
TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.1

Ch. 4 – Communication - II

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.2

OBJECTIVES – 2/21

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.3

ONLINE DAILY FEEDBACK SURVEY

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L14.4

 Please classify your perspective on material covered in today’s

class (~31 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.03 (- previous 6.70)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.34 (- previous 5.61)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.5

MATERIAL / PACE

 Tuesday February 21 – 12:30pm – Cherry Parkes room 106

 Thursday February 23 – 12:30pm – Cherry Parkes room 106

 Wednesday March 1 – 12:30pm – Cherry Parkes room TBA

 Friday March 3 – 12:30pm – Cherry Parkes room TBA

 Earn up to 2.5% extra credit added to the overall course grade

 Scored out of 5 total points

 First seminar – earn 2 points

 2nd, 3 rd, 4 th seminar – earn 1 point each

Add to final course grade:

(Total_seminar_points / 5 points) * 2.5%

February 16, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.6

TENURE TRACK FACULTY CANDIDATE

RESEARCH SEMINARS – EXTRA CREDIT

1 2

3 4

5 6

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.2

 For the mid-term question on shared data space implementat ion
wi th an unstructured peer -to-peer architecture:

 Is availabil ity/accessibil ity both an advantage and d isadvantage ?

 ADVANTAGE: The unstructured peer -to-peer implementation
features mult iple nodes. This enables requests to be distributed
across mult iple nodes better. The centralized implementation is not
really a “distr ibuted system”. It can’t really scale, and wil l be
maxed-out if there are too many cl ient requests.

 DISADVANTAGE: As opposed to accessibil ity/availabil ity, the
disadvantage is Failure Transparency. If one node containing a
subset of data is slow or unavailable it is very dif ficult to tell with
unstructured peer -to-peer. It is easier to tell that the central server
has failed. Either ALL or NONE of the data wil l be available with
central server. Small amounts of data could become inaccessible
and it may be dif ficult for a user to discern this. The system
remains accessible/available, just some data is missing !

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.7

FEEDBACK FROM 2/16

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.8

OBJECTIVES – 2/21

 Team signup posted on Canvas under ‘People’

 GenericNode.tar.gz includes Dockerfile examples

 GenericNode.tar.gz assumes Java 11

 TCP/UDP/RMI Key Value Store

 Implement a “GenericNode” project which assumes the role of

a client or server for a Key/Value Store

 Recommended in Java 11 LTS

 Client node program interacts with server node to put, get,

delete, or list items in a key/value store

February 14, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.9

ASSIGNMENT 1

 In Netbeans IDE, under Tools menu, ‘Java Platforms’, be sure

to install and select JDK 11

 On left-hand Project menu, r ight-click on ‘GenericNode’ project

 Select Properties

 Under Build | Compile, be sure Java Platform is JDK 11

 Under Sources, be sure Source/Binary Format is 11

February 14, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.10

USING JAVA 11 IN NETBEANS

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.11

OBJECTIVES – 2/21

 Sunday March 12 th

 Goal: Replicated Key Value Store

 Team signup to be posted on Canvas under ‘People’

 Builds off of Assignment 1 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?

▪ Can implement multiple types of membership tracking

for extra credit

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.12

ASSIGNMENT 2

7 8

9 10

11 12

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.3

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.13

OBJECTIVES – 2/21

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.14

CHAPTER 4

Reviews and builds on
content from Ch. 2/3

 Middleware is reused by many applications

 Provide needed functions applications are built and

depend upon

▪ For example: communication frameworks/libraries

 Middleware offer many general -purpose protocols

 Middleware protocol examples:

▪ Authentication protocols: supports granting users and

processes access to authorized resources

▪ Doesn’t fit as an “application specific” protocol

▪ Considered a “Middleware protocol”

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.15

MIDDLEWARE PROTOCOLS

 Distributed commit protocols

▪ Coordinate a group of processes (nodes)

▪ Facilitate all nodes carrying out a particular operation

▪ Or abort transaction

▪ Provides distributed atomicity (all-or-nothing) operations

 Distributed locking protocols

▪ Protect a resource from simultaneous access from

multiple nodes

 Remote procedure call

▪ One of the oldest middleware protocols

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.16

MIDDLEWARE PROTOCOLS - 2

 Message queueing services

▪ Support synchronization of data

streams

▪ Transfer real-time data

▪ Distributed and scalable

implementation

 Multicast services

▪ Scale communication to thousands of

receivers spread across the Internet

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.17

MIDDLEWARE PROTOCOLS - 3

 Message queueing services

▪ Support synchronization of data

streams

▪ Transfer real-time data

▪ Distributed and scalable

implementation

 Multicast services

▪ Scale communication to thousands of

receivers spread across the Internet

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.18

MIDDLEWARE PROTOCOLS - 3

KEY: middleware protocols offer functionality to satisfy the

software requirements of many applications

Middleware functions are general, application-independent

in nature

Functions are so commonly needed they are offered in

reusable frameworks / libraries

13 14

15 16

17 18

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.4

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.19

ADAPTED REFERENCE MODEL

Combines network
and transport

Physical and
Data link

 Persistent communication

▪ Message submitted for transmission is stored by communication

middleware as long as it takes to deliver it

▪ Example: email system (SMTP)

