backends at the same time…

February 21, 2023
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RPC VARIATIONS – 2
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 Deferred synchronous RPC

▪ Server performs CALLBACK to client

▪ Client, upon making call, spawns separate thread which blocks and 

waits for call 

 One-way RPCs

▪ Client does not wait for any server acknowledgement – it just goes…

 Client poll ing

▪ Client (using separate thread) continually polls server for result

February 21, 2023
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TYPES OF ASYNCHRONOUS RPC

 Send RPC request simultaneously to group of servers

 Hide that multiple servers are involved

 Consideration: 

Does the client need all results or just one?

 Use cases:

▪ Fault tolerance – wait for just one

▪ Replicate execution – verify 

results, use first result

▪ Divide and conquer - multiple 

RPC calls work in parallel on 

different parts of dataset, 

client aggregates results

February 21, 2023
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MULTICAST RPC
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 DCE :  basis for Microsoft’s distributed computing object model 
(DCOM)

 Used in Samba, cross-platform file and print sharing via RPC

 Middleware system – provides layer of abstraction between OS 
and distributed applications

 Designed for Unix, ported to all major operating systems

 Install DCE middleware on set of heterogeneous machines –
distributed applications can then access shared resources to:

▪ Mount a windows file system on Linux

▪ Share a printer connected to a Windows server

 Uses client/server model

 All communication via RPC

 DCE daemon tracks participating machines, ports

February 21, 2023
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RPC EXAMPLE: DISTRIBUTED 

COMPUTING ENVIRONMENT (DCE)

 Server name comes from directory server

 Server port comes from DCE daemon

▪ DCE daemon has a well known port # client already knows

February 21, 2023
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DCE CLIENT-TO-SERVER BINDING
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1. Create Interface definition language (IDL) files

▪ IDL files contain Globally unique identifier (GUID)

▪ GUIDs must match: client and server compare GUIDs to 
verify proper versions of the distributed object

▪ 128-bit binary number

2. Next, add names of remote procs and params to IDL

3. Then compile the IDL files
Compiler generates:

▪ Header file (interface.h in C)

▪ Client stub

▪ Server stub
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EXTRA: DCE – CLIENT/SERVER DEVELOPMENT

 For a client to call a server, server must be registered

▪ Java: uses RMI registry

 Client process to search for RMI server:

1. Locate the server’s host machine

2. Locate the server (i.e. process) on the host

 Client must discover the server’s RPC port

 DCE daemon: maintains table of (server,port) pairs

 When servers boot: 

1. Server asks OS for a port, registers port with DCE daemon

2. Also, server registers with directory server, separate server 

that tracks DCE servers

February 21, 2023
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EXTRA: DCE – BINDING CLIENT TO SERVER
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WE WILL RETURN AT 

2:40 PM

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication
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OBJECTIVES – 2/21
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Apache ActiveMQ

CH. 4.3: MESSAGE-

ORIENTED 

COMMUNICATION

L14.47

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination
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CHAPTER 4

These sections feature
many details,  
Our focus is on the
“big picture”
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 RPC assumes that the client and server are running 

at the same time…  (temporally coupled)

 RPC communication is typically synchronous

 When client and server are not running at the same time

 Or when communications should not be blocked…

 This is a use case for message-oriented communication

▪ Synchronous vs. asynchronous

▪Messaging systems

▪Message-queueing systems
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MESSAGE ORIENTED COMMUNICATION

 Communication end point

 Applications can read / write data to

 Analogous to file streams for I/O, but network streams
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SOCKETS

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection
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 Servers execute 1st - 4 operations (socket, bind, listen, accept)

 Methods refer to C API functions

 Mappings across different libraries will vary ( e.g. Java)
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SOCKETS - 2

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Socket: creates new communication end point

 Bind: associated IP and port with end point

 Listen: for connection-oriented communication, non-blocking 

call reserves buffers for specified number of pending 

connection requests server is willing to accept

 Accept: blocks until connection request arrives

▪ Upon arrival, new socket is created matching original

▪ Server spawns thread, or forks process to service incoming request

▪ Server continues to wait for new connections on original socket
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SERVER SOCKET OPERATIONS
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 Socket: Creates socket client uses for communication

