
Page 1 of 31

TCSS 558: Applied Distributed Computing School of Engineering and Technology
Winter 2023 University of Washington – Tacoma
http://faculty.washington.edu/wlloyd/courses/tcss558 Instructor: Wes Lloyd

Assignment 0
Version 0.11

Cloud Computing Infrastructure Tutorial

Due Date: Tuesday January 31st, 2023 @ 11:59 pm, tentative

Objective
The purpose of assignment 0 is to install AWS tools, and gain experience with technologies used to
provide distributed computing infrastructure to support future TCSS 558 programming assignments.

As a prerequisite to this assignment, it is assumed that you will have access to an AWS account.

Assignment 0 provides a tutorial on the use of Cloud Computing Infrastructure. Specifically, assignment
0 walks through the use of EC2 instances, docker, docker-machine, and haproxy for load balancing.

We will create virtual machines, known as elastic compute cloud (EC2) instances to host individual nodes
of our distributed systems. Docker containers are used to deploy our application code to create the
nodes of our distributed system. These containers are created on VMs. To support working with VMs to
host our distributed applications, students may optionally harness tools such as Docker-Machine and/or
Kubernetes to automatically create and configure containers and/or VMs.

Use of a Linux environment is recommended for assignment 0.

Windows users can install Oracle Virtual Box to create virtual machines under Windows 10/11, and then
install a Ubuntu virtual machine.

For Windows users, there is an Ubuntu “App” that can be installed onto Windows directly. The use of
the Ubuntu App is not recommended due to potential compatibility issues or lack of features.

Windows Oracle Virtual Box & Ubuntu VM instructions:

Oracle VirtualBox can be downloaded here:
https://www.virtualbox.org/

The Ubuntu 22.04 LTS ISO file can be downloaded here:
https://releases.ubuntu.com/22.04.1/ubuntu-22.04.1-desktop-amd64.iso (3.6 GB)

The LIVE installation media is smaller. This ISO file is “bootable” so the system will start up using this
image. You can then install Ubuntu over the internet using this ISO file where only the necessary
components you select will be downloaded. Note the live image is a server image:
https://cdimage.ubuntu.com/releases/22.04/release/ubuntu-22.04.1-live-server-arm64.iso (1.3 G)

Another approach is to obtain Ubuntu using a bit torrent stream by downloading:

http://faculty.washington.edu/wlloyd/courses/tcss558
https://www.virtualbox.org/
https://releases.ubuntu.com/22.04.1/ubuntu-22.04.1-desktop-amd64.iso
https://cdimage.ubuntu.com/releases/22.04/release/ubuntu-22.04.1-live-server-arm64.iso

Page 2 of 31

https://cdimage.ubuntu.com/releases/22.04/release/ubuntu-22.04.1-live-server-arm64.iso.torrent (107K)

If unfamiliar with BitTorrent, a popular mechanism for downloading and sharing of large files read the
wikipedia page here:
https://en.wikipedia.org/wiki/BitTorrent

If wanting additional help on how to install Oracle Virtual Box, try searching the internet for installation
instructions using search engines such as bing or google, or try finding a video at video.google.com.

Here are two helpful videos:

Introduction to Oracle VirtualBox for creating Virtual Machines (2018, many views):
https://www.youtube.com/watch?v=sB_5fqiysi4

Installing Ubuntu 22.04 on Windows 11 Oracle VirtualBox
https://youtu.be/v1JVqd8M3Yc

And here are instructions for installing Ubuntu 20.04 on Oracle VirtualBox:
https://youtu.be/zHwFtyxJsog

Generic instructions for installing Ubuntu Virtual Box virtual machine:
https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox#1-
overview

Instructions including how to install Guest Additions on the Ubuntu VM
(this enables integrated clipboard for copy & paste, and other beneficial features):
https://linuxconfig.org/virtualbox-install-guest-additions-on-ubuntu-22-04-lts-jammy-jellyfish

When working with Virtual Machines, the base operating system (e.g. Windows) on your laptop that
hosts the virtual machine is called the host operating system. The operating system used by the VM is
called the guest operating system.

A common configuration used in TCSS 558 is:
Guest operating system (VM) = Ubuntu 22.04 LTS
Host operating system = Windows 10/11 or Mac OSX

For M1 Mac (ARM CPU) users, there is only a preview version of Virtual Box available currently.
As an alternative to Virtual Box, M1 mac users are encouraged to try out:

UTM Hypervisor (for running VMs on M1 MAC)
https://mac.getutm.app/

A non-free alternative is the student edition of the Parallels Hypervisor on MAC:
https://www.parallels.com/landingpage/pd/education/

Once your VM is installed, it is highly recommended to install the VirtualBox “Guest Additions”. The
guest additions provide important features such as shared clipboards between the host and the guest,
as well as file system sharing, and mouse pointer integration.

https://cdimage.ubuntu.com/releases/22.04/release/ubuntu-22.04.1-live-server-arm64.iso.torrent
https://en.wikipedia.org/wiki/BitTorrent
https://www.youtube.com/watch?v=sB_5fqiysi4
https://youtu.be/v1JVqd8M3Yc
https://youtu.be/zHwFtyxJsog
https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox#1-overview
https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox#1-overview
https://linuxconfig.org/virtualbox-install-guest-additions-on-ubuntu-22-04-lts-jammy-jellyfish
https://mac.getutm.app/
https://www.parallels.com/landingpage/pd/education/

Page 3 of 31

Please do yourself a favor, and do not go the entire quarter without installing the VM guest additions.

Task 1 – AWS account setup

Once having access to AWS, task #1 involves creating AWS account credentials to work with Docker-
Machine, if you have not already done so.

First, login to your AWS account at: https://aws.amazon.com/

From the AWS Management Console home, locate “IAM” Identity Access Management, and select it.
You can search for “IAM” using the search bar.

IAM us under the “Security, Identity & Compliance” group of features:

Next, from the IAM dashboard, on the left hand-side select “Users” → :

Provide a user account name. Here I am using “tcss558” as an example:

Be sure to select the “Programmatic access” checkbox.

Then click the “Next: Permissions” button…

For simplicity, you can simply select the button:

Using the search box, search, find, and select using the checkbox the following policy:

https://aws.amazon.com/

Page 4 of 31

* AmazonEC2FullAccess

If you plan to use this user account to explore additional Amazon’s services, then admin access can be
added (not required):

* AdministratorAccess

This will allow you, via the CLI, to explore and do just about everything with this AWS account.