▪ Receiver can be offline when message sent

▪ Temporal decoupling (delayed message delivery)

 Transient communication

▪ Message stored by middleware only as long as sender/receiver

applications are running

▪ If recipient is not active, message is dropped

▪ Transport level protocols typically are transient (no msg storage)

 What OSI protocol level is the SMTP Protocol?

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.20

TYPES OF COMMUNICATION

 Asynchronous communication

▪ Client does not block, continues doing other work

 Synchronous communication

▪ Client blocks and waits

 Three types of blocking (synchronous)

1. Until middleware notifies it will take over delivering request

2. Sender may block until request has been delivered

3. Sender waits until request is processed and result is returned

 Persistence + synchronization (blocking)

▪ Common scheme for message-queueing systems

▪ Publish message to queue : block until message delivered to queue

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.21

TYPES OF COMMUNICATION - 2

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.23

OBJECTIVES – 2/21

CH. 4.2: RPC (LIGHT-

OVERVIEW)

L14.24

19 20

21 22

23 24

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.5

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.25

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

 In a nutshell,

 Allow programs to call procedures on other machines

 Process on machine A calls procedure on machine B

 Calling process on machine A is suspended

 Execution of the called procedure takes place on machine B

 Data transported from caller (A) to provider (B) and back (A).

 No message passing is visible to the programmer

 Distribution transparency: make remote procedure call look

like a local one

 newlist = append(data, dbList)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

RPC – REMOTE PROCEDURE CALL

 Transparency enabled with client and server “stubs”

 Client has “stub” implementation of the server -side function

 Inter face exactly same as server side

 But client DOES NOT HAVE THE IMPLEMENTATION

 Client stub: packs parameters into message, sends request to

server. Call blocks and waits for reply

 Server stub: transforms incoming

request into local procedure call

 Blocks to wait for reply

 Server stub unpacks request ,

calls server procedure

 I t’s as if the routine were called locally

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.27

RPC - 2

 Server packs procedure results and sends back to client.

 Client “request” call unblocks and data is unpacked

 Client can’t tell method was called remotely over the

network… except for network latency…

 Call abstraction enables clients to invoke functions in

alternate languages, on different machines

 Differences are handled by the RPC “framework”

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

RPC - 3

1. Client procedure calls client stub

2. Client stub builds message and calls OS

3. Client’s OS send message to remote OS

4. Server OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server performs work, returns results to server -side stub

7. Server stub packs results in messages, calls server OS

8. Server OS sends message to client’s OS

9. Client’s OS delivers message to client stub

10.Client stub unpacks result, returns to client

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

RPC STEPS

 STUBS: take parameters, pack into a message, send across

network

 Parameter marshaling:

 newlist = append(data, dbList)

 Two parameters must be sent over network and correctly

interpreted

 Message is transferred as a series of bytes

 Data is serialized into a “stream” of bytes

 Must understand how to unmarshal (unserialize) data

 Processor architectures vary with how bytes are numbered:

Intel (r ight→left) , older ARM (left→right)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.30

PARAMETER PASSING

25 26

27 28

29 30

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.6

 Big-Endian: write bytes left to right (ARM)

 Little-endian: write bytes right to lef t (Intel)

 Networks: typically transfer data in Big -Endian form

 Solution: transform data to machine/network independent

format

 Marshaling/unmarshaling:

transform data to neutral

format

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

RPC: BYTE ORDERING

 Passing by value is straightforward

 Passing by reference is challenging

 Pointers only make sense on local machine owning the data

 Memory space of client and server are dif ferent

 Solutions to RPC pass-by-reference:

1. Forbid pointers altogether

2. Replace pass-by-reference with pass-by-value

▪ Requires transferring entire object/array data over network

▪ Read-only optimization : don’t return data if unchanged on server

3. Passing global references

▪ Example: file handle to file accessible by client and server
via shared file system

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.32

RPC: PASS-BY-REFERENCE

 Let developer specify which routines will be called

remotely

▪ Automate client/server side stub generation for these

routines

 Embed remote procedure call mechanism into the

programming language

▪ E.g. Java RMI

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

RPC: DEVELOPMENT SUPPORT

void func(char x; float y; int z[5])

 1-byte character transmits with 3 -padded bytes

 Float sent as whole word (4 -bytes)

▪ Array as group of words, proceed by word describing
length

▪ Client stub must package data in specific format

▪ Server stub must receive and unpackage in specific format

 Client and server must agree on representation of simple
data structures: int, char, floats w/ little endian

 RPC clients/servers: must agree on protocol

▪ TCP? UDP?