 Connect: Server transport-level address provided, client blocks 

until connection established

 Send: Supports sending data (to: server/client)

 Receive: Supports receiving data (from: server/client)

 Close: Closes communication channel

▪ Analogous to closing a file stream
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CLIENT SOCKET OPERATIONS

 Sockets provide primitives for implementing your own 

TCP/UDP communication protocols

 Directly using sockets for transient (non -persisted) 

messaging is very basic, can be brittle

▪ Easy to make mistakes…

 Any extra communication facilities must be implemented 

by the application developer

 More advanced approaches are desirable

▪ E.g. frameworks with support common desirable 

functionality
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SOCKET COMMUNICATION
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 (0MQ) High performance intelligent socket library

 zero broker,  zero latency, zero admin, zero cost,  zero waste

 Provides a message queue

 Builds upon functionality of traditional sockets

 Implementation in C++

▪ 30+ language bindings provided

 Enables support for various messaging patterns

 Can support brokered (centralized) and broker -less topologies
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ZEROMQ – SOCKET LIBRARY

 ZeroMQ is TCP-connection-oriented communication

 Provides socket-like primitives with more functionality

▪ Basic socket operations abstracted away

▪ Supports many-to-one, one-to-one, and one-to-many 

connections

▪Multicast connections (one-to-many – single server socket 

simultaneously “connects” to multiple clients)

 Asynchronous messaging

 Supports pairing sockets to support communication 

patterns
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ZEROMQ – 2
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 Request-reply pattern

▪ Traditional client-server communication (e.g. RPC)

▪ Client: request socket (REQ)

▪ Server: reply socket (REP)

 Publish-subscribe pattern

▪ Clients subscribe to messages published by servers

▪ As in event-based coordination (Ch. 1)

▪ Supports multicasting messages from 

server to multiple

▪ Client: subscribe socket (SUB)

▪ Server: publish socket (PUB)
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ZEROMQ - PATTERNS

 Pipeline pattern (FIFO-queue)

▪ Analogous to a producer/consumer bounded buffer

▪ Producing processes generate results, push to pipe

▪ Consuming processes consume results,

pull from pipe

▪ Producers: push socket (PUSH socket)

▪ Consumers: pull socket (PULL socket)

▪ Push- distributes messages to all pull 

clients evenly

▪ Consumers pull results from pipe and 

push results downstream
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ZEROMQ – PATTERNS - 2
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Cloud services

▪Amazon Simple Queueing Service (SQS)

▪Azure service bus

Open source frameworks

▪Nanomsg

▪ZeroMQ
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QUEUEING ALTERNATIVES

 MPI introduced – version 1.0 March 1994

 Message passing API for parallel programming: supercomputers

 Communication protocol for parallel programming for:

Supercomputers, High Performance Computing (HPC) clusters

 Point-to-point and collective communication

 Goals: high performance, scalability, portability

 Most implementations

in C, C++, Fortran
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MESSAGE PASSING INTERFACE (MPI)
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 Motivation: sockets insufficient for interprocess

communication on large scale HPC compute clusters and 

super computers 

▪ Sockets at the wrong level of abstraction

▪ Sockets designed to communicate over the network using 

general purpose TCP/IP stacks

▪ Not designed for proprietary protocols

▪ Not designed for high-speed interconnection 

networks used by supercomputers, 

HPC-clusters, etc.

▪ Better buffering and synchronization needed
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MOTIVATIONS FOR MPI

 Supercomputers had proprietary communication libraries

▪ Offer a wealth of efficient communication operations

 All libraries mutually incompatible

 Led to significant portability problems developing parallel 

code that could migrate across supercomputers

 Led to development of MPI

▪ To support transient (non-persistent) communication for 

parallel programming
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MOTIVATIONS FOR MPI - 2
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 Very large library, v1.0 (1994) 128 functions 

 Version 3 (2015) 440+

 MPI data types:

 Provide common mappings
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MPI FUNCTIONS / DATATYPES

 MPI - no recovery for process crashes, network partitions

 Communication among grouped processes:(groupID, processID)

 IDs used to route messages in place of IP addresses
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COMMON MPI FUNCTIONS