Now click the “Next: Tags” button, it is not necessary to add any tags.
Now click the “Next: Review” button, and if the settings look correct, select “Create user”.

You’ll now see a screen with an Access key ID (grayed out below), and a Secret access key. You can copy
both the Access key, and the secret access key to a safe place, or alternatively, click the “Download .csv”
button to download a file containing this information.

Once you’ve downloaded these keys, be sure to never publish these key values in a source code
repository such as github where your account credentials could be exposed.

Protect these keys as if they were your credit card or wallet!

Task 2 – Working with Docker, creating Dockerfile for Apache Tomcat

Next, launch a virtual machine on Amazon to support working with Docker/Docker-Machine. You will
want to have access to a computer with the ssh/sftp tools. It is best to have access to a local computer
with Ubuntu installed either natively, or on Oracle Virtualbox. It is possible to download putty, an “SSH”
client and also an “SFTP” client, for Windows, but not recommended.

Recommend use of us-east-2 Ohio AWS Region:

Choose the AWS “region” that you’ll work in. The recommended option is “US East
(Ohio)” known as “us-east-2” via the CLI. The Ohio region is newer, has less traffic, and
has been seen as less expensive than others for EC2 spot instances.

The region can be set using the dropdown in the upper-right hand corner. Selecting the
region configures the entire AWS console to operate in that region as shown to the
right.

For assignment 0, we will begin testing by using a “t2.micro” instance. Users are
allowed up to 750-hours each month of instance time for FREE using the t2.micro type.

Page 5 of 31

With the t2.micro VM, with a new AWS account, you need not have received any AWS credits to
complete assignment 0 because the t2.micro VM is essentially FREE in the first year of the account.

Click on the AWS services icon.

Select Compute services:

Then select “EC2”:

Next, let’s launch a t2.micro instance.
On the menu on the far-left click “Instances” that is under Instances:

Try launching an instance using the ec2 instance launch wizard.
Press the “Launch Instances” button:

Name and tags
At the top of the user interface under Name and tags, a VM name and tags can be specified.
Tags allow key/value assignments to help identify VMs.
These key/value pairs can be queried using the EC2 API to programmatically identify specific VMs that
have a designated purpose for your application.
We will not use this feature right now.

Application and OS Images (Amazon Machine Images)
For the Application and OS images (Amazon Machine Image) select the Ubuntu button.
Then from the Amazon Machine Image (AMI) dropdown list,
Select Ubuntu 22.04 LTS (HVM) as the Amazon Machine Image.

Page 6 of 31

Amazon Machine Images are snapshots of pre-installed machines. Choosing an AMI will cause its
snapshot to be replicated onto your live EBS volume. This will allow you to select an operating system
for the VM.

Instance Type
Next, specify the Instance Type.
In the dropdown, search for and select “t2.micro”. ‘t2’ instances are a low-cost, general purpose
instance type that provides a baseline level of CPU performance with the ability to burst above the
baseline when needed. Upon creation, the t2.micro is provided 30-minutes of CPU credits. 1 CPU credit
is equivalent to running the VM at 100% utilization for 1 minute.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances-standard-
mode-concepts.html

For every hour the t2.micro is active, an additional 6 CPU credits is earned.
A maximum of 144 earned CPU credits is allowed. (2 hours 24 minutes of 1 vCPU @ 100%)

Key pair (login)
If you already have a key pair, then select it from the dropdown list. If not select the link: “Create new
key pair”:

When creating a key pair, using defaults is ok. Download the file to a safe location.

Network Settings
Make changes to the network settings for your VM launch request.
To make changes you’ll need to click on the Edit button on the right-hand side of the Network Settings
frame.

Here you can specify the Virtual Private Cloud (VPC) that the VM is created on. Every VM has a VPC.
Most of the time we use the default VPC. Creating a custom VPC allows for specialized network
configurations.

Subnet:
This is how you select a specific availability zone (AZ). AZs are specific data centers within a cloud
region. Think of AZs like separate buildings. Each AZ can be physically separate from another by several
miles, like different buildings.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances-standard-mode-concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances-standard-mode-concepts.html

Page 7 of 31

In the future using EC2, we may want to specify a specific AZ when creating spot instances. Spot
instances are low-cost VMs priced at approximately 25 to 33% of the full price. They do not provide a
100% guarantee of up-time. They are terminated automatically by Amazon when there is a spike in
demand. The trade-off is receiving a discounted low-price VM. The catch is that the price will vary based
on the specific AZ. As a user, it is necessary to specify which AZ to use to receive the lowest price.
Prices change based on demand.

Subnets are virtual networks that are configured which then create the VM on a specific AZ.
The example shows how different subnets are mapped to different availability zones: us-west-2a, us-
west-2b, us-west-2c, or us-west-2d. We are using Ohio, so it will be us-east-2X instead.

You do not need to specify an availability zone for the t2.micro VM unless you want to as the price does
not vary unless creating a spot instance.

Auto-assign Public IP:
Subnets have a default setting whether a VM should receive a public IP address.
The property is called “Auto-assign public IPv4 address”. Be sure this is set to Enable:

Next under Network settings, Firewall (security group):
Select the radio button: “Select existing security group”.
And select the default security group from the list of choices.

Selecting the default security group, allows you to add common firewall access rules to enable rapid
access to newly created VMs. When selecting the security group, firewall rules are displayed. They can
not be changed here. They can be modified later using the Security Group GUI.

Next, configure Storage options.

Page 8 of 31

By default under “Configure storage”, t2.micro will by default set the ROOT (EBS) volume to have 8GB,
using the gp2 EBS volume type.

We can identify an EBS volume based on the Volume Type. Some available types for EBS include general
purpose (gp2 and gp3), provisioned SSD (io1), provisioned SSD (io2), and magnetic (which is fact no
longer “standard” by the way). These can be seen in the drop down.

>>> FOR THIS TUTORIAL, PLEASE USE gp2 – General Purpose 2 as the EBS volume type.

If using a new AWS account, less than 1 year old, t2.micro is FREE.
If the account is older, you can create a t2.micro spot instance for a reduced price:

Request spot instance
Next, configure the instance details.
Expand “Advanced Details”, and specify the following configuration:

For purchasing option, select “Request Spot Instance”, and then click “Customize”.

