
TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

February 2, 2023

Slides by Wes J. Lloyd L10.1

Processes:
Clients & Servers

Wes J. Lloyd

School of Engineering 
& Technology (SET)
University of Washington - Tacoma

TCSS 558: 

APPLIED DISTRIBUTED COMPUTING

 Questions from 1/31

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Assignment 1: Key/Value Store

▪ Java Maven project template files posted

 Midterm Thursday February 9

▪ 2nd hour - Tuesday February 7 – practice midterm questions

 Chapter 3: Processes

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L10.2

OBJECTIVES – 2/2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.3

ONLINE DAILY FEEDBACK SURVEY

 Survey has two questions:

 Be sure to add your questions about the previous class to the 

second question

 1st question: After today’s class, comment on any new 

concepts that you learned about?

▪ Have been getting questions here…

 2nd question: After today’s class, what point(s) remain least 

clear to you?

▪ >> Please add questions HERE

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.4

SURVEY QUESTIONS

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L10.5

 Please classify your perspective on material covered in today’s 

class (27 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.02  ( - previous 6.25)  

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.67  ( - previous 5.62)

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.6

MATERIAL / PACE

1 2

3 4

5 6



TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

February 2, 2023

Slides by Wes J. Lloyd L10.2

 When single thread(ed server) blocks for I/O, doesn't i t  mean 

it  handles I/O af ter other c l ient requests are completed? 

 With single-threaded server:

 Main loop of server: receives request, examines it, carries it 

out to completion before processing next one

 While waiting for disk: server is idle and does not process 

other requests. Requests from other clients cannot be 

handled.

▪ Requests may be queued or ignored (lost)

 If  server is running on a dedicated machine, the CPU will be 

idle while the server waits for the disk . 

 Net result: many fewer requests processed per unit time

▪ Lower throughput, higher turnaround time

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.7

FEEDBACK FROM 1/31

 Isn't this the same as the f inite state machine performing 

I/O asynchronously? 

 FSM: disk I/O operations are asynchronous

 They occur in parallel to request processing

 When the disk I/O completes, the server thread is 

interrupt from whatever it is doing, so that it can process 

the results of the disk I/O operations

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.8

FEEDBACK - 2

 Or does it  mean the single threaded server does not 

handle I/O at all  even af ter all  other requests are 

fulf illed?

 Single threaded server does perform I/O when needed

 When a request involves I/O, the server blocks its only 

thread and waits for the I/O to complete

 This can result in considerable idle time

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.9

FEEDBACK - 3

 Metric – measures degree of parallelism realized by running 

system, by calculating average utilization:

 C i – fraction of time that i threads are executed simultaneously

 N – maximum threads that can execute at any one time

 C0 – is the fraction of time that 0 threads are executed –

CPU is idle… 

 Idle threads (blocked for I/O) are not executing !

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.10

THREAD-LEVEL PARALLELISM EXAMPLE

 Image a 4-core CPU, need to know:

▪ fraction of time just 1 thread runs – load average <= 1.0

▪ fraction of time 2 threads run – load average 2.0

▪ fraction of time 3 threads run – load average 3.0

▪ fraction of time 4 threads run – load average 4.0

 Divide by 1 minus fraction of time CPU is idle

 Example:

 4-vir tual CPU Ubuntu 20.04 Vir tual Machine

 Firefox browser pointed at news website

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.11

TLP EXAMPLE- 2

Assume htop’s CPU 
bars report  2-second CPU 
ut i l izat ion averages
for the computer:

 CPU 1: 16.8%

 CPU 2: 9.7%

 CPU 3: 9.4%

 CPU 4: 10.7%

 CPU idle : 53.4%

{ (1  .168)+(2  .097)+(3  .094)+(4  .107) }
1 - .534

{  ( .168)+(.194)+(.282)+(.428) }
.466

1.072
.466

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.12

CALCULATE

TLP:

= 2.3 estimated TLP

Snapshot from htop on Ubuntu 20.04 Firefox w/ 4 vCPUs

7 8

9 10

11 12



TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

February 2, 2023

Slides by Wes J. Lloyd L10.3

 While this approach approximates TLP of a computer over a t ime -
interval,  it  may not  accurately characterize TLP of a program

