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 Questions from 1/28

 Assignment 1: Key/Value Store
 Java Maven project template files posted

 Midterm Thursday February 11
 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes
 Chapter 3.1: Threads

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
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OBJECTIVES – 2/4

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY

 Survey has two questions:

 Be sure to add your questions about the previous class to the 
second question

 1st question: After today’s class, comment on any new 
concepts that you learned about?

 Have been getting questions here…

 2nd question: After today’s class, what point(s) remain least 
clear to you?

 >> Please add questions HERE
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SURVEY QUESTIONS
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 Please classify your perspective on material covered in today’s 
class (23 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.22  ( - previous 7.29)  

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.74  ( - previous 5.81)
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 QUESTIONS on Processes vs . Threads:

 I  am confused on process and thread.  You went by that part 
really fast. Would you explain a bit more?

 Also: What Process and Thread are, and the difference 
between them
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FEEDBACK FROM 1/28
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PROCESSES VS. THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 Enables a single process (program) to have multiple “workers”
 This supports parallel programming…

 Threads share the program’s memory

 Programmer must coordinate shared memory access

 Supports independent path(s) of execution within a program
with shared memory at the same time …

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Threads share code segment, memory, and heap are shared
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THREADS - 2

 Creating threads (l ight-weight) in the OS is typically faster
than creating processes (heavy-weight)

 Creating a thread only requires creating a stack and creating 
a data structure to track thread stated
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PROCESS AND THREAD METADATA

 What is  an embarrassingly parallel program?
 Program that runs several threads in parallel (at the same time)

that works on a problem, where each thread runs independently
without any coordination/communication with other threads 

 The parallel tasks doesn’t involve any shared data

 These are MAP REDUCE style problems

 For further review:

 See UC Berkeley Lecture on OS, Processes, Threads  (CS 162)

 https://youtu.be/KRenWKpfGo4?t=1471
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PROCESSES VS THREADS

 I t  would be of  great help if  you could provide an overview of 
the steps in the assignment and what we hope to achieve 
through it .  I t  would help us understand the assignment a bit  
more.

 Which assignment ?

 Assignment 0 ?

 We will next review assignment 0

 For assignment 1, please submit questions

 I’m happy to provide a “big picture” discussion on the 
assignment objectives after class, or in office hours
 Can also schedule an appointment
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 I  had some follow-up questions regarding Assignment 0.
 I  have completed the assignment but few points remained 

unclear to me.

 Config #3 has 3 different containers so can we track from 
which container the response we are getting during a test run 
for config #3?
 Tracking which container runs the request is not the goal
 The idea with haproxy is to load balance requests across more vCPUs
 With testFibPar.sh we orchestrate 10 runs in parallel 
 For config #1 and #2 we load balance 10 requests across 3 

containers running on the same VM (c5.large) with 2 vCPU cores and 
4 GB of ram: 10 requests / 2 vCPUs = 5 requests / vCPU

 The VM is overprovisioned !
 The performance we measure for config #1/#2 is not optimal
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ASSIGNMENT 0 REVIEW

 Config #1 and Config #2 run 10 requests across 2 vCPUs

 Each Fibonacci request requires 100% access to 1 vCPU

 Config #1/#2: each vCPU timeshares 5 requests
 Performance may be only 20% of optimal

 Config #3 runs 10 requests across 3 VMs with 2 vCPUs
 Config #3 has access to 6 vCPUs

 Each vCPU will run just 10 requests /6 vCPUs = 1.667 requests/vCPU

 This is far better than 5 requests, but still not optimal

 The motivation for using Config #3 vs #1/#2 is performance

 How many c5.large VMs are required for optimal performance?
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ASSIGNMENT 0 REVIEW - 2

 What about config #2?