Specify a “Maximum price” of “0.02” for 2 cents.

Set a “One-time” request type, as opposed to a persistent request.

When the request type is a “persistent request”, then when the spot VM is terminated, either voluntary,
or accidentally, the VM will always automatically RECREATE itself!
This leads to a cost savings measure:

Page 9 of 31

Cost Saving Measure:

BE CAREFUL USING PERSISTENT REQUESTS FOR SPOT INSTANCES

When using persistent spot requests, when you intentionally terminate the VM, the VM will
automatically be recreated within 1-2 minutes resulting in ongoing charges !!! Imagine, you shut your
computer down for the weekend, only to learn that the VM came back to life, and charged for multiple
days of inactivity !! When using Persistent Spot Requests, it is necessary to physically DELETE THE SPOT
REQUEST in addition to terminating the instance. Failure to do so, will result in ADDITIONAL CHARGES !
BE WARNED !

For the Interruption behavior it is typical to select “Terminate”. To select “Stop” for a spot instance you
must specify a persistent request type.

Next, Review the details of the configured instance in the Summary window pane to the right.
This allows a check to see that all settings are acceptable prior to creating the VM.
If everything looks okay, press the “Launch Instance” button:

Throughout the tutorial, Linux commands are prefaced with the “$”.

Comments are prefaced with a “#”.

Log into your AWS EC2 t2.micro instance:

If this is the first time you’ve created a VM, you should have created a new key pair which is used to
establish a secure shell (ssh) connection to your new VM.

From your Linux VM’s command line, change permissions on the keyfile you downloaded:

$chmod 0600 <key_file_name>.pem

Before you can SSH into the instance, the default security group used by your instance must be modified
to allow SSH (port 22) access from your computer.

Select “Instances” on the left-hand side of the screen.

Locate your newly launched VM. It should be the only one!
Select your VM on the left:

Then, look for “Public IPv4 address” and select the copy-icon just to the LEFT of the IP address:

Page 10 of 31

This copies the IP address to the clipboard.
Before connecting to the VM, configure the security group to allow SSH access.

Click on the “Security” tab of the instance.

Click on the security group ID:

On the list of Inbound Rules, press the button:

At the bottom of the list, press the button:

Configure a new rule as follows:

Type: “SSH”, Source: “My IP”

Another Security Group option is to add the “All ICMP – IPv4” permission. This enables you to “ping”
your VM.

For every new VM that is launched, when you associate the default security group, these security group
settings will be applied. Overtime you can accumulate rules for popular places where you use your
laptop. This could be places like your home, the local Starbucks, and the UW-Tacoma campus.

As an alternative to selecting “MyIP” you can specify a wider subnetwork address range. This way if
your compute receives different IP addresses within the same CIDR (address) block, you don’t have to
update the security group as often. (e.g. every day) CIDR block stands for classless-inter-domain routing.
A CIDR block is a group of IP addresses the form a “sub-network”. Within your house, all of the devices
sharing your WiFi connection usually receive private IP addresses sharing the same CIDR-block, where all
addresses are private (not public IPs).

Page 11 of 31

Find out your IP address.
In your web browser, open Google search, and type in “What is my IP?”.

Your IP address should appear.
Note the first 3 numbers.
Let’s add SSH permission for your CIDR network block.

If your IP is for example 120.118.53.108, then your 24-bit CIDR block which would include all 255
addresses on the local subnet will be 120.118.53.0/24.

As an alternative to MyIP, in the security group, add your entire CIDR block, e.g. 120.118.53.0/24

The motivation for adding your CIDR block is that if you commonly use a buliding’s WiFi network you
may receive various addresses in the same block from day-to-day. If you add ranges vs. individual IPs
you’ll hopefully not need to update the security as often.

An even better way to set the network address range is to ask your network administrator what the
wireless address range is. Do accept any dynamically assigned IP from a given wireless network, you
may need to actually specify ‘/21’ which would allow up to 4096 unique addresses and not the 256
associated with ‘/24’.

Once complete, save changes:

Return to the list of Instances, by clicking the “Instances” option on the left-hand menu.

Now navigate to a Linux terminal.
If using Windows without a Linux environment, a 3rd-party program like PuTTY is required.
To learn more, see this tutorial:
https://www.ssh.com/ssh/putty/windows/install

Otherwise, open a Linux terminal, and navigate to the subdirectory using “cd” where you have stored
your key using the absolute path. For example: “/home/username/awskeys/”

First try pinging your VM

ping 13.59.168.72

Use CTRL-C to stop the ping:

PING 13.59.168.72 (13.59.168.72) 56(84) bytes of data.

64 bytes from 13.59.168.72: icmp_seq=1 ttl=33 time=70.3 ms

64 bytes from 13.59.168.72: icmp_seq=2 ttl=33 time=70.7 ms

64 bytes from 13.59.168.72: icmp_seq=3 ttl=33 time=72.3 ms

64 bytes from 13.59.168.72: icmp_seq=4 ttl=33 time=70.5 ms

https://www.ssh.com/ssh/putty/windows/install

Page 12 of 31

Pinging provides a rough estimate of the network latency between your computer, and the VM. Here
the ping sends a 64-byte packet to the cloud VM. The cloud responds and the client measures the
round-trip response time.

Ping-time to the VM is a good way to test your network’s ability to access cloud resources. A VM in
Oregon should have a lower ping time than Ohio, Virginia, or a VM in a different continent.

Now launch an ssh session as follows:

<replace with your VM’s IP>
ssh -i mykey.pem ubuntu@13.59.168.72

or if not in the same directory as the key:

<replace with your VM’s IP>
ssh -i /home/username/awskeys/mykey.pem ubuntu@13.59.168.72

You will then be prompted, because your machine doesn’t recognize the MAC address of the host, say
‘YES’; to save the HW address and proceed with the connection:

The authenticity of host '13.59.168.72 (13.59.168.72)' can't be established.

ECDSA key fingerprint is SHA256:dhfCG+k/Zz7p13d39cAIiGfTCKW0zTHwtLTdoJQspp4.

Are you sure you want to continue connecting (yes/no/[fingerprint])? Yes

You may receive the following error:

Warning: Permanently added '13.59.168.72' (ECDSA) to the list of known hosts.

@@@

@ WARNING: UNPROTECTED PRIVATE KEY FILE! @

@@@

Permissions 0664 for 'mykey.pem' are too open.