 Running the applicat ion on a minimal idle machine with no other 
users may help to est imate TLP

 Inside a Docker container the htop CPU bars report  host - level CPU 
ut i l izat ion, and not  container (applicat ion) level 

 A tool is needed to isolate only the act ivity of an applicat ion for 
est imating TLP

 Container level metrics available from the cgroup vir tual fi le  
system can identify CPU user and CPU kernel t ime for a container

 It  is not  clear if the CPU util izat ion bars in htop are averages or
instantaneous statuses

 I f  they are t ime quantum averages of CPU ut i l izat ion,
the update interval can be adjusted in htop:

 htop –d <update interval>

 Bars are color coded: kernel user I/O-wait SoftIRQ IRQ nice

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.13

INFER TLP FROM HTOP (?)

 Questions from 1/31

 Assignment 0:  Cloud Computing Infrastructure Tutorial

 Assignment 1: Key/Value Store

▪ Java Maven project template files posted

 Midterm Thursday February 9

▪ 2nd hour - Tuesday February 7 – practice midterm questions

 Chapter 3: Processes

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L10.14

OBJECTIVES – 2/2

 Preparing for Assignment 0:

▪ Establish AWS Account

▪ Standard account

▪ Complete AWS Cloud Credits Survey and provide AWS account ID

▪ Credits will be automatically loaded by Amazon into accounts

 Tasks:

▪ Task 1 - Establish local Linux/Ubuntu environment

▪ Task 2 –AWS account setup, obtain user credentials

▪ Task 3 – Intro to: Amazon EC2 & Docker: create Dockerfile for 
Apache Tomcat

▪ Task 4 – Create Dockerfile for haproxy

▪ Task 5 – Working with Docker-Machine

▪ Task 6 - Config 3 multiple server configs to load balance 
requests for RESTful Fibonacci web service

▪ Task 7 – Test configs and submit results

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.15

ASSIGNMENT 0

 testFibPar.sh script is a parallel test script

 Orchestrates multiple threads on client to invoke server 
multiple times in parallel

 To simplify coordinate of parallel service calls in BASH, 
testFibPar.sh script ignores errors !!!   

 To help test client -to-server connectivity, have created a new 
testFibService.sh script

 TEST 1: Network layer

▪ Ping (ICMP)

 TEST 2: Transport layer

▪ TCP: telnet (TCP Port 8080) – security group (firewall) test

 TEST 3: Application layer

▪ HTTP REST – web service test

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.16

TESTING CONNECTIVITY TO SERVER

 Questions from 1/31

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Assignment 1:  Key/Value Store

▪ Java Maven project template files posted

 Midterm Thursday February 9

▪ 2nd hour - Tuesday February 7 – practice midterm questions

 Chapter 3: Processes

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L10.18

OBJECTIVES – 2/2

13 14

15 16

17 18



TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

February 2, 2023

Slides by Wes J. Lloyd L10.4

 Multi-protocol TCP/UDP/RMI Key Value Store

 Implement a “GenericNode” where the application can be 

launched to assume the role of a client or server for a 

Key/Value Store data store

 Recommended in Java (11)

 Client node program interacts with server node to put, get, 

delete, or list items in a key/value store

 Multi-threaded or single-threaded server

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.19

ASSIGNMENT 1

 Questions from 1/31

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Assignment 1: Key/Value Store

▪ Java Maven project template files posted

 Midterm Thursday February 9

▪ 2nd hour - Tuesday February 7 – practice midterm questions

 Chapter 3: Processes

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L10.20

OBJECTIVES – 2/2

 Questions from 1/31

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Assignment 1: Key/Value Store

▪ Java Maven project template files posted

 Midterm Thursday February 9

▪ 2nd hour - Tuesday February 7 – practice midterm questions

 Chapter 3: Processes

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L10.21

OBJECTIVES – 2/2

CH. 3.3: CLIENTS

L10.22

 Thick clients

▪Web browsers

▪ Client-side scripting

▪Mobile apps

▪Multi-tier MVC apps

 Thin clients

▪Remote desktops/GUIs (very thin)

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.23

TYPES OF CLIENTS

 Application specific protocol

▪ Thick clients

▪ Clients maintain local data

▪ Middleware (APIs)