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.34

STUB GENERATION

 Inter faces are specified using an Inter face Definition

Language (IDL)

 Inter face specifications in IDL are used to generate language

specific stubs

 IDL is compiled into client and server -side stubs

 Much of the plumbing for RPC involves maintaining

boilerplate-code

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.35

STUB GENERATION - 2

 Leads to simpler application development

 Helps with providing access transparency

▪ Differences in data representation, and how object is

accessed

▪ Inter-language parameter passing issues resolved:

→ just 1 language

 Well known example: Java Remote Method Invocation

RPC equivalent embedded in Java

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.36

LANGUAGE BASED SUPPORT

31 32

33 34

35 36

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.7

 RPC: client typically blocks until reply is returned

 Strict blocking unnecessary when there is no result

 Asynchronous RPCs

▪ When no result, server can immediately send reply

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.37

RPC VARIATIONS

Client/server synchronous RPC Client/server asynchronous RPC

 What are tradeoffs for synchronous vs. asynchronous

procedure calls?

▪ For a local program

▪ For a distributed program (system)

 Use cases for asynchronous procedure calls

▪ Long running jobs allow client to perform alternate work

in background (in parallel)

▪ Client may need to make multiple service calls to multiple

server backends at the same time…

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

RPC VARIATIONS – 2

 Deferred synchronous RPC

▪ Server performs CALLBACK to client

▪ Client, upon making call, spawns separate thread which blocks and

waits for call

 One-way RPCs

▪ Client does not wait for any server acknowledgement – it just goes…

 Client polling

▪ Client (using separate thread) continually polls server for result

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

TYPES OF ASYNCHRONOUS RPC

 Send RPC request simultaneously to group of servers

 Hide that multiple servers are involved

 Consideration:

Does the client need all results or just one?

 Use cases:

▪ Fault tolerance – wait for just one

▪ Replicate execution – verify

results, use first result

▪ Divide and conquer - multiple

RPC calls work in parallel on

different parts of dataset,

client aggregates results

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

MULTICAST RPC

 DCE : basis for Microsoft’s distributed computing object model
(DCOM)

 Used in Samba, cross-platform file and print sharing via RPC

 Middleware system – provides layer of abstraction between OS
and distributed applications

 Designed for Unix, ported to all major operating systems

 Install DCE middleware on set of heterogeneous machines –
distributed applications can then access shared resources to:

▪ Mount a windows file system on Linux

▪ Share a printer connected to a Windows server

 Uses client/server model

 All communication via RPC

 DCE daemon tracks participating machines, ports

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

RPC EXAMPLE: DISTRIBUTED

COMPUTING ENVIRONMENT (DCE)

 Server name comes from directory server

 Server port comes from DCE daemon

▪ DCE daemon has a well known port # client already knows

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.42

DCE CLIENT-TO-SERVER BINDING

37 38

39 40

41 42

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.8

1. Create Interface definition language (IDL) files

▪ IDL files contain Globally unique identifier (GUID)

▪ GUIDs must match: client and server compare GUIDs to
verify proper versions of the distributed object

▪ 128-bit binary number

2. Next, add names of remote procs and params to IDL

3. Then compile the IDL files
Compiler generates:

▪ Header file (interface.h in C)

▪ Client stub

▪ Server stub

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.43

EXTRA: DCE – CLIENT/SERVER DEVELOPMENT

 For a client to call a server, server must be registered

▪ Java: uses RMI registry

 Client process to search for RMI server:

1. Locate the server’s host machine

2. Locate the server (i.e. process) on the host

 Client must discover the server’s RPC port

 DCE daemon: maintains table of (server,port) pairs

 When servers boot:

1. Server asks OS for a port, registers port with DCE daemon

2. Also, server registers with directory server, separate server

that tracks DCE servers

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

EXTRA: DCE – BINDING CLIENT TO SERVER

WE WILL RETURN AT

2:40 PM

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.46

OBJECTIVES – 2/21

Apache Act iveMQ

CH. 4.3: MESSAGE-

ORIENTED

COMMUNICATION

L14.47

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.48

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

43 44

45 46

47 48

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.9

 RPC assumes that the client and server are running

at the same time… (temporally coupled)