It is required that your private key files are NOT accessible by others.

This private key will be ignored.

Load key "mykey.pem": bad permissions

Permission denied (publickey).

This indicates that the ssh key permissions are too open.
Adjust as described earlier with the command:

chmod 0600 mykey.pem

or provide an absolute path to the key file:

chmod 0600 /home/username/awskeys/mykey.pm

After adjusting the key permissions, log into the VM again.

Once logged into the VM, inspect various aspects of your newly launched VM with the following
commands:

mailto:ubuntu@3.129.217.163
mailto:ubuntu@3.129.217.163

Page 13 of 31

Operation Command
Inspect CPU lscpu
Inspect memory free -h
Inspect the disks df -Th
Inspect the OS kernel uname -a
Inspect the OS version cat /etc/os-release

If you are new to Linux, you are encouraged to complete tutorials 1 and 2 from Fall 2022 TCSS 562:

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_2.pdf

If wanting to learn more about ec2, you are encouraged to review/complete tutorial 3 from Fall 2022
TCSS 562:

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_3.pdf

Stopping, and backing up your VM on Amazon:

By default, the t2.micro is an “EBS-backed” instance. The t2.micro instances make use of remotely
hosted elastic blockstore virtual hard disks for their “/root” volume. “EBS-backed” instances can be
paused at any time. This allows the VM to be stopped, and resumed later. Billing is paused, but storage
charges for the EBS disk are ongoing 24/7. New AWS users are allowed 30GB of free EBS disk space in
the 1st year. Beyond this, the price for storage is 10 cents per GB, per month, for standard “GP2-General
Purpose 2” EBS storage. A second 30GB (total of 60GB) will cost $36/year in credits. In the console, any
volumes listed under “Elastic Block Store | Volumes” will count towards this 30GB quota.

Snapshots, under “Elastic Block Store” are stored at a cost of 5 cents per month per GB. Snapshots,
however, are incremental. If you snapshot a VM, you will pay for the initial storage. If you snapshot the
same VM again, you will only pay for incremental differences. If a VM uses 5 GB of storage, the initial
snapshot will backup 5 GB. If the VM then uses 5.1 GB of storage, when you snapshot again, you will
only pay for the 0.1 GB of additional storage. This saves time and money. If you are not using a VM for a
considerable time, but you would like to SAVE the data, a cost effective approach is to “snapshot” the

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_2.pdf
https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_3.pdf

Page 14 of 31

root (boot) EBS volume and create an AMI. Then terminate the VM which will automatically delete the
live EBS volume.

Stopping a VM when not in use

To “stop” your instance right-click on the row in the “Instances” view, select “Instance state”, and then
“stop”. You may later resume the instance by selecting “start”. When restarting your instance, your the
public IPv4 address is new/reassigned.

An image can be created by right-clicking on the instance row, and selecting “Image” and “Create
Image”. This will temporarily shutdown your instance to create the image. (There is an option to make
the image with a running VM which may be error prone.) Once the image has been created, the
instance is restored to its online state. New images will be listed under “Images | AMIs” on the left-
handside of the EC2 console. Sorting by Creation Date makes it easy to locate newly created images.

Page 15 of 31

As you work throughout the course projects in TCSS 558, starting the VM from your the saved virtual
machine image (called an Amazon Machine Image – AMI) can help jump start development and testing
of future projects and also save cost.

THE KEY IS TO NOT LEAVE THE VM RUNNING CONSTANLY WHEN IT IS NOT IN USE…
Although, in the first year, for t2.micro, you receive a monthly 750-hour credit for running t2.micro VMs.
If you have multiple active t2.micro VMs, you can exceed the FREE credit and be charged.

Next, let’s install Docker on this VM.

Execute the following commands below, one by one.
If copying and pasting, it is recommended to use the MS Word document version as special characters
may not copy properly from the PDF file.

Make special note of spaces, linefeed, and newline characters to ensure they appear correctly. Note
that some commands are a single line, even though they appear to wrap over multiple lines. If these
commands are broken over multiple lines they will fail.

IT IS BEST TO USE THE WORD DOC FOR COPY & PASTE, NOT THE PDF!

By checking the architecture and using the arch variable below, Intel and Apple users obtain the correct

architecture ‘amd64’ (for Intel) or ‘arm64’ (for M1 Mac).

sudo apt update

this command is one line

sudo apt install apt-transport-https ca-certificates curl software-

properties-common

this command is one line

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor

-o /usr/share/keyrings/docker-archive-keyring.gpg

this command is one line

echo "deb [arch=$(dpkg --print-architecture) signed-

by=/usr/share/keyrings/docker-archive-keyring.gpg]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" | sudo

tee /etc/apt/sources.list.d/docker.list > /dev/null

refresh sources
sudo apt update

apt-cache policy docker-ce

install packages
sudo apt install docker-ce

#verify that docker is running
sudo systemctl status docker

Page 16 of 31

The “Docker Application Container Engine” should show as running.

When working with Docker directly on your local VM, we will preface docker commands with “sudo”, so
the commands run as the superuser.

Create a docker image for Apache Tomcat

The “Docker Hub” is a public repository of docker images. Many public images are provided which
include installations of many different software packages.
The “sudo docker search” command enables searching the repository to look for images.

Let’s start by downloading the “ubuntu” docker container image:
Note that docker commands are prefaced as “sudo”.
They must be run as superuser.
sudo docker pull ubuntu

Verify that the image was downloaded by viewing local images:

sudo docker images -a

Next, make a local directory to store files which describe a new docker image.

mkdir docker_tomcat
cd docker_tomcat

Now, download the Java application that we will deploy into the Docker container:
wget http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a0/fibo.war

Using a text editor such as vi, vim, pico, or nano, edit the file “Dockerfile” to describe a new Docker
image based on ubuntu that will install the Apache tomcat webserver:

nano Dockerfile

Apache Tomcat Dockerfile contents:
FROM ubuntu
RUN apt-get update
RUN apt-get install -y tomcat9
COPY fibo.war /usr/share/tomcat9/webapps/
COPY entrypoint_tomcat.sh /
RUN mkdir /usr/share/tomcat9/logs
RUN mkdir /usr/share/tomcat9/temp
RUN ln -s /var/lib/tomcat9/conf /usr/share/tomcat9
ENTRYPOINT ["/entrypoint_tomcat.sh"]

Next, create a script called “entrypoint_tomcat.sh” under your docker_tomcat directory as follows:

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a0/fibo.war

Page 17 of 31

#!/bin/bash
tomcat daemon - runs container continually until tomcat exits
/usr/share/tomcat9/bin/startup.sh
echo "tomcat daemon up..."
sleep 3
while :
do
 tomcatstatus=`ps aux | grep tomcat9 | grep java`
 if [-z "$tomcatstatus"]
 then
 # exit script
 echo "tomcat down"
 fi
 sleep 1
done

You’ll need to change permissions on this file.
Give the owner execute permission:
chmod u+x entrypoint_tomcat.sh

Next, build the docker container:
sudo docker build -t tomcat1 .