▪ Clients synchronize data with remote nodes 

▪ Example: shared calendar application

 Application independent 

▪ Thin clients

▪ Client acts as a remote terminal

▪ Provides interface to user (GUI / UI)

▪ Server houses entire application stack

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.24

CLIENTS

19 20

21 22

23 24



TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

February 2, 2023

Slides by Wes J. Lloyd L10.5

 Layered architecture to transport UI over network

 Remote desktop functionality for Linux/Unix systems

 X kernel acts as a server

▪ Provides the X protocol: application level protocol

▪ Xlib instances (client applications) exchange data and 

events with X kernels (servers)

▪ Clients and servers on single machine → Linux GUI

▪ Client and server communication transported over the 

network → remote Linux GUI

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.25

X WINDOWS

 Window manager:

▪ Application running 

atop of X-windows 

which provides flair

▪ Many variants

▪ Without X windows is 

quite bland

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.26

X WINDOWS - 2

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L10.27

 Layered architecture

 X-kernel: low level 

inter face/APIs for 

controlling screen, 

capturing keyboard 

and mouse events

(X window Server)

 Provided on Linux 

as Xlib

 Provides network 

enabled GUI

 Layering allows for

use for custom

window managers

 How to Install VNC server on Ubuntu EC2 instance VM:

 sudo apt-get update

 # ubuntu 16.04

 sudo apt-get install ubuntu-desktop

 sudo apt-get install gnome-panel gnome-settings-

daemon metacity nautilus gnome-terminal

 # on ubuntu 18.04

 sudo apt install xfce4 xfce4-goodies

 sudo apt-get install tightvncserver # both

 Start VNC server to create initial config file

 vncserver :1

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.28

EXAMPLE: VNC SERVER

 On the VM: edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 16.04):

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.29

EXAMPLE: VNC SERVER – UBUNTU 16.04

#!/bin/sh

export XKL_XMODMAP_DISABLE=1

unset SESSION_MANAGER

unset DBUS_SESSION_BUS_ADDRESS

[ -x /etc/vnc/xstartup ] && exec /etc/vnc/xstartup

[ -r $HOME/.Xresources ] && xrdb $HOME/.Xresources

xsetroot -solid grey

vncconfig -iconic &

gnome-panel &

gnome-settings-daemon &

metacity &

nautilus &

gnome-terminal &

 On the VM:

 Edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 18.04):

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.30

EXAMPLE: VNC SERVER – UBUNTU 18.04

#!/bin/bash

xrdb $HOME/.Xresources

startxfce4 &

25 26

27 28

29 30



TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

February 2, 2023

Slides by Wes J. Lloyd L10.6

# install vnc server

sudo apt install tigervnc-standalone-server

Sudo apt install ubuntu-gnome-desktop

vncserver :1    # creates a config file

vncserver -kill :1 # stop server

vi ~/.vnc/xstartup # edit config file

#!/bin/sh

# Start Gnome 3 Desktop 

[ -x /etc/vnc/xstartup ] && exec /etc/vnc/xstartup

[ -r $HOME/.Xresources ] && xrdb $HOME/.Xresources

vncconfig -iconic &

dbus-launch --exit-with-session gnome-session &

sudo systemctl start gdm # start gnome desktop

sudo systemctl enable gdm

vncserver :1 # restart vnc server

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.31

VNC SERVER - UBUNTU 20.04 - GNOME

 On the VM: reload config by restarting server

 vncserver -kill :1

 vncserver :1

 Open port 22 & 5901 in EC2 security group:

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.32

EXAMPLE: VNC SERVER - 3

 On the client (e.g. laptop):

 Create SSH connection to securely forward port 5901 on the 

EC2 instance to your localhost port 5901

 This way your VNC client doesn’t need an SSH key

ssh –i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N 

-f -l <username> <EC2-instance ip_address>

 For example:

ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -

l ubuntu 52.111.202.44

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.33

EXAMPLE: VNC CLIENT

 On the client (e.g. laptop):

 Use a VNC Client to connect

 Remmina is provided by default on Ubuntu 16.04

 Can “google” for many others

 Remmina login:

 Chose “VNC” protocol

 Log into “localhost:5901”

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.34

EXAMPLE: VNC CLIENT - 2

 EC2 instance

with a GUI. .  .! ! !