 Config #1, doesn’t restrict the container’s access to the VM’s CPUs

 The Linux CPU scheduler tries to schedule 10 fibonacci service 
requests on 2 vCPU cores

 In config #2, we apply a vCPU limit
 Each container is only allowed 0.66% of 1 vCPU

 This way the VM with 3 containers only uses 2 vCPUs

 PROBLEM: there are now 10 requests sent to 3 containers where each 
container has 0.66 vCPUs

 Config #2 PROVISIONING RATIO: 3.33 requests / 0.66 vCPUs = 5.05

 Config #1 PROVISIONING RATIO: 10 requests / 2 vCPUs = 5.00

 Config #1 and #2 are essentially the same

 Question: what is the ef fect of  “restricting CPU t ime” for  the 
container?
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ASSIGNMENT 0 REVIEW - 3

 Questions from 1/28

 Assignment 1: Key/Value Store
 Java Maven project template files posted

 Midterm Thursday February 11
 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes
 Chapter 3.1: Threads

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
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OBJECTIVES – 2/4

 TCP/UDP/RMI Key Value Store

 Implement a “GenericNode” project which assumes the role of 
a client or server for a Key/Value Store

 Recommended in Java (11 or 8)

 Client node program interacts with server node to put, get, 
delete, or list items in a key/value store
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ASSIGNMENT 1

 Questions from 1/28

 Assignment 1: Key/Value Store
 Java Maven project template files posted

 Midterm Thursday February 11
 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes
 Chapter 3.1: Threads

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
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 Questions from 1/28

 Assignment 1: Key/Value Store
 Java Maven project template files posted

 Midterm Thursday February 11
 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes
 Chapter 3.1: Threads

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
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OBJECTIVES – 2/4

CH. 3: PROCESSES
CH. 3.1: THREADS

L9.20

 Many-to-one threading: multiple user-level threads per process

 Thread operations (create, delete, locks) run in user mode 

 Multithreaded process mapped to single schedulable entity

 Only run thread per process runs at any given time

 Key take-away: thread management handled by user processes

 What are some advantages of  many-to-one threading?

 What are some disadvantages?
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THREADING MODELS

 One-to-one threading: use of separate kernel threads for each 
user process - also called kernel-level threads

 The kernel API calls (e.g.  I/O, locking) are farmed out to an 
existing kernel level thread  

 Thread operations (create, delete, locks) run in kernel mode
 Threads scheduled individually by the OS
 System calls required, context switches as expensive as 

process context switching
 Idea is to have preinitialized kernel threads for user processes
 Linux uses this model…

 What are some advantages of  one-to-one threading?

 What are some disadvantages?
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THREADING MODELS - 2

 Google chrome: processes

 Apache tomcat webserver: threads

 Multiprocess programming avoids synchronization of 
concurrent access to shared data, by providing coordination 
and data sharing via interprocess communication (IPC) 

 Each process maintains its own private memory

 While this approach avoids synchronizing concurrent access to 
shared memory, what is  the tradeoff(s) ??
 Replication instead of synchronization – must synchronize multiple 

copies of the data

 Do distributed objects share memory?
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APPLICATION EXAMPLES

 Questions from 1/28

 Assignment 1: Key/Value Store
 Java Maven project template files posted

 Midterm Thursday February 11
 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes
 Chapter 3.1: Threads

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
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 Web browser
 Uses threads to load and render portions of a web page to the 

user in parallel
 A client could have dozens of concurrent connections all 

loading in parallel

 testFibPar.sh
 Assignment 0 client script  (GNU parallel)

 Important benefits:
 Several connections can be opened simultaneously
 Client: dozens of concurrent connections to the webserver all 

loading data in parallel
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MULTITHREADED CLIENTS

 In Linux, threads also receive a process ID (PID)

 To display threads of a process in Linux:

 Identify parent process explicitly:

 top –H –p <pid>

 htop –p <pid>

 ps –iT <pid>

 Virtualbox process ~ 44 threads

 No mapping to guest # of processes/threads
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MULTIPLE THREADS