Check that the docker image was build locally:
sudo docker images

Next launch the container as follows:
sudo docker run -p 8080:8080 -d --rm tomcat1

Check that the container is up
sudo docker ps -a

Now, you’ll need to open port 8080 in the default security group in the Amazon management console.

In the Amazon management console., under ec2 instances, click on your instance, and click on the
security tab:

Under Security details, click on your security groups ID to edit the settings:

Page 18 of 31

On the “Inbound rules” tab (which will already be selected), click on the “Edit inbound rules” button.
Scroll down and click the “Add Rule” button at the very bottom LEFT of the screen:

Add a “Custom TCP” rule with the following settings:
Protocol = TCP
Port Range = 8080
Source = My IP

Then click the “Save rules” button to save the security change.
Now, using your browser, point at the http GET endpoint for the web application:

http://<IPv4 Public IP of instance>:8080/fibo/Fibonacci

You should see a web page as follows:

Now using your laptop or desktop Ubuntu environment, test the fibonacci web service deployed using
the container on your EC2 instance with the testFibPar.sh script.

Download the script here using “wget”:
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a0/testFibPar.sh
This script uses a Linux utility known as GNU parallel to coordinate separate threads to support parallel
client sessions with Apache Tomcat.

The testFibPar.sh script as written assumes connectivity between the client and server, and assumes
everything is working correctly. In many cases, however, there are errors.

Before using testFibPar.sh, to address connectivity, security group, and application server errors,
download the testFibService.sh script. The testFibService.sh script performs a NETWORK, TRANSPORT,
and APPLICATION layer test confirming that the client can reach the HTTP REST Fibonacci service and
successfully receive results back.

 Do not submit your assignment 0 results before testing that your client (i.e. laptop) has connectivity
to EVERY SERVER using the testFibPar.sh script to confirm network connectivity.

For multi-server deployments, each endpoint must be tested separately. When/if a server fails, use the
“docker ps -a” command to identify containers that have failed, and restart them. Also resolve issues in
your security group or haproxy.cfg file accordingly. Carefully study the testFibService.sh script if you’re
interested in understanding how the test script is implemented.

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a0/testFibPar.sh

Page 19 of 31

Download testFibService.sh using “wget”:
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a0/testFibService.sh

testFibService.sh requires several ubuntu packages be installed on the client:
Before running this script, be sure to install the following packages:
sudo apt install curl jq tidy iputils-ping telnet

Edit testFibService.sh using a text editor.
Near the top of the script, you’ll see parameters for host and port:
 host=34.232.53.152
 port=8080

Update the host to match the public IPv4 Public IP for your EC2instance.

Now try running testFibService.sh on your t2.micro ec2instance running Apache Tomcat:

./testFibService.sh

If your VM fails to pass the NETWORK, TRANSPORT, and APPLICATION layer tests, please revisit and
resolve any issues before proceeding.

Every server should be tested in this tutorial.
Later, when setting up the load balancer, testFibService.sh should be run on the ec2 instance (VM) with
the load balancer to ensure there is connectivity to each Apache Tomcat server.

Now, let’s try calling the Fibonacci service in parallel with concurrent calls from your local client (i.e.
laptop):

If not already installed, you’ll need to install the GNU parallel package in your Ubuntu (Linux)
environment:

refresh the package list first

sudo apt update

install the parallel package
sudo apt install parallel

Edit testFibPar.sh using a text editor.
Near the top of the script, you’ll see parameters for host and port:
 host=34.232.53.152
 port=8080

Update the host to match the public IPv4 Public IP for your EC2instance.

Now try exercising your web service using this script.
The first parameter is the total number of service requests to perform.
The second parameter is the number of concurrent threads to use.
Since we just have one docker container hosting the service, try just one thread:

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a0/testFibService.sh

Page 20 of 31

./testFibPar.sh 10 1

Run this script 3 times.

The first and second runs may feature slower times reflecting “warm-up” of the infrastructure: VM,
container, JVM…

Setting up test: runsperthread=10 threads=1 totalruns=10

run_id,thread_id,json,elapsed_time,sleep_time_ms

1,1,{"number":50000},234,.76600000000000000000

2,1,{"number":50000},268,.73200000000000000000

3,1,{"number":50000},266,.73400000000000000000

4,1,{"number":50000},252,.74800000000000000000

5,1,{"number":50000},240,.76000000000000000000

6,1,{"number":50000},261,.73900000000000000000

7,1,{"number":50000},270,.73000000000000000000

8,1,{"number":50000},231,.76900000000000000000

9,1,{"number":50000},264,.73600000000000000000

10,1,{"number":50000},264,.73600000000000000000

By the 3rd run, performance should be fairly consistent and stable.