 RPC communication is typically synchronous

 When client and server are not running at the same time

 Or when communications should not be blocked…

 This is a use case for message-oriented communication

▪ Synchronous vs. asynchronous

▪Messaging systems

▪Message-queueing systems

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.49

MESSAGE ORIENTED COMMUNICATION

 Communication end point

 Applications can read / write data to

 Analogous to file streams for I/O, but network streams

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.50

SOCKETS

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Servers execute 1 st - 4 operations (socket, bind, listen, accept)

 Methods refer to C API functions

 Mappings across dif ferent libraries will vary (e.g. Java)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.51

SOCKETS - 2

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Socket: creates new communication end point

 Bind: associated IP and port with end point

 Listen: for connection-oriented communication, non-blocking

call reserves buffers for specified number of pending

connection requests server is willing to accept

 Accept: blocks until connection request arrives

▪ Upon arrival, new socket is created matching original

▪ Server spawns thread, or forks process to service incoming request

▪ Server continues to wait for new connections on original socket

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.52

SERVER SOCKET OPERATIONS

 Socket: Creates socket client uses for communication

 Connect: Server transport -level address provided, client blocks

until connection established

 Send: Supports sending data (to: server/client)

 Receive: Supports receiving data (from: server/client)

 Close: Closes communication channel

▪ Analogous to closing a file stream

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.53

CLIENT SOCKET OPERATIONS

 Sockets provide primitives for implementing your own

TCP/UDP communication protocols

 Directly using sockets for transient (non-persisted)

messaging is very basic, can be brittle

▪ Easy to make mistakes…

 Any extra communication facilities must be implemented

by the application developer

 More advanced approaches are desirable

▪ E.g. frameworks with support common desirable

functionality

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.54

SOCKET COMMUNICATION

49 50

51 52

53 54

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.10

 (0MQ) High performance intelligent socket l ibrary

 zero broker, zero latency, zero admin, zero cost, zero waste

 Provides a message queue

 Builds upon functionality of traditional sockets

 Implementation in C++

▪ 30+ language bindings provided

 Enables support for various messaging patterns

 Can support brokered (centralized) and broker -less topologies

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.55

ZEROMQ – SOCKET LIBRARY

 ZeroMQ is TCP-connection-oriented communication

 Provides socket-like primitives with more functionality

▪ Basic socket operations abstracted away

▪ Supports many-to-one, one-to-one, and one-to-many

connections

▪Multicast connections (one-to-many – single server socket

simultaneously “connects” to multiple clients)

 Asynchronous messaging

 Supports pairing sockets to support communication

patterns

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.56

ZEROMQ – 2

 Request-reply pattern

▪ Traditional client-server communication (e.g. RPC)

▪ Client: request socket (REQ)

▪ Server: reply socket (REP)

 Publish-subscribe pattern

▪ Clients subscribe to messages published by servers

▪ As in event-based coordination (Ch. 1)

▪ Supports multicasting messages from

server to multiple

▪ Client: subscribe socket (SUB)

▪ Server: publish socket (PUB)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.57

ZEROMQ - PATTERNS

 Pipeline pattern (FIFO-queue)

▪ Analogous to a producer/consumer bounded buffer

▪ Producing processes generate results, push to pipe

▪ Consuming processes consume results,

pull from pipe

▪ Producers: push socket (PUSH socket)

▪ Consumers: pull socket (PULL socket)

▪ Push- distributes messages to all pull

clients evenly

▪ Consumers pull results from pipe and

push results downstream

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.58

ZEROMQ – PATTERNS - 2

Cloud services

▪Amazon Simple Queueing Service (SQS)

▪Azure service bus

Open source frameworks

▪Nanomsg

▪ZeroMQ

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.59

QUEUEING ALTERNATIVES

 MPI introduced – version 1.0 March 1994

 Message passing API for parallel programming: supercomputers

 Communication protocol for parallel programming for:

Supercomputers, High Performance Computing (HPC) clusters

 Point-to-point and collective communication

 Goals: high performance, scalability, portability

 Most implementations

in C, C++, Fortran

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.60

MESSAGE PASSING INTERFACE (MPI)

55 56

57 58

59 60

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.11

 Motivation: sockets insufficient for interprocess

communication on large scale HPC compute clusters and

super computers

▪ Sockets at the wrong level of abstraction

▪ Sockets designed to communicate over the network using

general purpose TCP/IP stacks

▪ Not designed for proprietary protocols

▪ Not designed for high-speed interconnection

networks used by supercomputers,

HPC-clusters, etc.