PROCESS METRICS

CPU
- cpuUsr: CPU time in user mode
- cpuKrn: CPU time in kernel mode 
- cpuIdle: CPU idle time 
- cpuIoWait: CPU time waiting for I/O
- cpuIntSrvc:CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts
- cpuNice: CPU time executing prioritized

processes
- cpuSteal: CPU ticks lost to virtualized guests
- contextsw: # of context switches 
- loadavg: (avg # proc / 60 secs)

Disk
- dsr: disk sector reads 
- dsreads: disk sector reads completed 
- drm: merged adjacent disk reads 
- readtime: time spent reading from 
disk 
- dsw: disk sector writes 
- dswrites: disk sector writes completed
- dwm: merged adjacent disk writes 
- writetime: time spent writing to disk 

Network
- nbs: network bytes sent 
- nbr: network bytes received 

 Reported by: top, htop, w, uptime, and /proc/loadavg

 Updated every 5 seconds

 Average number of processes using or waiting for the CPU

 Three numbers show exponentially decaying usage
for 1 minute, 5 minutes, and 15 minutes

 One minute average: exponentially decaying average
 Load average = 1 ▪ (avg last minute load) – 1/e ▪ (avg load since boot)

 1.0 = 1-CPU core fully loaded

 2.0 = 2-CPU cores

 3.0 = 3-CPU cores . . .
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LOAD AVERAGE

 Metric – measures degree of parallelism realized by running 
system, by calculating average utilization:

 Ci – fraction of time that exactly I threads are executed

 N – maximum threads that can execute at any one time

 Web browsers found to have TLP from 1.5 to 2.5

 Clients for web browsing can utilize from 2 to 3 CPU cores

 Any more cores are redundant, and potentially wasteful

 Measure TLP to understand how many CPUs to provision
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THREAD-LEVEL PARALLELISM

 Multiple threads essential for servers in distributed systems

 Even on single-core machines greatly improves performance

 Take advantage of idle/blocking time

 Two designs:
 Generate new thread for every request

 Thread pool – pre-initialize set of threads to service requests
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MULTITHREADED SERVERS
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 Single thread server

 A single thread handles all client requests

 BLOCKS for I/O

 All waiting requests are queued until thread is available

 Finite state machine

 Server has a single thread of execution

 I/O performing asynchronously (non-BLOCKing) 

 Server handles other requests while waiting for I/O

 Interrupt fired with I/O completes

 Single thread “jumps” back into context to finish request
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SINGLE THREAD & FSM SERVERS

 A blocking system call implies that a thread servicing a 
request synchronously performs I/O 

 The thread BLOCKS to wait on disk/network I/O before 
proceeding with request processing

 Consider the implications of these designs for responsiveness, 
availability, scalability. . .
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SERVER DESIGN ALTERNATIVES

Model Characteristics
Multithreading Parallelism, blocking I/O 
Single-thread No parallelism, blocking I/O
Finite-state machine Parallelism, non-blocking I/O

 Questions from 1/28

 Assignment 1: Key/Value Store
 Java Maven project template files posted

 Midterm Thursday February 11
 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes
 Chapter 3.1: Threads

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
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OBJECTIVES – 2/4

CH. 3.2: 
VIRTUALIZATION

L9.34

 Initially introduced in the 1970s
on IBM mainframe computers

 Legacy operating systems run in mainframe-based VMs

 Legacy software could be sustained by vir tualizing legacy OSes

 1970s vir tualization went away as desktop/rack-based 
hardware became inexpensive

 Vir tualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

 VM-Ware vir tual machines enable companies to host many 
vir tual servers with mixed OSes on private clusters

 Cloud computing: Amazon offers VMs as-a-service (IaaS)
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VIRTUALIZATION

 Levels of instructions:

 Hardware: CPU

 Privileged instructions
KERNEL MODE

 General instructions
USER MODE

 Operating system: system calls

 Library: programming APIs: e.g. C/C++,C#, Java libraries

 Application: 