Task 3 – Creating a Dockerfile for haproxy

Haproxy is a TCP load balancer that is capable of distributing client requests to a very large number of
server hosts. We will next create a Docker image for our haproxy load balancer deployment.

mkdir docker_haproxy
cd docker_haproxy

First, download the sample haproxy config file:

wget http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a0/haproxy.cfg

Using a text editor such as vi, pico, or nano, edit the file “Dockerfile” to describe a new Docker image
based on ubuntu that will install the Apache tomcat webserver:
nano Dockerfile

haproxy Dockerfile contents:
FROM ubuntu
RUN apt-get update
RUN apt-get install -y haproxy
COPY entrypoint_haproxy.sh /
COPY haproxy.cfg /etc/haproxy/
ENTRYPOINT ["/entrypoint_haproxy.sh"]

Next, create a script called “entrypoint_haproxy.sh” under your docker_haproxy directory as follows:

Page 21 of 31

#!/bin/bash
haproxy daemon - runs container continually until haproxy exits
service haproxy start
echo "haproxy daemon up..."
sleep 3
while :
do
 haproxystatus=`ps aux | grep haproxy-systemd | grep cfg`
 if [-z "$haproxystatus"]
 then
 # exit script
 echo "haproxy down"
 fi
 sleep 10
done

You’ll need to change permissions on this file.
Give the owner execute permission:
chmod u+x entrypoint_haproxy.sh

Now, let’s update the haproxy configuration file (haproxy.cfg) using your favorite text editor. As
provided the haproxy configuration file will perform round-robin load balancing against 3 nodes:

 server web1 54.210.51.9:8080
 server web2 54.210.51.9:8081
 server web3 54.210.51.9:8082

So far, we have just one Apache Tomcat server in one container, let’s comment out the bottom two
entries by using the “#” character:

 server web1 54.210.51.9:8080
#server web2 54.210.51.9:8081
#server web3 54.210.51.9:8082

Now, update the IP address (here 54.210.51.9) to match your private or public IPv4 address of your
ec2instance. Also, instead of using port 8080, change this port to 8081.
We will need to destroy your existing tomcat container which is presently using port 8080 and change
this to port 8081. First destroy the old container:

sudo docker ps -a

Locate the “tomcat1” docker instance. The CONTAINER ID will be the left most column. Using this ID,
stop the container:

sudo docker stop <CONTAINER ID>

Now, relaunch the Apache Tomcat container mapping container port 8080 to the host port 8081:

Page 22 of 31

sudo docker run -p 8081:8080 -d --rm tomcat1

If you’ve used the Public IPv4 address in the haproxy.cfg file, you’ll need to open port 8081 in the
security group so that network traffic can flow through the port. If using the private IPv4 address, no
update should be required.

Now, we’re ready to build the docker container:
sudo docker build -t haproxy1 .

Check that the haproxy docker image was built:
sudo docker images

Now let’s launch the haproxy container. Haproxy will direct incoming traffic to port 8080 to port 8081
which will map to Apache Tomcat:

sudo docker run -p 8080:8080 -d --rm haproxy1

Now from your Client (i.e. laptop), use the testFibService.sh script to test that you’re still able to access
the Fibonacci web service.

testParFib.sh script, retest that you’re still able to access your webservice, but this time through the
haproxy load balancer server.

./testFibPar.sh 10 1

If this works, then all of the pieces are ready to be deployed across different Docker hosts and
containers to complete assignment 0.

__
Task 4 – Working with Docker-Machine

We will use docker-machine to support working with multiple docker hosts and EC2 instances.
Docker-machine makes it very easy to create and destroy instances, and deploy code using
Docker containers to multiple VMs on Amazon.

Before we begin, please stop all containers created for Task 2 and Task 3.
Search using “sudo docker ps -a”, and use the “sudo docker stop <CONTAINER ID> command to stop ALL
running containers.

Sudo vs. non-sudo: When using docker-machine, docker commands run on remote hosts are
not prefaced with “sudo”.

Let’s start by installing the Amazon Web Services Command Line Interface onto your t2.micro VM (AWS
CLI):

sudo apt update
sudo apt install awscli

Page 23 of 31

Next configure the AWS CLI using your access credentials created earlier:

configure aws cli

aws configure

The default region name for Ohio is “us-east-2”.

Next install docker-machine onto your t2.micro EC2 instance:

#to install Docker-Machine:

Download the application

curl -L https://github.com/docker/machine/releases/download/v0.16.2/docker-

machine-Linux-x86_64 >/tmp/docker-machine

Make it executable

chmod a+x /tmp/docker-machine

Copy it into an executable location in the system PATH

sudo cp /tmp/docker-machine /usr/local/bin/docker-machine

verify the version

docker-machine version

Check and note that the Docker machine version matches as above (v0.16.2).
For further information on Docker Machine see documentation here:
https://docs.docker.com/machine/overview/

Now, let’s create a virtual machine to serve as a docker host.
A single command creates the EC2 instance of the specified type, installs the latest version of docker,
and prepares the instance for hosting docker containers !!!

- - - * * * STARTING HERE AWS CREDITS ARE REQUIRED * * * - - -

For this step of the tutorial, we specify the use of a “c5.large” EC2 instance with 2 virtual CPUs. We will
launch this instance as a “spot” instance with a maximum bid price of 10 cents per hour. The c5.large
spot instances will typically cost from 2 to 4 cents per hour in the us-east-2 Ohio region (as of winter
2023).

Type this command, but don’t execute yet:

docker-machine create --driver amazonec2 --amazonec2-region “us-east-2” --

amazonec2-instance-type "c5.large" --amazonec2-ami ami-0ff39345bd62c82a5 --

amazonec2-spot-price ".10" --amazonec2-request-spot-instance --amazonec2-zone

"b" --amazonec2-open-port 8080 --amazonec2-open-port 8081 --amazonec2-open-

port 8082 --amazonec2-open-port 8083 aw1

Note that availability zone “b” has been specified. Please set your availability zone accordingly. It will
be best to consolidate your instances into the same availability zone for project work in TCSS 558. Set

https://github.com/docker/machine/releases/download/v0.12.2/docker-machine-Linux-x86_64
https://github.com/docker/machine/releases/download/v0.12.2/docker-machine-Linux-x86_64
https://docs.docker.com/machine/overview/

Page 24 of 31

availability zone zone to match your first VM. Check the availability zone by inspecting the Subnet ID
under Networking. The availability zone will be in parentheses.

If you receive a spot instance error, the VM can be created as a full-price VM. This is approximately 8.5
cents/hour by issuing the command without the spot command-line options:

docker-machine create --driver amazonec2 --amazonec2-region us-east-2 --

amazonec2-instance-type "c5.large" --amazonec2-ami ami-0ff39345bd62c82a5 --

amazonec2-zone "b" --amazonec2-open-port 8080 --amazonec2-open-port 8081 --

amazonec2-open-port 8082 --amazonec2-open-port 8083 aw1

Other notes about the docker-machine create command:
The “aw1” refers to the name of the instance. This is the name that you’ll use to interact with the VM
using the docker-machine CLI. You can use any name desired.

Also please note that docker-machine automatically opens ports using “--amazonec2-open-port <port
number>”. This automatically adjusts the security-group to provide WORLD access to these ports.
This is not secure!, but ok, assuming your instances will not stay up for long.