Operation Description

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send message, wait until copied to local/remote buffer

MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue

MPI_issend Pass reference to outgoing messages, wait until receipt start

MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!
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 Message-queueing systems

▪ Provide extensive support for persistent asynchronous 

communication

▪ In contrast to transient systems

▪ Temporally decoupled: messages are eventually delivered 

to recipient queues

 Message transfers may take minutes vs. sec or ms

 Each application has its own private queue to which other 

applications can send messages
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MESSAGE-ORIENTED-MIDDLEWARE

 Enables communication between applications, or sets of 

processes

▪ User applications

▪ App-to-database

▪ To support distributed real-time computations

 Use cases

▪ Batch processing, Email, workflow, groupware, routing 

subqueries
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MESSAGE QUEUEING SYSTEMS:

USE CASES
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 Scenarios:

(a) Sender/receiver

both running

(b)  Sender running,

receiver offline

(c)  Sender offline,

receiver running

(d)  Sender/receiver

both offline

 Queue persists msgs,

and attempts to send 

them but no one may be available to receive them…
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MESSAGE QUEUEING SYSTEMS

SENDS

READS

 Key: Truly persistent messaging

 Message queueing systems can persist messages for awhile 

and senders and receivers can be offline

 Messages

 Contain any data, may have size limit

 Are properly addressed, to a destination queue

 Basic Inteface

 PUT: called by sender to append msg to specified queue

 GET: blocking call to remove oldest msg from specified queue

▪ Blocked if queue is empty

 POLL: Non-blocking, gets msg from specified queue
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MESSAGE QUEUEING SYSTEMS - 2
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 Basic interface cont’d

 NOTIFY: install a callback function, for when msg is placed 

into a queue. Notifies receivers

 Queue managers: manage individual message queues as a 

separate process/library

 Applications get/put messages only from local queues

 Queue manager and apps share local network

 ISSUES:

 How should we reference the destination queue? 

 How should names be resolved (looked-up)?

▪ Contact address (host, port) pairs

▪ Local look-up tables can be stored at each queue manager
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MESSAGE QUEUEING SYSTEMS 

ARCHITECTURE

 ISSUES:

 How do we route traffic between queue managers?

▪ How are name-to-address mappings efficiently kept?

▪ Each queue manager should be known to all others

 Message brokers

 Handle message conversion among dif ferent users/formats

 Addresses cases when senders and receivers don’t speak the 

same protocol (language)

 Need arises for message protocol converters

▪ “Reformatter” of messages

 Act as application-level gateway
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MESSAGE QUEUEING SYSTEMS 

ARCHITECTURE - 2
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MESSAGE BROKER ORGANIZATION

Plugins to convert 
messages between APPs Application-level

Queues

 Message-queueing systems initially developed to enable 
legacy applications to interoperate

 Decouple inter-application communication to “open” 
messaging-middleware

 Many are proprietary solutions, so not very open

 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP) , 2006

 Address openness/interoperability of proprietary solutions

 Open wire protocol for messaging with powerful routing 
capabilities

 Help abstract messaging and application interoperability by 
means of a generic open protocol

 Suffer from incompatibil ity among protocol versions

 pre-1.0, 1.0+
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AMQP PROTOCOL
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 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with 

potentially many channels, stable, reused by many 

channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two 

channels

 Link: provide fine-grained flow-control of message 

transfer/status between applications and queue manager
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AMQP - 2

 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to 

recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.74

AMQP MESSAGING
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 Some examples:

 RabbitMQ, Apache QPid

▪ Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka

▪ Dumb broker (message store), similar to a distributed log file

▪ Smart consumers – intelligence pushed off to the clients

▪ Stores stream of records in categories called topics

▪ Supports voluminous data, many consumers, with minimal O/H

▪ Kafka does not track which messages were read by each consumer

▪ Messages are removed after timeout

▪ Clients must track their own consumption (Kafka doesn’t help)

▪ Messages have key, value, timestamp

▪ Supports high volume pub/sub messaging and streams
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MESSAGE-ORIENTED-MIDDLEWARE 

EXAMPLES:

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication
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OBJECTIVES – 2/21
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Apache ActiveMQ

CH. 4.4: MULTICAST

COMMUNICATION

L14.77

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination
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CHAPTER 4

These sections feature
many details,  
Our focus is on the
“big picture”

77

78



TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.40

 Sending data to multiple receivers

 Many failed proposals for network-level / transport-level 
protocols to support multicast communication

 Problem: How to set up communication paths for 
information dissemination?