 Goal of v ir tualization:
mimic these interface to provide a virtual computer
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 Process virtual machine
 Interpret instructions: (interpreters)

(JavaVM)  byte code  HW instructions
 Emulate instructions: (emulators)

(Wine)  windows code  Linux code

 Native vir tual machine monitor (VMM)
 Hypervisor (XEN): small OS with its own kernel 
 Provides an interface for multiple guest OSes
 Facilitates sharing/scheduling of 

CPU, device I/O among many guests
 Guest OSes require special kernel to interface w/ VMM
 Supports Paravirtualization for performance boost to run code 

directly on the CPU 
 Type 1 hypervisor
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TYPES OF VIRTUALIZATION - 2

 Hosted vir tual machine monitor (VMM)
 Runs atop of hosted operating system
 Uses host OS facilities for CPU scheduling, I/O
 Full virtualization
 Type 2 hypervisor
 Virtualbox

 Textbook: note 3.5–good explanation of full vs.  paravir tualization

 GOAL: run all user mode instructions directly on the CPU
 x86 instruction set has ~17 privileged user mode instructions
 Full v ir tualization: scan the EXE, insert code around privileged 

instructions to divert control to the VMM
 Paravirtualization: special OS kernel eliminates side effects of 

privileged instructions
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TYPES OF VIRTUALIZATION - 3
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EVOLUTION OF AWS VIRTUALIZATION

From  ht tp ://www.bre ndang re g g .com /blog/2017 -11-29/aw s-ec 2 -v i r tua l iz at ion -2 017. htm l

V S :

V i r tuali zation

In  s o f tware

P :

Par avir tual

V H :

V i r tuali zation

In  H ar dware

H :

H a r dware

 Ful l  V ir tualization - Ful ly  Emulated 
 Never used on EC2, before CPU extensions for virtualization
 Can boot any unmodified OS
 Support via slow emulation, performance 2x-10x slower

 Paravirtualization: Xen PV 3.0
 Software: Interrupts, timers
 Paravirtual: CPU, Network I/O, Local+Network Storage
 Requires special OS kernels, interfaces with hypervisor for I/O
 Performance 1.1x – 1.5x slower than “bare metal”
 Instance store instances: 1ST & 2nd generation- m1.large, m2.xlarge

 Xen HVM 3.0
 Hardware virtualization: CPU, memory (CPU V T-x required)
 Paravirtual: network, storage
 Software: interrupts, timers
 EBS backed instances
 m1, c1 instances
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AWS VIRTUALIZATION - 2

 XEN HVM 4.0.1
 Hardware virtualization: CPU, memory (CPU V T-x required)
 Paravirtual: network, storage, interrupts, t imers

 XEN AWS 2013 (diverges from opensource XEN)
 Provides hardware virtualization for CPU, memory, network
 Paravirtual: storage, interrupts, t imers
 Called Single root I/O Virtualization (SR-IOV)
 Allows sharing single physical PCI Express device (i.e. network adapter) 

with multiple VMs
 Improves VM network performance
 3rd & 4th generation instances (c3 family)
 Network speeds up to 10 Gbps and 25 Gbps

 XEN AWS 2017
 Provides hardware virtualization for CPU, memory, network, local disk
 Paravirtual: remote storage, interrupts, t imers
 Introduces hardware virtualization for EBS volumes (c4 instances)
 Instance storage hardware virtualization (x1.32xlarge, i3 family)
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AWS VIRTUALIZATION - 3

 AWS Nitro 2017
 Provides hardware virtualization for CPU, memory, network, local 

disk, remote disk, interrupts, t imers

 All aspects of virtualization enhanced with HW-level support

 November 2017

 Goal: provide performance indistinguishable from “bare metal”

 5th generation instances – c5 instances (also c5d, c5n)