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.35

REMOTE COMPUTER IN THE CLOUD

 Thin clients

▪ X windows protocol

▪ A variety of other remote desktop protocols exist:

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.36

THIN CLIENTS

31 32

33 34

35 36



TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

February 2, 2023

Slides by Wes J. Lloyd L10.7

 Applications should separate application logic from UI

 When application logic and UI interaction are tightly coupled 

many requests get sent to X kernel

 Client must wait for response

 Synchronous behavior and app-to-UI coupling adverselt affects 

performance of WAN / Internet

 Protocol optimizations : reduce bandwidth by shrinking size of 

X protocol messages

 Send only dif ferences between messages with same identifier

 Optimizations enable connections with 9600 kbps

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.37

THIN CLIENTS - 2

 Vir tual network computing (VNC)

 Send display over the network at the pixel level 

( instead of X lib events)

 Reduce pixel encodings to save bandwidth – fewer colors

 Pixel-based approaches loose application semantics

 Can transport any GUI this way

 THINC- hybrid approach

 Send video device driver commands over network

 More powerful than pixel based operations

 Less powerful compared to protocols such as X

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.38

THIN CLIENTS - 3

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.39

TRADEOFFS: ABSTRACTION OF REMOTE 

DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib

VNC X11

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.40

TRADEOFFS: ABSTRACTION OF REMOTE 

DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11

● Generic – no app context ● Application context

● Graphics data is available

● Higher network bandwidth ● UI data/operations

● Fewer colors ● Lower network bandwidth

● Utilize graphics compression ● More colors

● Thin cl ient ● Thick cl ient

 Clients help enable distribution transparency of servers

 Replication transparency 

▪ Client aggregates responses from multiple servers

▪ Only the client knows of replicas

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.41

CLIENT ROLES IN PROVIDING 

DISTRIBUTION TRANSPARENCY

 Location/relocation/migration transparency

▪ Harness convenient naming system to allow client to infer new 

locations

▪ Server inform client of moves / Client reconnects to new endpoint

▪ Client hides network address of server, and reconnects as needed

▪ May involve temporary loss in performance

 Replication transparency 

▪ Client aggregates responses from multiple servers

 Failure transparency

▪ Client retries, or maps to another server, or uses cached data

 Concurrency transparency

▪ Transaction servers abstract coordination of multithreading

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.42

CLIENT ROLES IN PROVIDING 

DISTRIBUTION TRANSPARENCY - 2

37 38

39 40

41 42



TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

February 2, 2023

Slides by Wes J. Lloyd L10.8

WE WILL RETURN AT 

2:44PM

 Questions from 1/31

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Assignment 1: Key/Value Store

▪ Java Maven project template files posted

 Midterm Thursday February 9

▪ 2nd hour - Tuesday February 7 – practice midterm questions

 Chapter 3: Processes

▪ Chapter 3.3: Clients

▪ Chapter 3.4: Servers

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L10.44

OBJECTIVES – 2/2

CH. 3.4: SERVERS

L10.45

 Cloud & Distributed Systems – rely on Linux

 http://www.zdnet.com/article/it -runs-on-the-cloud-and-the-

cloud-runs-on-linux-any-questions/

 IT is moving to the cloud. And, what powers the cloud? 

▪Linux

 Uptime Institute survey - 1,000 IT executives (2016)

▪ 50% of IT executives – plan to migrate majority of IT workloads to 

off-premise to cloud or colocation sites

▪ 23% expect the shift in 2017, 70% by 2020…

 Docker on Windows / Mac OS X

▪ Based on Linux

▪ Mac: Hyperkit Linux VM

▪ Windows: Hyper-V Linux VM

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.46

SERVERS

 Servers implement a specific service for a collection of clients

 Servers wait for incoming requests, and respond accordingly

 Server types

 I terative: immediately handle client requests

 Concurrent: Pass client request to separate thread

 Multithreaded servers are concurrent servers

▪ E.g. Apache Tomcat

 Alternative :  fork a new process for each incoming request

 Hybrid :  mix the use of multiple processes with thread pools

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.47

SERVERS - 2

 Clients connect to servers via:

IP Address and Port Number

 How do ports get assigned?