 Solutions: require huge management effort, human 
intervention

 Focus shifted more recently to peer-to-peer networks

▪ Structured overlay networks can be setup easily and 
provide efficient communication paths

▪ Application-level multicasting techniques more successful 

▪ Gossip-based dissemination: unstructured p2p networks
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MULTICAST COMMUNICATION

 Overlay network

▪ Virtual network implemented on top of an actual physical network

 Underlying network

▪ The actual physical network that implements the overlay
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NETWORK STRUCTURE
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 Application level multi -casting

▪ Nodes organize into an overlay network

▪ Network routers not involved in group membership

▪ Group membership is managed at the application level (A2)

 Downside:

▪ Application-level routing likely less efficient than network -level

▪ Necessary tradeoff until having better multicasting protocols at 

lower layers

 Overlay topologies

▪ TREE: top-down, unique paths between nodes

▪ MESH: nodes have multiple neighbors; multiple paths between nodes
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APPLICATION LEVEL 

TREE-BASED MULTICASTING

 Measure quality of application-level multicast tree

 Link stress: is defined per link, counts how often a packet 

crosses same link  ( ideally not more than 1 )

 Stretch: ratio in delay between two nodes in the overlay vs. 

the underlying networks 
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MULTICAST TREE METRICS

Numbers represent
network delay 
between nodes
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 Stretch (Relative Delay Penalty RDP)

 CONSIDER routing from B to C

 What is the Stretch?

 Stretch (delay ratio) = Overlay -delay / Underlying-delay

 Overlay: B→Rb→Ra→Re→E→Re→Rc→Rd→D→Rd→Rc→ C 

= 73

 Underlying: B→Rb→Rd→Rc→C = 47

 Stretch = 73 / 47 = 1.55

 Captures additional time (stretch) to transfer msg on overlay net

 Tree cost: Overall cost of the overlay network

 Ideally would like to minimize network costs

 Find a minimal spanning tree which minimizes total time for 

disseminating information to all nodes
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MULTICAST TREE METRICS - 2

 Broadcasting: every node in overlay network receives message

 How many nodes are in the overlay network?

 How many nodes are in the underlying network?
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FLOOD-BASED MULTICASTING
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 Broadcasting: every node in overlay network receives message

 Key design issue: minimize the use of intermediate nodes for 
which the message is not intended

 If only leaf nodes are to receive the multicast message, many 
intermediate nodes are involved in storing and forwarding the 
message not meant for them

 Solution: construct an overlay network for each multicast 
group

▪ Sending a message to the group, becomes the same as broadcasting 
to the multicast group (group of nodes that listen and receive traffic 
for a shared IP address)

 Flooding: each node simply forwards a message to each of its 
neighbors, except to the message originator
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FLOOD-BASED MULTICASTING

 When there is no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Random graphs are described by a probability distribution

 Probability Pedge that two nodes are joined

 Overlay network will have: ½ * Pedge * N * (N-1) edges
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RANDOM GRAPHS

Random graphs allow us to assume
some structure (# of nodes, # of edges)
regarding the network by scaling the
Pedge probability 

Assumptions may help then to 
reason or rationalize about the
network…
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 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?
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 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

½ * (.1) * (10000) * (9999)
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 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

½ * (.1) * (10000) * (9999)
4,999,500 edges

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?
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 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.93

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message

to Q is p=(1-pflood)n

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 

a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 

achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message

to Q is p=(1-pflood)n

if n=10, p=(1-.01)10=.904  (pretty likely)
if n=100, p=(1-.01)100=.366 (less likely)

if n=1000, p=(1-.01)298=.05 (unlikely)   
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 For deterministic topologies (such as hypercube), design of 

efficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a 

deterministic topology

 Schlosser et al [2002] – offer simple and efficient 

broadcasting scheme that relies on keeping track of neighbors 

per dimension
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MESSAGE FLOODING