 Based on KVM hypervisor

 Overhead around ~1%
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AWS VIRTUALIZATION - 4
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WE WILL RETURN AT 
2:50PM

 Questions from 1/28

 Assignment 1: Key/Value Store
 Java Maven project template files posted

 Midterm Thursday February 11
 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes
 Chapter 3.1: Threads

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
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OBJECTIVES – 2/4

CH. 3.3: CLIENTS

L9.45

 Thick clients
Web browsers
 Client-side scripting

Mobile apps

Multi-tier MVC apps

 Thin clients
Remote desktops/GUIs (very thin)

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.46

TYPES OF CLIENTS

 Application specific protocol
 Thick clients

 Clients maintain local data

 Middleware (APIs)

 Clients synchronize data with remote nodes 

 Example: shared calendar application

 Application independent 
 Thin clients

 Client acts as a remote terminal

 Provides interface to user (GUI / UI)

 Server houses entire application stack
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CLIENTS

 Layered architecture to transport UI over network

 Remote desktop functionality for Linux/Unix systems

 X kernel acts as a server

 Provides the X protocol: application level protocol

 Xlib instances (client applications) exchange data and 
events with X kernels (servers)

 Clients and servers on single machine  Linux GUI

 Client and server communication transported over the 
network  remote Linux GUI

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.48

X WINDOWS



TCSS 558: Applied Distributed Computing
[Winter 2021]  School of Engineering and Technology, 
UW-Tacoma

February 4, 2021

Slides by Wes J. Lloyd L9.9

 Window manager:

 Application running 
atop of X-windows 
which provides flair

 Many variants

 Without X windows is 
quite bland
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X WINDOWS - 2
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 Layered architecture

 X-kernel: low level 
interface/APIs for 
controlling screen, 
capturing keyboard 
and mouse events
(X window Server)

 Provided on Linux 
as Xlib

 Provides network 
enabled GUI

 Layering allows for
use for custom
window managers

 How to Install VNC server on Ubuntu EC2 instance VM:
 sudo apt-get update

 # ubuntu 16.04
 sudo apt-get install ubuntu-desktop
 sudo apt-get install gnome-panel gnome-settings-
daemon metacity nautilus gnome-terminal

 # on ubuntu 18.04
 sudo apt install xfce4 xfce4-goodies

 sudo apt-get install tightvncserver # both

 Start VNC server to create initial config file
 vncserver :1
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EXAMPLE: VNC SERVER

 On the VM: edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 16.04):
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EXAMPLE: VNC SERVER – UBUNTU 16.04

#!/bin/sh

export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[ -x /etc/vnc/xstartup ] && exec /etc/vnc/xstartup
[ -r $HOME/.Xresources ] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &
nautilus &
gnome-terminal &

 On the VM:
 Edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 18.04):
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EXAMPLE: VNC SERVER – UBUNTU 18.04

#!/bin/bash
xrdb $HOME/.Xresources
startxfce4 &

# install vnc server
sudo apt install tigervnc-standalone-server
Sudo apt install ubuntu-gnome-desktop
vncserver :1    # creates a config file
vncserver -kill :1 # stop server
vi ~/.vnc/xstartup # edit config file

#!/bin/sh
# Start Gnome 3 Desktop 
[ -x /etc/vnc/xstartup ] && exec /etc/vnc/xstartup
[ -r $HOME/.Xresources ] && xrdb $HOME/.Xresources
vncconfig -iconic &
dbus-launch --exit-with-session gnome-session &

sudo systemctl start gdm # start gnome desktop
sudo systemctl enable gdm
vncserver :1 # restart vnc server
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VNC SERVER - UBUNTU 20.04 - GNOME
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 On the VM: reload config by restarting server
 vncserver -kill :1

 vncserver :1

 Open port 22 & 5901 in EC2 security group:
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EXAMPLE: VNC SERVER - 3

 On the client (e.g. laptop):

 Create SSH connection to securely forward port 5901 on the 
EC2 instance to your localhost port 5901