▪ Better buffering and synchronization needed

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.61

MOTIVATIONS FOR MPI

 Supercomputers had proprietary communication libraries

▪ Offer a wealth of efficient communication operations

 All libraries mutually incompatible

 Led to significant portability problems developing parallel

code that could migrate across supercomputers

 Led to development of MPI

▪ To support transient (non-persistent) communication for

parallel programming

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.62

MOTIVATIONS FOR MPI - 2

 Very large library, v1.0 (1994) 128 functions

 Version 3 (2015) 440+

 MPI data types:

 Provide common mappings

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.63

MPI FUNCTIONS / DATATYPES

 MPI - no recovery for process crashes, network partitions

 Communication among grouped processes:(groupID, processID)

 IDs used to route messages in place of IP addresses

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.64

COMMON MPI FUNCTIONS

Operation Description

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send message, wait until copied to local/remote buffer

MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue

MPI_issend Pass reference to outgoing messages, wait until receipt start

MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!

 Message-queueing systems

▪ Provide extensive support for persistent asynchronous

communication

▪ In contrast to transient systems

▪ Temporally decoupled: messages are eventually delivered

to recipient queues

 Message transfers may take minutes vs. sec or ms

 Each application has its own private queue to which other

applications can send messages

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.65

MESSAGE-ORIENTED-MIDDLEWARE

 Enables communication between applications, or sets of

processes

▪ User applications

▪ App-to-database

▪ To support distributed real-time computations

 Use cases

▪ Batch processing, Email, workflow, groupware, routing

subqueries

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.66

MESSAGE QUEUEING SYSTEMS:

USE CASES

61 62

63 64

65 66

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.12

 Scenarios:

(a) Sender/receiver

both running

(b) Sender running,

receiver offline

(c) Sender offline,

receiver running

(d) Sender/receiver

both offline

 Queue persists msgs,

and attempts to send

them but no one may be available to receive them…

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.67

MESSAGE QUEUEING SYSTEMS

SENDS

READS

 Key: Truly persistent messaging

 Message queueing systems can persist messages for awhile

and senders and receivers can be offline

 Messages

 Contain any data, may have size limit

 Are properly addressed, to a destination queue

 Basic Inteface

 PUT: called by sender to append msg to specified queue

 GET: blocking call to remove oldest msg from specified queue

▪ Blocked if queue is empty

 POLL: Non-blocking, gets msg from specified queue

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.68

MESSAGE QUEUEING SYSTEMS - 2

 Basic interface cont’d

 NOTIFY: install a callback function, for when msg is placed

into a queue. Notifies receivers

 Queue managers: manage individual message queues as a

separate process/library

 Applications get/put messages only from local queues

 Queue manager and apps share local network

 ISSUES:

 How should we reference the destination queue?

 How should names be resolved (looked -up)?

▪ Contact address (host, port) pairs

▪ Local look-up tables can be stored at each queue manager

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.69

MESSAGE QUEUEING SYSTEMS

ARCHITECTURE

 ISSUES:

 How do we route traffic between queue managers?

▪ How are name-to-address mappings efficiently kept?

▪ Each queue manager should be known to all others

 Message brokers

 Handle message conversion among dif ferent users/formats

 Addresses cases when senders and receivers don’t speak the

same protocol (language)

 Need arises for message protocol converters

▪ “Reformatter” of messages

 Act as application-level gateway

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.70

MESSAGE QUEUEING SYSTEMS

ARCHITECTURE - 2

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.71

MESSAGE BROKER ORGANIZATION

Plugins to convert
messages between APPs Application-level

Queues

 Message-queueing systems initially developed to enable
legacy applications to interoperate

 Decouple inter -application communication to “open”
messaging-middleware

 Many are proprietary solutions, so not very open

 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP) , 2006

 Address openness/interoperability of proprietary solutions

 Open wire protocol for messaging with powerful routing
capabilities

 Help abstract messaging and application interoperability by
means of a generic open protocol

 Suffer from incompatibility among protocol versions

 pre-1.0, 1.0+

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.72

AMQP PROTOCOL

67 68

69 70

71 72

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.13

 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with

potentially many channels, stable, reused by many

channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two

channels

 Link: provide fine-grained flow -control of message

transfer/status between applications and queue manager

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.73

AMQP - 2

 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to

recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.74

AMQP MESSAGING

 Some examples:

 RabbitMQ, Apache QPid

▪ Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka

▪ Dumb broker (message store), similar to a distributed log file

▪ Smart consumers – intelligence pushed off to the clients

▪ Stores stream of records in categories called topics

▪ Supports voluminous data, many consumers, with minimal O/H

▪ Kafka does not track which messages were read by each consumer

▪ Messages are removed after timeout

▪ Clients must track their own consumption (Kafka doesn’t help)

▪ Messages have key, value, timestamp

▪ Supports high volume pub/sub messaging and streams

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.75

MESSAGE-ORIENTED-MIDDLEWARE

EXAMPLES:

 Questions from 2/16

 Assignment 1: Key Value Store

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication

▪ Chapter 4.1: Foundations

▪ Chapter 4.2: RPC (light-overview)

▪ Chapter 4.3: Message Oriented Communication

▪ Chapter 4.4: Multicast Communication

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.76

OBJECTIVES – 2/21

Apache Act iveMQ

CH. 4.4: MULTICAST

COMMUNICATION

L14.77

 4.1 Foundations

▪ Protocols

▪ Types of communication

 4.2 Remote procedure call

 4.3 Message-oriented communication

▪ Socket communication

▪ Messaging libraries

▪ Message-Passing Interface (MPI)

▪ Message-queueing systems

▪ Examples

 4.4 Multicast communication

▪ Flooding-based multicasting

▪ Gossip-based data dissemination

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.78

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

73 74

75 76

77 78

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.14

 Sending data to multiple receivers

 Many failed proposals for network-level / transport-level
protocols to support multicast communication

 Problem: How to set up communication paths for
information dissemination?

 Solutions: require huge management effort, human
intervention

 Focus shifted more recently to peer-to-peer networks

▪ Structured overlay networks can be setup easily and
provide efficient communication paths

▪ Application-level multicasting techniques more successful

▪ Gossip-based dissemination: unstructured p2p networks

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.79

MULTICAST COMMUNICATION

 Overlay network

▪ Virtual network implemented on top of an actual physical network

 Underlying network

▪ The actual physical network that implements the overlay

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.80

NETWORK STRUCTURE

 Application level multi -casting

▪ Nodes organize into an overlay network

▪ Network routers not involved in group membership

▪ Group membership is managed at the application level (A2)

 Downside:

▪ Application-level routing likely less efficient than network-level

▪ Necessary tradeoff until having better multicasting protocols at

lower layers

 Overlay topologies

▪ TREE: top-down, unique paths between nodes

▪ MESH: nodes have multiple neighbors; multiple paths between nodes

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.81

APPLICATION LEVEL

TREE-BASED MULTICASTING

 Measure quality of application -level multicast tree

 Link stress: is defined per link , counts how often a packet

crosses same link (ideally not more than 1)

 Stretch: ratio in delay between two nodes in the overlay vs.

the underlying networks

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.82

MULTICAST TREE METRICS

Numbers represent
network delay
between nodes

 Stretch (Relative De lay Penalty RDP)

 CONSIDER rout ing from B to C

 What is the Stretch?

 Stretch (delay rat io) = Overlay -delay / Underlying-delay

 Overlay: B→Rb→Ra→Re→E→Re→Rc→Rd→D→Rd→Rc→ C

= 73

 Underly ing: B→Rb→Rd→Rc→C = 47

 Stretch = 73 / 47 = 1.55

 Captures addit ional t ime (stretch) to transfer msg on overlay net

 Tree cost : Overall cost of the overlay network

 Ideally would l ike to minimize network costs

 Find a minimal spanning tree which minimizes total t ime for

disseminating information to all nodes

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.83

MULTICAST TREE METRICS - 2

 Broadcasting: every node in overlay network receives message

 How many nodes are in the overlay network?

 How many nodes are in the underlying network?

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.84

FLOOD-BASED MULTICASTING

79 80

81 82

83 84

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.15

 Broadcasting: every node in overlay network receives message

 Key design issue: minimize the use of intermediate nodes for
which the message is not intended

 If only leaf nodes are to receive the multicast message, many
intermediate nodes are involved in storing and forwarding the
message not meant for them

 Solution: construct an overlay network for each multicast
group

▪ Sending a message to the group, becomes the same as broadcasting
to the multicast group (group of nodes that listen and receive traffic
for a shared IP address)

 Flooding: each node simply forwards a message to each of its
neighbors, except to the message originator

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.85

FLOOD-BASED MULTICASTING

 When there is no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Random graphs are described by a probabil ity distr ibut ion

 Probabil ity Pedge that two nodes are joined

 Overlay network wil l have: ½ * Pedge * N * (N-1) edges

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.86

RANDOM GRAPHS

Random graphs allow us to assume
some structure (# of nodes, # of edges)
regarding the network by scaling the
Pedge probability

Assumptions may help then to
reason or rationalize about the
network…

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.87

PROBABILISTIC FLOODING

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.88

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.89

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.90

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)
½ * (.1) * (10000) * (9999)

85 86

87 88

89 90

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.16

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.91

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)
½ * (.1) * (10000) * (9999)

4,999,500 edges

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.92

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.93

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability

that all neighbors don’t forward the message
to Q is p=(1-pflood)n

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce

a probability that the message is spread (p flood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to

achieve various p flood scores

 With lower p flood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and p flood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.94