 Hypercube Broadcast

 N(1001) starts the network broadcast 

 N(1001) neighbors {0001,1000,1011,1101}

 N(1001) Sends message to all neighbors

 >>Edge Labels (which bit is changed?, 1 st,  2nd,  3 rd,  4 th…)

 Edge to 0001 – labeled 1 – change the 1st bit

 Edge to 1000 – labeled 4 – change the 4 th bit

 Edge to 1011 – labeled 3 – change the 3 rd bit

 Edge to 1101 – labeled 2 – change the 2nd bit

 RULE: nodes only forward along edges with a higher dimension

 Node 1101 receives message on edge labeled 2

 Broadcast msg is only forwarded on higher valued edges (>2)
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MESSAGE 

FLOODING - 2
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 Hypercube: forward msg along edges with higher dimension

 Node(1101)–neighbors {0101,1100,1001,1111} 

 Node (1101) - incoming broadcast edge = 2

 Label Edges:

 Edge to 0101 – labeled 1 – change the 1st bit

 Edge to 1100 – labeled 4 – change the 4 th bit *<FORWARD>*

 Edge to 1001 – labeled 2 – change the 2nd bit

 Edge to 1111 – labeled 3 – change the 3 rd bit *<FORWARD>*

 N(1101) broadcast – forward only to N(1100) and N(1111)

 (1100) and (1111) are the higher dimension edges

 Broadcast requires just: N-1 messages, where nodes N=2n,  
n=dimensions of hypercube
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MESSAGE FLOODING - 3

 When structured peer-to-peer topologies are not available

 Gossip based approaches support multicast communication 
over unstructured peer-to-peer networks

 General approach is to 
leverage how gossip 
spreads across a group

 This is also called 
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node
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GOSSIP BASED DATA DISSEMINATION
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 Epidemic algorithms: algorithms for large-scale distributed 

systems that spread information

 Goal: “infect” all nodes with new information as fast as 

possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data
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INFORMATION DISSEMINATION

Gossiping

Nodes are randomly selected

One node, randomly selects any other node in the 

network to propagate the network

Complete set of nodes is known to each member
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EPIDEMIC PROTOCOLS
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 Anti-entropy: Propagation model where node P picks node Q at 
random and exchanges message updates

 Akin to random walk

 Types of message exchange:

 PUSH: P only pushes its own updates to Q

 PULL: P only pulls in new updates from Q

 T WO-WAY: P and Q send updates to each other 
(i.e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden 
susceptible nodes

 Pull: better because susceptible nodes can pull updates from 
infected nodes

 Push-pull is better still
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ANTI ENTROPY DISSEMINATION MODEL 

FOR GOSSIPING

P Q

P Q

P Q

 Round: span of time during which every node takes initiative 

to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all 

nodes requires O(log(N)), where N=number of nodes

 Let p i denote probability that

node P has not received 

msg m after the i th round.

 For pull, push, and push-pull 

based approaches:
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ANTI ENTROPY EFFECTIVENESS

10,000 nodes →
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 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another 

node

 Node P may loose interest in spreading the rumor with 

probability = pstop, let’s say 20% . . .  (or 0.20)
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RUMOR SPREADING

 pstop,  is the probability node will stop spreading once contacting a 
node that already has the message

 Does not guarantee all nodes will be updated

 The fraction of nodes s, that remain susceptible grows relative 
to the probability that node P 
stops propagating when finding 
a node already having the 
message

 Fraction of nodes not updated 
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping      →
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RUMOR SPREADING - 2
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 Gossiping is good for spreading data

 But how can data be removed from the system? 

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from 

reinitializing from gossip from other nodes

 Death certificates time-out after expected time required 

for data element to clear out of entire system

 A few nodes maintain death certificates forever
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REMOVING DATA

 For example:

 Node P keeps death certificates forever

 Item X is removed from the system

 Node P receives an update request for Item X, but also holds 

the death certificate for Item X

 Node P will recirculate the death certificate across the 

network for Item X
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DEATH CERTIFICATE EXAMPLE
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QUESTIONS
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