 This way your VNC client doesn’t need an SSH key

ssh –i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N 
-f -l <username> <EC2-instance ip_address>

 For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
l ubuntu 52.111.202.44
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EXAMPLE: VNC CLIENT

 On the client (e.g. laptop):

 Use a VNC Client to connect

 Remmina is provided by default on Ubuntu 16.04

 Can “google” for many others

 Remmina login:

 Chose “VNC” protocol

 Log into “localhost:5901”
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EXAMPLE: VNC CLIENT - 2

 EC2 instance
with a GUI. . . !!!
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REMOTE COMPUTER IN THE CLOUD

 Thin clients
 X windows protocol

 A variety of other remote desktop protocols exist:
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THIN CLIENTS

 Applications should separate application logic from UI

 When application logic and UI interaction are tightly coupled 
many requests get sent to X kernel

 Client must wait for response

 Synchronous behavior and app-to-UI coupling adverselt affects 
performance of WAN / Internet

 Protocol optimizations: reduce bandwidth by shrinking size of 
X protocol messages

 Send only differences between messages with same identifier

 Optimizations enable connections with 9600 kbps

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.60

THIN CLIENTS - 2
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 Virtual network computing (VNC)

 Send display over the network at the pixel level 
(instead of X lib events)

 Reduce pixel encodings to save bandwidth – fewer colors

 Pixel-based approaches loose application semantics

 Can transport any GUI this way

 THINC- hybrid approach

 Send video device driver commands over network

 More powerful than pixel based operations

 Less powerful compared to protocols such as X
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THIN CLIENTS - 3
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TRADEOFFS: ABSTRACTION OF REMOTE 
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11
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TRADEOFFS: ABSTRACTION OF REMOTE 
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11

● Generic – no app context ● Application context
● Graphics data is available
● Higher network bandwidth ● UI data/operations
● Fewer colors ● Lower network bandwidth
● Utilize graphics compression ● More colors
● More network traffic

 Clients help enable distribution transparency of servers

 Replication transparency 
 Client aggregates responses from multiple servers

 Only the client knows of replicas
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CLIENT ROLES IN PROVIDING 
DISTRIBUTION TRANSPARENCY

 Location/relocation/migration transparency
 Harness convenient naming system to allow client to infer new 

locations

 Server inform client of moves / Client reconnects to new endpoint

 Client hides network address of server, and reconnects as needed

 May involve temporary loss in performance

 Replication transparency 
 Client aggregates responses from multiple servers

 Failure transparency
 Client retries, or maps to another server, or uses cached data

 Concurrency transparency
 Transaction servers abstract coordination of multithreading
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CLIENT ROLES IN PROVIDING 
DISTRIBUTION TRANSPARENCY - 2

 Questions from 1/28

 Assignment 1: Key/Value Store
 Java Maven project template files posted

 Midterm Thursday February 11
 2nd hour - Tuesday February 9 – practice midterm questions

 Chapter 3: Processes
 Chapter 3.1: Threads

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
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CH. 3.4: SERVERS

L9.67

 Cloud & Distributed Systems – rely on Linux

 http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

 IT is moving to the cloud. And, what powers the cloud? 

Linux
 Uptime Institute survey - 1,000 IT executives (2016)
 50% of IT executives – plan to migrate majority of IT workloads to 

off-premise to cloud or colocation sites

 23% expect the shift in 2017, 70% by 2020…

 Docker on Windows / Mac OS X

 Based on Linux
 Mac: Hyperkit Linux VM

 Windows: Hyper-V Linux VM
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SERVERS

 Servers implement a specific service for a collection of clients

 Servers wait for incoming requests, and respond accordingly

 Server types

 Iterative: immediately handle client requests

 Concurrent: Pass client request to separate thread

 Multithreaded servers are concurrent servers
 E.g. Apache Tomcat

 Alternative : fork a new process for each incoming request

 Hybrid : mix the use of multiple processes with thread pools
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SERVERS - 2

 Clients connect to servers via:
IP Address and Port Number

 How do ports get assigned?