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability

that all neighbors don’t forward the message
to Q is p=(1-pflood)n

if n=10, p=(1-.01)10=.904 (pretty likely)
if n=100, p=(1-.01)100=.366 (less likely)

if n=1000, p=(1-.01)298=.05 (unlikely)

 For deterministic topologies (such as hypercube), design of

ef ficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a

deterministic topology

 Schlosser et al [2002] – offer simple and efficient

broadcasting scheme that relies on keeping track of neighbors

per dimension

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.95

MESSAGE FLOODING

 Hypercube Broadcast

 N(1001) star ts the network broadcast

 N(1001) neighbors {0001,1000,1011,1101}

 N(1001) Sends message to all neighbors

 >>Edge Labels (which bit is changed?, 1 st, 2nd, 3 rd, 4 th…)

 Edge to 0001 – labeled 1 – change the 1st bit

 Edge to 1000 – labeled 4 – change the 4 th bit

 Edge to 1011 – labeled 3 – change the 3 rd bit

 Edge to 1101 – labeled 2 – change the 2nd bit

 RULE: nodes only forward along edges with a higher dimension

 Node 1101 receives message on edge labeled 2

 Broadcast msg is only forwarded on higher valued edges (>2)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.96

MESSAGE

FLOODING - 2

91 92

93 94

95 96

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.17

 Hypercube: forward msg along edges with higher dimension

 Node(1101)–neighbors {0101,1100,1001,1111}

 Node (1101) - incoming broadcast edge = 2

 Label Edges:

 Edge to 0101 – labeled 1 – change the 1st bit

 Edge to 1100 – labeled 4 – change the 4 th bit *<FORWARD>*

 Edge to 1001 – labeled 2 – change the 2nd bit

 Edge to 1111 – labeled 3 – change the 3 rd bit *<FORWARD>*

 N(1101) broadcast – forward only to N(1100) and N(1111)

 (1100) and (1111) are the higher dimension edges

 Broadcast requires just: N -1 messages, where nodes N=2n,
n=dimensions of hypercube

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.97

MESSAGE FLOODING - 3

 When structured peer -to-peer topologies are not available

 Gossip based approaches support multicast communication
over unstructured peer -to-peer networks

 General approach is to
leverage how gossip
spreads across a group

 This is also called
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.98

GOSSIP BASED DATA DISSEMINATION

 Epidemic algorithms: algorithms for large-scale distributed

systems that spread information

 Goal: “infect” all nodes with new information as fast as

possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.99

INFORMATION DISSEMINATION

Gossiping

Nodes are randomly selected

One node, randomly selects any other node in the

network to propagate the network

Complete set of nodes is known to each member

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.100

EPIDEMIC PROTOCOLS

 Anti-entropy: Propagation model where node P picks node Q at
random and exchanges message updates

 Akin to random walk

 Types of message exchange:

 PUSH: P only pushes its own updates to Q

 PULL: P only pulls in new updates from Q

 T WO-WAY: P and Q send updates to each other
(i.e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden
susceptible nodes

 Pull: better because susceptible nodes can pull updates from
infected nodes

 Push-pull is better still

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.101

ANTI ENTROPY DISSEMINATION MODEL

FOR GOSSIPING

P Q

P Q

P Q

 Round: span of time during which every node takes initiative

to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all

nodes requires O(log(N)), where N=number of nodes

 Let p i denote probability that

node P has not received

msg m after the i th round.

 For pull, push, and push-pull

based approaches:

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.102

ANTI ENTROPY EFFECTIVENESS

10,000 nodes →

97 98

99 100

101 102

TCSS 558: Applied Distributed Computing
[Winter 2023] School of Engineering and Technology,
UW-Tacoma

February 21, 2023

Slides by Wes J. Lloyd L14.18

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another

node

 Node P may loose interest in spreading the rumor with

probability = pstop, let’s say 20% . . . (or 0.20)

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.103

RUMOR SPREADING

 pstop, is the probabil ity node wil l stop spreading once contact ing a
node that already has the message

 Does not guarantee all nodes will be updated

 The fraction of nodes s, that remain susceptible grows relative
to the probability that node P
stops propagating when finding
a node already having the
message

 Fraction of nodes not updated
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping →

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.104

RUMOR SPREADING - 2

 Gossiping is good for spreading data

 But how can data be removed from the system?