Try listing docker-machine hosts:

docker-machine ls

NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS

aw1 - amazonec2 Running tcp://3.16.90.207:2376 v19.03.5

You should see something similar to the listing above, 1 remote docker host.

Now change your docker CLI to work against the remote host.

eval $(docker-machine env aw1)
Check “docker-machine ls” again. The host should be marked “ACTIVE” with a “*”.
The following command can also be used to show the active host:

docker-machine active

Next, we need provide the docker_tomcat and docker_haproxy containers locally on each host. While it
is possible to use the “docker save” and “docker load” commands in conjunction with docker-machine
to accomplish this, for simplicity we will simply rebuild the images on each host for assignment 0.

Try listing the container images known to this docker host:

docker images

There aren’t any!!! Now, go back into your docker_tomcat directory on your local instance:

cd docker_tomcat

Rebuild the tomcat container, but this time because we ran the “eval” command above, the build occurs
on the remote server:

Page 25 of 31

docker build -t tomcat1 .

Now check the list of images:

docker images

Next rebuild the haproxy image on this remote host.

cd docker_haproxy

Before rebuilding, update the haproxy.cfg file.
Please specify the IP address of the new docker-machine host that is listed using “docker-machine ls”.
Specify port 8081.

After making these changes, build the haproxy image on the remote host:

docker build -t haproxy1 .

Now, create an apache tomcat docker container on the remote host.
We will map apache-tomcat’s port 8080 to 8081 on the Docker Host.

docker run -p 8081:8080 -d --rm tomcat1

Next, create the haproxy docker container on the remote host.
We will map haproxy’s port 8080 to 8080 on the Docker host.

docker run -p 8080:8080 -d --rm haproxy1

Now, by refering again to the IP address obtained from “docker-machine ls”.
Using the testFibPar.sh script, update the host IP and test the service:

./testFibPar.sh 10 1

If your service works, then this certifies you’ve been able to deploy the service onto a docker host using
both an apache-tomcat and apache-haproxy container. You’re now ready to tackle assignment 0’s
deliverable (task 5).

Task 5 – For Submission: Testing Alternate Server Configurations

IMPORTANT: Follow the instructions carefully below to ensure proper configuration and test runs.
Please ask questions if anything is not clear.

The objective for assignment 0 is to compare performance of running the Fibonacci web service using
three different configurations created using Docker and Docker-Machine. To submit assignment 0,
create and submit a report using a spreadsheet in Excel, LibreOffice/OpenOffice Calc, or Google Sheets.
Optionally the report may be created as a document in Word, LibreOffice/OpenOffice Writer, or Google
Docs.

Page 26 of 31

For each configuration, adjust the host and port in the testFibPar.sh script to point to the haproxy
container which is set to load balance the containers. Please run testFibPar.sh 3 times, and copy/import
the CSV output of the last, third run into the report.

It is suggested to use ‘testFibService.sh’ to validate that tomcat servers are working properly.
It is also suggested to tail (trace) the log files of the Apache Tomcat servers to verify that the Fibonacci
service runs correctly.

To trace (tail) a log file, on the docker host, identify the container ID of the tomcat container to trace the
log with ‘docker ps -a’.

Then launch a bash shell into this container:

docker exec -it <container-id> bash

Then:

tail -fn 100 /usr/share/tomcat9/logs/catalina.out

You should see success information written to the log, and not errors when the Fibonacci service is
called. Success log messages look like this:

<6>Fibonacci POST
<6>The JSON obj:{"number":50000}
Request for fibonacci number for:50000

Be sure to test the client’s ability to run the Fibonacci HTTP REST service on every server first using the
testFibService.sh script described earlier. DO NOT SUBMIT RESULTS OF TESTFIBPAR.SH IF ANY SERVER
IS FAILING OR THE TIMING RESULTS WILL BE INCORRECT !

Run the test script FROM THE t2.micro VM to perform 3 concurrent threads with 10 requests per
thread:
./testFibPar.sh 30 3

Run testFibPar three times, and submit results from the third run.
You should have made 90 total runs with each configuration.

DO NOT USE YOUR PERSONAL LAPTOP OR COMPUTER TO RUN testFibPar.sh for the assignment.
Running the test client from your personal computer will involve increased latency to the cloud which
may confuse the results of the performance test. It may be difficult to tell the difference the
performance of different configurations because the round-trip latency from your personal computer to
the cloud WILL BE VERY LONG.

In the haproxy.cfg file, be sure that each server has a unique name: like “web1”, “web2”, and “web3”.

Page 27 of 31

In the report, label the testFibPar.sh output for each configuration clearly by name. Please indicate the
instance type used (e.g. c5.large) for the docker host(s) for the tests of each test using a table of cells as
described below. IT is REQUIRED to use the same instance type for all VMs in the configurations.

At the bottom of the report include a summary table of cells. Include a ranking with place, average
performance in ms, and % equivalence as follows:

RESULTS SUMMARY:

Performance Ranking Configuration

Name

Average

Runtime

Performance

Equivalence

1st place Configuration 2 300ms 100%

2nd place Configuration 1 400ms 133%

3rd place Configuration 3 500ms 166%

Create and test the following configurations using docker and/or docker-machine:

Configuration #1 – Co-Located Servers Default CPU Thresholds:
For c5.large VMs, deploy three apache-tomcat containers on one Docker host Virtual Machine.

Map the tomcat containers to use successive port numbers, and update the haproxy configuration file
accordingly to map to these tomcat servers on the ports:

launch 3 containers on the c5.large docker host
if you use sudo the containers will be created on the t2.micro docker host

if not using sudo, they are created on the c5.large docker-machine host

docker run -p 8081:8080 -d --rm tomcat1
docker run -p 8082:8080 -d --rm tomcat1
docker run -p 8083:8080 -d --rm tomcat1

When you edit haproxy.cfg, you will need to rebuild the haproxy container, destroy the old one, and
launch a new one.

In the report, describe configuration 1’s VM as follows:

CONFIGURATION 1 VM:

VM instance-id VM instance type VM Public IP Type

i-02021976eb21f2660 c5.large 3.16.90.207 spot instance

Include the text of your haproxy.cfg file at the bottom of the report section.