▪Many protocols support “default” port numbers

▪ Client must find IP address(es) of servers

▪ A single server often hosts multiple end points 

(servers/services)

▪When designing new TCP client/servers must be careful 

not to repurpose ports already commonly used by others

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.48

END POINTS

43 44

45 46

47 48

http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/


TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

February 2, 2023

Slides by Wes J. Lloyd L10.9

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.49

Daemon server

▪ Example: NTP server

Superserver

Stateless server

▪ Example: Apache server

Stateful server

Object servers

EJB servers

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.50

TYPES OF SERVERS

 Daemon servers 

▪ Run locally on Linux

▪ Track current server end points (outside servers)

▪ Example: network time protocol (ntp) daemon

▪ Listen locally on specific port (ntp is 123)

▪ Daemons routes local client traffic to the configured 

endpoint servers

▪ University of Washington: time.u.washington.edu

▪ Example “ntpq –p”

▪ Queries local ntp daemon, routes traffic to configured server(s)

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.51

NTP EXAMPLE

 Linux inetd / xinetd

▪ Single superserver

▪ Extended internet service daemon

▪ Not installed by default on Ubuntu

▪ Intended for use on server machines

▪ Used to configure box as a server for multiple internet services

▪ E.g. ftp, pop, telnet

▪ inetd daemon responds to multiple endpoints for multiple 
services

▪ Requests fork a process to run required executable program

 Check what ports you’re listening on:

▪ sudo netstat -tap | grep LISTEN

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.52

SUPERSERVER

 Server design issue:

▪ Active client/server communication is taking place over a port

▪ How can the server / data transfer protocol support interruption?

 Consider transferring a 1 GB image, how do you pass a 

unrelated message in this stream?

1. Out-of-band data:  special messages sent in-stream to support 

interrupting the server  (TCP urgent data)

2. Use a separate connection (different port) for admin control info

 Example: sf tp secure file transfer protocol

▪ Once a file transfer is started, can’t be stopped easily

▪ Must kill the client and/or server

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.53

INTERRUPTING A SERVER

 Data about state of clients is not stored

 Example: web application servers are typically stateless

▪ Also function-as-a-service (FaaS) platforms

 Many servers maintain information on clients (e.g. log files)

 Loss of stateless data doesn’t disrupt server availability

▪ Loosing log files typically has minimal consequences

 Soft state: server maintains state on the client for a limited 

time (to support sessions )

 Soft state information expires and is deleted

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.54

STATELESS SERVERS

49 50

51 52

53 54



TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

February 2, 2023

Slides by Wes J. Lloyd L10.10

 Maintain persistent information about clients

 Information must be explicitly deleted by the server

 Example: 

File server - allows clients to keep local file copies for RW

 Server tracks client file permissions and most recent versions

▪ Table of (client, file) entries

 If  server crashes data must be recovered

 Entire state before a crash must be restored

 Fault tolerance - Ch. 8

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.55

STATEFUL SERVERS

 Session state

▪ Tracks series of operations by a single user

▪ Maintained temporarily, not indefinitely

▪ Often retained for multi-tier client server applications

▪ Minimal consequence if session state is lost

▪ Clients must start over, reinitialize sessions

 Permanent state

▪ Customer information, software keys

 Client-side cookies

▪ When servers don’t maintain client state, clients can store state 

locally in “cookies”

▪ Cookies are not executable, simply client-side data

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.56

STATEFUL SERVERS - 2

 OBJECTIVE: Host  objects and enable remote cl ient  access

 Do not provide a specific service 

▪ Do nothing if there are no objects to host

 Support  adding/removing hosted objects 

 Provide a home where objects l ive

 Objects,  themselves ,  provide “services”

 Object  par ts

▪ State data

▪ Code (methods, etc.)

 Transient  object(s)

▪ Objects with limited lifetime (< server)

▪ Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”).

▪ Disadvantage: initialization may be expensive

▪ Alternative: preinitialize and retain objects on server start -up

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.57

OBJECT SERVERS

 Should object se rvers iso late memory for object instances?