 Idea is to issue “death certif icates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from

reinitializing from gossip from other nodes

 Death certificates time-out after expected time required

for data element to clear out of entire system

 A few nodes maintain death certificates forever

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.105

REMOVING DATA

 For example:

 Node P keeps death certificates forever

 I tem X is removed from the system

 Node P receives an update request for I tem X, but also holds

the death certificate for Item X

 Node P will recirculate the death certificate across the

network for Item X

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.106

DEATH CERTIFICATE EXAMPLE

QUESTIONS

February 21, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.10
7

103 104

105 106

107

	Slide 1: TCSS 558: applied distributed computing
	Slide 2: OBJECTIVES – 2/21
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Tenure track faculty candidate research seminars – EXTRA CREDIT
	Slide 7: Feedback from 2/16
	Slide 8: OBJECTIVES – 2/21
	Slide 9: Assignment 1
	Slide 10: Using java 11 in netbeans
	Slide 11: OBJECTIVES – 2/21
	Slide 12: Assignment 2
	Slide 13: OBJECTIVES – 2/21
	Slide 14: Chapter 4
	Slide 15: Middleware protocols
	Slide 16: Middleware protocols - 2
	Slide 17: Middleware protocols - 3
	Slide 18: Middleware protocols - 3
	Slide 19: Adapted reference model
	Slide 20: Types of communication
	Slide 21: Types of communication - 2
	Slide 22
	Slide 23: OBJECTIVES – 2/21
	Slide 24: Ch. 4.2: RPC (light-overview)
	Slide 25: Chapter 4
	Slide 26: Rpc – remote procedure call
	Slide 27: Rpc - 2
	Slide 28: Rpc - 3
	Slide 29: Rpc steps
	Slide 30: Parameter passing
	Slide 31: Rpc: byte ordering
	Slide 32: Rpc: pass-by-reference
	Slide 33: Rpc: development support
	Slide 34: Stub generation
	Slide 35: Stub generation - 2
	Slide 36: Language based support
	Slide 37: Rpc variations
	Slide 38: Rpc variations – 2
	Slide 39: Types of asynchronous rpc
	Slide 40: Multicast rpc
	Slide 41: RPC Example: distributed computing environment (DCE)
	Slide 42: DCE client-to-server binding
	Slide 43: EXTRA: Dce – client/server development
	Slide 44: EXTRA: Dce – binding client to server
	Slide 45: We will return at 2:40 pm
	Slide 46: OBJECTIVES – 2/21
	Slide 47: Ch. 4.3: message-oriented communication
	Slide 48: Chapter 4
	Slide 49: Message oriented communication
	Slide 50: sockets
	Slide 51: Sockets - 2
	Slide 52: Server Socket operations
	Slide 53: Client socket operations
	Slide 54: Socket communication
	Slide 55: ZeroMq – socket library
	Slide 56: Zeromq – 2
	Slide 57: Zeromq - patterns
	Slide 58: Zeromq – patterns - 2
	Slide 59: Queueing alternatives
	Slide 60: Message passing interface (MPI)
	Slide 61: Motivations for mpi
	Slide 62: Motivations for mpi - 2
	Slide 63: Mpi functions / datatypes
	Slide 64: Common Mpi functions
	Slide 65: Message-oriented-middleware
	Slide 66: Message queueing systems: USE cases
	Slide 67: Message queueing systems
	Slide 68: Message queueing systems - 2
	Slide 69: Message queueing systems architecture
	Slide 70: Message queueing systems architecture - 2
	Slide 71: Message broker organization
	Slide 72: AmqP protocol
	Slide 73: Amqp - 2
	Slide 74: Amqp messaging
	Slide 75: Message-oriented-middleware examples:
	Slide 76: OBJECTIVES – 2/21
	Slide 77: Ch. 4.4: multicast communication
	Slide 78: Chapter 4
	Slide 79: Multicast communication
	Slide 80: Network structure
	Slide 81: Application level tree-based multicasting
	Slide 82: Multicast tree metrics
	Slide 83: Multicast tree metrics - 2
	Slide 84: Flood-based multicasting
	Slide 85: Flood-based multicasting
	Slide 86: Random graphs
	Slide 87: Probabilistic flooding
	Slide 88: Probabilistic flooding
	Slide 89: Probabilistic flooding
	Slide 90: Probabilistic flooding
	Slide 91: Probabilistic flooding
	Slide 92: Probabilistic flooding
	Slide 93: Probabilistic flooding
	Slide 94: Probabilistic flooding
	Slide 95: Message flooding
	Slide 96: Message flooding - 2
	Slide 97: Message flooding - 3
	Slide 98: Gossip based data dissemination
	Slide 99: Information dissemination
	Slide 100: Epidemic protocols
	Slide 101: Anti entropy dissemination model for gossiping
	Slide 102: Anti entropy effectiveness
	Slide 103: Rumor spreading
	Slide 104: Rumor spreading - 2
	Slide 105: Removing data
	Slide 106: Death certificate example
	Slide 107: Questions