Many protocols support “default” port numbers

 Client must find IP address(es) of servers

 A single server often hosts multiple end points 
(servers/services)

When designing new TCP client/servers must be careful 
not to repurpose ports already commonly used by others

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.70

END POINTS
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Daemon server
 Example: NTP server

Superserver

Stateless server
 Example: Apache server

Stateful server

Object servers

EJB servers
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TYPES OF SERVERS
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 Daemon servers 

 Run locally on Linux

 Track current server end points (outside servers)

 Example: network time protocol (ntp) daemon
 Listen locally on specific port (ntp is 123)

 Daemons routes local client traffic to the configured 
endpoint servers

 University of Washington: time.u.washington.edu
 Example “ntpq –p”

 Queries local ntp daemon, routes traffic to configured server(s)
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NTP EXAMPLE

 Linux inetd / xinetd
 Single superserver
 Extended internet service daemon
 Not installed by default on Ubuntu
 Intended for use on server machines
 Used to configure box as a server for multiple internet services
 E.g. f tp, pop, telnet

 inetd daemon responds to multiple endpoints for multiple 
services

 Requests fork a process to run required executable program

 Check what ports you’re listening on:
 sudo netstat -tap | grep LISTEN
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SUPERSERVER

 Server design issue:
 Active client/server communication is taking place over a port

 How can the server / data transfer protocol support interruption?

 Consider transferring a 1 GB image, how do you pass a 
unrelated message in this stream?

1. Out-of-band data:  special messages sent in-stream to support 
interrupting the server  (TCP urgent data)

2. Use a separate connection (different port) for admin control info

 Example: sftp secure file transfer protocol
 Once a file transfer is started, can’t be stopped easily

 Must kill the client and/or server
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INTERRUPTING A SERVER

 Data about state of clients is not stored

 Example: web application servers are typically stateless
 Also function-as-a-service (FaaS) platforms

 Many servers maintain information on clients (e.g. log files)

 Loss of stateless data doesn’t disrupt server availability
 Loosing log files typically has minimal consequences

 Soft s tate: server maintains state on the client for a limited 
time (to support sessions)

 Soft state information expires and is deleted
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STATELESS SERVERS

 Maintain persistent information about clients

 Information must be explicitly deleted by the server

 Example: 
File server - allows clients to keep local file copies for RW

 Server tracks client file permissions and most recent versions
 Table of (client, file) entries

 If server crashes data must be recovered

 Entire state before a crash must be restored

 Fault tolerance - Ch. 8
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STATEFUL SERVERS

 Session state
 Tracks series of operations by a single user

 Maintained temporarily, not indefinitely

 Often retained for multi-tier client server applications

 Minimal consequence if session state is lost

 Clients must start over, reinitialize sessions

 Permanent state
 Customer information, software keys

 Client-side cookies
 When servers don’t maintain client state, clients can store state 

locally in “cookies”

 Cookies are not executable, simply client-side data
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STATEFUL SERVERS - 2
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 OBJECTIVE: Host objects and enable remote client access
 Do not provide a specific service 

 Do nothing if there are no objects to host
 Support adding/removing hosted objects 
 Provide a home where objects live
 Objects, themselves ,  provide “services”

 Object parts
 State data
 Code (methods, etc.)