▪ Share neither code nor data

▪ May be necessary if objects couple data and implementation

 Object  server threading designs:

▪ Single thread of control for object server

▪ One thread for each object

▪ Servers use separate thread for client requests

 Threads created on demand    vs .
Server maintains pool of threads

 What are the t radeoffs  fo r c reat ing server threads on demand vs.  
using a thread pool?

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.58

OBJECT SERVERS - 2

 EJB- specialized Java object  hosted by a EJB web container

 4 types: stateless,  stateful ,  ent ity,  and message -driven beans

 Provides “middleware” standard (framework) for implementing 
back-ends of enterprise applicat ions

 EJB web applicat ion containers integrate support  for:

▪ Transaction processing

▪ Persistence

▪ Concurrency

▪ Event-driven programming

▪ Asynchronous method invocation

▪ Job scheduling

▪ Naming and discovery services (JNDI)

▪ Interprocess communication

▪ Security 

▪ Software component deployment to an application server

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.59

EJB – ENTERPRISE JAVA BEANS

 Highly configurable, extensible, platform independent

 Supports TCP HTTP protocol communication

 Uses hooks – placeholders for group of functions

 Requests processed in phases by hooks

 Many hooks:

▪ Translate a URL

▪ Write info to log

▪ Check client ID

▪ Check access rights

 Hooks processed in order

enforcing flow -of-control

 Functions in replaceable

modules

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.60

APACHE WEB SERVER

Hooks point to functions in modules

55 56

57 58

59 60



TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

February 2, 2023

Slides by Wes J. Lloyd L10.11

 Hosted across an LAN or WAN

 Collection of interconnected machines 

 Can be organized in tiers:

▪ Web server → app server → DB server

▪ App and DB server sometimes integrated

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.61

SERVER CLUSTERS

 Front end of three tier architecture (logical switch) provides 

distribution transparency – hides multiple servers

 Transport-layer switches: switch accepts TCP connection 

requests, hands off to a server

▪ Example: hardware load balancer (F5 networks – Seattle)

▪ HW Load balancer - OSI layers 4-7

 Network-address-translation (NAT) approach:

▪ All requests pass through switch

▪ Switch sits in the middle of the client/server TCP connection

▪ Maps (rewrites) source and destination addresses

 Connection hand-off approach:

▪ TCP Handoff: switch hands of connection to a selected server

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.62

LAN REQUEST DISPATCHING

 Who is the best server to handle the request?

 Switch plays important role in 

distributing requests

 Implements load balancing

 Round-robin – routes client 

requests to servers in a looping

fashion

 Transport-level – route client 

requests based on TCP port number

 Content-aware request distribution – route requests based on 

inspecting data payload and determining which server node 

should process the request

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.63

LAN REQUEST DISPATCHING - 2

 Deployed across the internet 

 Leverage resource/infrastructure from Internet Service 

Providers (ISPs)

 Cloud computing simplifies building WAN clusters

 Resource from a single cloud provider can be combined to 

form a cluster

 For deploying a cloud-based cluster (WAN), what are the 

implications of  deploying nodes to:

 (1) a single availability zone (e.g. us -east-1e)?

 (2) across multiple availability zones?

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.64

WIDE AREA CLUSTERS

 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System

▪ Hierarchical decentralized naming system

 Linux: find your DNS servers:

# Find you device name of interest

nmcli dev

# Show device configuration

nmcli device show <device name>

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.65

WAN REQUEST DISPATCHING

 First query local server(s) for address

 Typically there are (2) local DNS servers

▪ One is backup

 Hostname may be cached at local DNS server

▪ E.g. www.google.com

 If not found, local DNS server routes to other servers

 Routing based on components of the hostname

 DNS servers down the chain mask the client IP, and use the 
originating DNS server IP to identify a local host

 Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not 
necessarily close to the client

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.66

DNS LOOKUP

61 62

63 64

65 66

http://www.google.com/


TCSS 558: Applied Distributed Computing
[Winter 2023]  School of Engineering and Technology, 
UW-Tacoma