CONFIGURATION 1 HAPROXY CONFIG:
<text of haproxy.cfg>

Page 28 of 31

Configuration #2 – Co-Located Servers With CPU Thresholds:
For c5.large, deploy three apache-tomcat containers on one Docker host Virtual Machine, with 66% CPU
allocation.

launch 3 containers on the c5.large docker host with weights
if you use sudo the containers will be created on the t2.micro docker host

if not using sudo, they are created on the c5.large docker-machine host

docker run -p 8081:8080 -d --rm --cpus .66 tomcat1
docker run -p 8082:8080 -d --rm --cpus .66 tomcat1
docker run -p 8083:8080 -d --rm --cpus .66 tomcat1
Describe configuration 2’s VM in the report as follows:

CONFIGURATION 2 VM:

VM instance-id VM instance type VM Public IP Type

i-02021976eb21f2660 c5.large 3.16.90.207 spot instance

Include text of the haproxy.cfg file at the bottom of the section for configuration 2.

CONFIGURATION 2 HAPROXY CONFIG:
<text of haproxy.cfg>

Configuration #3 – Separate Servers with No CPU Thresholds:
Deploy three apache-tomcat containers on three separate Docker host Virtual Machines. This will
require launching an additional two docker hosts using docker-machine. Map haproxy accordingly on
the first host to load balance against the apache-tomcat containers running on the other remote hosts.

To describe the configuration VMs, include a TABLE describing VMs created for configuration 3 as
follows:

CONFIGURATION 3 VMs:

VM instance-id VM instance type VM Public IP Type

i-02021976eb21f2660 c5.large 3.16.90.207 spot instance

i-0e8fb81e56cabfedb c5.large 3.16.44.102 spot instance

i-03c9e2eb76c4364c8 c5.large 3.16.97.137 spot instance

Include text of the haproxy.cfg file at the bottom of the section for configuration 3.

CONFIGURATION 3 HAPROXY CONFIG:
<text of haproxy.cfg>

Use “docker-machine ls” or the AWS web console to find the IP address of each host.

You will need to build the tomcat container separately for each new host.

On each docker-machine docker host, launch one apache-tomcat container
no use of “sudo” below assumes use of docker-machine to launch containers

Page 29 of 31

on remote c5.large docker hosts

docker run -p 8081:8080 -d --rm tomcat1

The expected behavior is that each of these three configurations will perform differently. If this is not
the case, please check your configuration to be sure haproxy has been reconfigured correctly each time
for the appropriate hosts.

What to Submit
To complete the assignment, upload your report (.xslx spreadsheet file, docx document, or PDF file) into
Canvas under assignment 0.

Grading

Each cell in the RESULTS SUMMARY table is worth 2 points. (24 total)
Each cell in the VM descriptions is worth 1 point. (20 total)
Including haproxy.cfg for each configuration is worth 3 points each. (9 total)

This assignment will be scored out of 53 points. (53/53)=100%

Teams (optional)
Optionally, this programming assignment can be completed with two person teams.

If choosing to work in pairs, only one person should submit the team’s report to Canvas.

Additionally, EACH team member should submit an effort report to score team participation. Effort
reports are submitted INDEPENDENTLY and in confidence (i.e. not shared) by each team member.

Effort reports are not used to directly numerically weight assignment grades.

Effort reports should be submitted as a PDF file named: “effort_report.pdf”. Google Docs and recent
versions of MS Word provide the ability to save or export a document in PDF format.

For assignment 0, the effort report should consist of a one-third to one-half page narrative description
describing how the team members worked together to complete the assignment. The description
should include the following:

1. Describe the key contributions made by each team member.
2. Describe how working together was beneficial for completing the assignment. This may include

how the learning objectives of using EC2, Docker, Docker-machine, and haproxy were supported
by the team effort.

3. Comment on disadvantages and/or challenges for working together on the assignment. This
could be anything from group dynamics, to commute challenges, to faulty technology.

Page 30 of 31

4. At the bottom of the write-up provide an effort ranking from 0 to 100 for each team member.
Distribute a total of 100 points among both team members. Identify team members using first
and last name. For example:

John Doe
 Effort 43

Jane Smith
Effort 57

Team members may not share their effort reports, but should submit them independently in Canvas as
a PDF file. Failure of one or both members to submit the effort report will result in both members
receiving NO GRADE on the assignment…

Disclaimer regarding pair programming:
The purpose of TCSS 558 is for everyone to gain experience developing and working with distributed systems
and requisite compute infrastructure. Pair programming is provided as an opportunity to harness teamwork
to tackle assignment challenges. But this does not mean that teams consist of one champion programmer,
and a second observer simply watching the champion! The tasks and challenges should be shared as equally
as possible.

Document History:
v.10 Initial version
v.11 clarified non-use of sudo for configs 1 and 2

AT THE CONCLUSION OF THIS ASSIGNMENT,
BE SURE TO TERMINATE ALL VIRTUAL MACHINES / SPOT INSTANCES

FOR MORE INFORMATION REGARDING WORKING WITH Amazon EC2,
refer to Tutorial #3 in TCSS 462/562

In particular, Tutorial 3 describes how to SAVE amazon machine images (AMI) as
well as several cost savings measures:

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_3.pdf

https://faculty.washington.edu/wlloyd/courses/tcss562/tutorials/TCSS462_562_f2022_tutorial_3.pdf

Page 31 of 31

Docker - Helpful Hints

To display all containers running on a given docker node:
docker ps -a

To stop a container:
docker stop <container-id>
For example:
docker stop cd5a89bb7a98

Multiple docker hosts
When creating multiple docker VM hosts on amazon, each host is referred to by name. To see your
hosts use the command:
docker-machine ls

The active host will be shown with a ‘*’.

The hostname conveniently synced with the AWS keypair name, which is the SSH key used to interact
with the virtual machine. If you should need to manually remove keys, this can be done via the EC2
console. On the left-hand side, see “Key Pairs” under “Network & Security”. Keys can be deleted if need
be using the UI:

To use a specified remote docker host created by docker-machine:
eval $(docker-machine env <host-name>)

To unset the remote docker host, and work with your local docker:
set docker back to the localhost

eval $(docker-machine env -u)

Remove a docker host
Once a host created by docker-machine is no longer needed it can be removed by name. This will
destroy the VM and stop any associated charges.
$docker-machine rm aw2

Shell into a docker container
Obtain the container id with docker ps -a.
$sudo docker exec -it <container-id> bash