 Transient object(s)
 Objects with limited lifetime (< server)
 Created at first invocation, destroyed when no longer used

(i.e. no clients remain “bound”).
 Disadvantage: initialization may be expensive
 Alternative: preinitialize and retain objects on server start-up
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OBJECT SERVERS

 Should object servers isolate memory for object instances?
 Share neither code nor data
 May be necessary if objects couple data and implementation

 Object server threading designs:
 Single thread of control for object server
 One thread for each object
 Servers use separate thread for client requests

 Threads created on demand    vs.
Server maintains pool of threads

 What are the t radeoffs for  creating server threads on  demand vs.  
using a thread pool?
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OBJECT SERVERS - 2

 EJB- specialized Java object hosted by a EJB web container
 4 types: stateless, stateful, entity,  and message-driven beans
 Provides “middleware” standard (framework) for implementing 

back-ends of enterprise applications
 EJB web application containers integrate support for:

 Transaction processing
 Persistence
 Concurrency
 Event-driven programming
 Asynchronous method invocation
 Job scheduling
 Naming and discovery services (JNDI)
 Interprocess communication
 Security 
 Software component deployment to an application server
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EJB – ENTERPRISE JAVA BEANS

 Highly configurable, extensible, platform independent

 Supports TCP HTTP protocol communication

 Uses hooks – placeholders for group of functions

 Requests processed in phases by hooks

 Many hooks:
 Translate a URL

 Write info to log

 Check client ID

 Check access rights

 Hooks processed in order
enforcing flow-of-control

 Functions in replaceable
modules
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APACHE WEB SERVER

Hooks point to functions in modules

 Hosted across an LAN or WAN

 Collection of interconnected machines 

 Can be organized in tiers:
 Web server  app server  DB server

 App and DB server sometimes integrated
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SERVER CLUSTERS

 Front end of three tier architecture (logical switch) provides 
distribution transparency – hides multiple servers

 Transport-layer switches: switch accepts TCP connection 
requests, hands off to a server
 Example: hardware load balancer (F5 networks – Seattle)

 HW Load balancer - OSI layers 4-7

 Network-address-translation (NAT) approach:
 All requests pass through switch

 Switch sits in the middle of the client/server TCP connection

 Maps (rewrites) source and destination addresses

 Connection hand-off approach:
 TCP Handoff: switch hands of connection to a selected server
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LAN REQUEST DISPATCHING
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 Who is the best server to handle the request?

 Switch plays important role in 
distributing requests

 Implements load balancing

 Round-robin – routes client 
requests to servers in a looping
fashion

 Transport-level – route client 
requests based on TCP port number

 Content-aware request distribution – route requests based on 
inspecting data payload and determining which server node 
should process the request

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L9.85

LAN REQUEST DISPATCHING - 2

 Deployed across the internet 

 Leverage resource/infrastructure from Internet Service 
Providers (ISPs)

 Cloud computing simplifies building WAN clusters

 Resource from a single cloud provider can be combined to 
form a cluster

 For deploying a cloud-based cluster (WAN), what are the 
implications of deploying nodes to :

 (1) a single availability zone (e.g. us-east-1e)?

 (2) across multiple availability zones?
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WIDE AREA CLUSTERS

 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System
 Hierarchical decentralized naming system

 Linux: find your DNS servers:

# Find you device name of interest

nmcli dev

# Show device configuration

nmcli device show <device name>
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WAN REQUEST DISPATCHING

 First query local server(s) for address

 Typically there are (2) local DNS servers
 One is backup

 Hostname may be cached at local DNS server
 E.g. www.google.com

 If not found, local DNS server routes to other servers

 Routing based on components of the hostname

 DNS servers down the chain mask the client IP, and use the 
originating DNS server IP to identify a local host

 Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not 
necessarily close to the client
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DNS LOOKUP
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 nslookup <ip addr / hostname>

 Name server lookup – translates hostname or IP to the inverse

 traceroute <ip addr / hostname>

 Traces network path to destination

 By default, output is limited to 30 hops, can be increased
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DNS: LINUX COMMANDS
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 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server 

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts,  27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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DNS EXAMPLE – WAN DISPATCHING

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server 

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts,  27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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DNS EXAMPLE – WAN DISPATCHING

Latency to ping VA server in WA: ~3.63x
WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x
VA client: local-google 1.278ms to WA-google 62.349!

QUESTIONS
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