February 2, 2023

Slides by Wes J. Lloyd L10.12

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L10.67

 nslookup <ip addr / hostname>

 Name server lookup – translates hostname or IP to the inverse

 traceroute <ip addr / hostname>

 Traces network path to destination

 By default, output is limited to 30 hops, can be increased

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.68

DNS: LINUX COMMANDS

 Ping www.google.com in WA from wireless network:

▪ nslookup: 6 alternate addresses returned, choose (74.125.28.147)

▪ Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east -1) from EC2 instance:

▪ nslookup: 1 address returned, choose 172.217.9.196

▪ Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server 

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts,  27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network , ping VA us -east -1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.69

DNS EXAMPLE – WAN DISPATCHING

 Ping www.google.com in WA from wireless network:

▪ nslookup: 6 alternate addresses returned, choose (74.125.28.147)

▪ Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east -1) from EC2 instance:

▪ nslookup: 1 address returned, choose 172.217.9.196

▪ Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server 

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts,  27 hops)

 Pinging the WA -local server is ~60x slower from VA

 From local wireless network , ping VA us -east -1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.70

DNS EXAMPLE – WAN DISPATCHING

Latency to ping VA server in WA: ~3.63x
WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x
VA client: local-google 1.278ms to WA-google 62.349!

QUESTIONS

February 2, 2023
TCSS558: Applied Distributed Computing [Winter 2023]
School of Engineering and Technology, University of Washington - Tacoma L10.71

67 68

69 70

71

http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/

	Slide 1: TCSS 558:  applied distributed computing
	Slide 2: OBJECTIVES – 2/2
	Slide 3: Online daily feedback survey
	Slide 4: Survey questions
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 1/31
	Slide 8: Feedback - 2
	Slide 9: Feedback - 3
	Slide 10: Thread-level parallelism example
	Slide 11: TLP example- 2
	Slide 12: Calculate      tlp:
	Slide 13: Infer TLP from htop (?)
	Slide 14: OBJECTIVES – 2/2
	Slide 15: Assignment 0
	Slide 16: Testing connectivity to server
	Slide 17
	Slide 18: OBJECTIVES – 2/2
	Slide 19: Assignment 1
	Slide 20: OBJECTIVES – 2/2
	Slide 21: OBJECTIVES – 2/2
	Slide 22: Ch. 3.3: clients
	Slide 23: Types of clients
	Slide 24: clients
	Slide 25: X windows
	Slide 26: X windows - 2
	Slide 27
	Slide 28: EXAMPLE: Vnc server
	Slide 29: Example: Vnc server – ubuntu 16.04
	Slide 30: Example: Vnc server – ubuntu 18.04
	Slide 31: Vnc server - ubuntu 20.04 - gnome
	Slide 32: Example: Vnc server - 3
	Slide 33: Example: Vnc client
	Slide 34: Example: Vnc client - 2
	Slide 35: Remote computer in the cloud
	Slide 36: Thin Clients
	Slide 37: Thin clients - 2
	Slide 38: Thin clients - 3
	Slide 39: Tradeoffs: abstraction of remote display protocols
	Slide 40: Tradeoffs: abstraction of remote display protocols
	Slide 41: Client roles in providing distribution transparency
	Slide 42: Client roles in providing distribution transparency - 2
	Slide 43: We will return at 2:44pm
	Slide 44: OBJECTIVES – 2/2
	Slide 45:   Ch. 3.4: servers
	Slide 46: servers
	Slide 47: Servers - 2
	Slide 48: End points
	Slide 49
	Slide 50: Types of servers
	Slide 51: Ntp example
	Slide 52: Superserver
	Slide 53: Interrupting a server
	Slide 54: Stateless servers
	Slide 55: Stateful servers
	Slide 56: Stateful servers - 2
	Slide 57: Object servers
	Slide 58: Object servers - 2
	Slide 59: Ejb – enterprise java beans
	Slide 60: Apache web server
	Slide 61: Server clusters
	Slide 62: Lan Request dispatching
	Slide 63: Lan Request dispatching - 2
	Slide 64: Wide area clusters
	Slide 65: Wan request dispatching
	Slide 66: Dns lookup
	Slide 67
	Slide 68: Dns: Linux commands
	Slide 69: Dns example – wan dispatching
	Slide 70: Dns example – wan dispatching
	Slide 71: Questions

