TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 4, 2021

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
| |

Processes:
Threads & Virtualization,
Clients & Servers

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

OBJECTIVES - 2/4

| = Questions from 1/28 |
= Assignment 1: Key/Value Store
= Java Maven project template files posted
= Midterm Thursday February 11
= 27d hour - Tuesday February 9 - practice midterm questions

= Chapter 3: Processes
= Chapter 3.1: Threads
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2021]
(i] e A T e e oy R F S T T = TP 102

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 10p

® Thursday surveys: due ~ Mon @ 10p

= TCSS558A > Assignments

Winter 2021
Home

Announcements

| * Upcoming Assignments
Zoom o TCSS 558~ Online Daily Feedback Survey - 1/5
Chat “¥ Notavailable until Jan 5 at 1:30pm | Due Jan 6 3t 10pm | -/1pts

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

; o3
chnology, y Tacoma ‘ ‘

SURVEY QUESTIONS

= Survey has two questions:

= Be sure to add your questions about the previous class to the
second question

= 1st question: After today’s class, comment on any new
concepts that you learned about?

= Have been getting questions here...

= 2nd question: After today’s class, what point(s) remain least
clear to you?

= >> Please add questions HERE

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ L4 ‘

TCSS 558 - Online Daily Feedback Survey - 1/5

DueJan6at 10pm Points 1 Questions 4
Available Jan 5 at 1:30pm - Jan 6 at 11:59pm 1 day Time Limit None
O | Question1 05pts

Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 3 a 5 6 7 8 ° 10
Most1y Equa Mostly
Review To Me New and Review New to Me

| Question2 05pts

Please rate the pace of today's class:

1 2 3 4 s & 7 8 3 10
stow sust Rignt Fast
TCSS558: Applied Distributed Computing [Winter 2021]
(T 2L School of Engineering and Technology, University of Washington - Tacoma L95

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (23 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.22 (- previous 7.29)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.74 () - previous 5.81)

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ L6 ‘

Slides by Wes J. Lloyd

L9.1

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

FEEDBACK FROM 1/28

= QUESTIONS on Processes vs. Threads:

= | am confused on process and thread. You went by that part
really fast. Would you explain a bit more?

= Also: What Process and Thread are, and the difference
between them

TCS5558: Applied Distributed Computing [Winter 2021]

Lt RI2E AT e v s s o T T T T

February 4, 2021

PROCESSES VS. THREADS

Process Multithreaded Process

Process State: PC, Thread | | Thread
registers, SP, etc... iate] || state

N

Single Multipl
jilisaged Threaded
Process Process

pe

©Alfred Park, http:/randu.org/tutorials/threads

TCSS558: Applied Distributed Computing [Winter 2021]
‘ staianiit 2028 School of Engineering and Technology, University of Washington - Tacoma o8

THREADS - 2

= Enables a single process (program) to have multiple “workers”
= This supports parallel programming...
= Threads share the program’s memory
= Programmer must coordinate shared memory access

= Supports independent path(s) of execution within a program
with shared memory at the same time ...

= Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

= Threads share code segment, memory, and heap are shared

TCS5558: Applied Distributed Computing [Winter 2021]

it RI2E e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms

PROCESS AND THREAD METADATA

= Creating threads (light-weight) in the OS is typically faster
than creating processes (heavy-welght)

= Creating a thread only requires creating a stack and creating
a data structure to track thread stated

‘ registers ‘ ‘ registers ‘ Ireg\slers ‘
‘ stack H stack H stack ‘
mwﬁg g ; g__.hread
single-threaded process process

TCSS558: Applied Distributed Computing [Winter 2021]

(il i] ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

PROCESSES VS THREADS

= What Is an embarrassingly parallel program?
= Program that runs several threads in parallel (at the same time)
that works on a problem, where each thread runs independently
without any coordination/communication with other threads
= The parallel tasks doesn’t involve any shared data
= These are MAP REDUCE style problems

= For further review:
= See UC Berkeley Lecture on 0S, Processes, Threads (CS 162)
= https://youtu.be/KRenWKpfGo4?t=1471

TCS5558: Applied Distributed Computing [Winter 2021]

it RI2E Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

Slides by Wes J. Lloyd

FEEDBACK - 2

= |t would be of great help If you could provide an overview of
the steps in the assignment and what we hope to achieve
through it. It would help us understand the assignment a bit

more.

= Which assignment ?

= Assignment 0 ?

= We will next review assignment O

= For assignment 1, please submit questions

= |’'m happy to provide a “big picture” discussion on the
assignment objectives after class, or in office hours
= Can also schedule an appointment

TCSS558: Applied Distributed Computing [Winter 2021]

(e] Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

L9.2

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

February 4, 2021

ASSIGNMENT O REVIEW

= | had some follow-up questions regarding Assignment 0.

= | have completed the assignment but few points remained
unclear to me.

= Config #3 has 3 different containers so can we track from
which container the response we are getting during a test run
for config #3?
= Tracking which container runs the request is not the goal
= The idea with haproxy is to load balance requests across more vCPUs
= With testFibPar.sh we orchestrate 10 runs in parallel
= For config #1 and #2 we load balance 10 requests across 3
containers running on the same VM (c5.large) with 2 vCPU cores and
4 GB of ram: 10 requests / 2 vCPUs = 5 requests / vCPU
= The VM is overprovisloned !
= The performance we measure for config #1/#2 is not optimal

TCS5558: Applied Distributed Computing [Winter 2021]

AT e v s s o T T T T ‘ o ‘

February 4, 2021

ASSIGNMENT O REVIEW - 2

= Config #1 and Config #2 run 10 requests across 2 vCPUs
= Each Fibonacci request requires 100% access to 1 vCPU
= Config #1/#2: each vCPU timeshares 5 requests

= Performance may be only 20% of optimal

= Config #3 runs 10 requests across 3 VMs with 2 vCPUs
= Config #3 has access to 6 vCPUs
= Each vCPU will run just 10 requests /6 vCPUs = 1.667 requests/vCPU
= This is far better than 5 requests, but still not optimal

= The motivation for using Config #3 vs #1/#2 is performance

= How many c5.large VMs are required for optimal performance?

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ Lo

February 4, 2021

ASSIGNMENT O REVIEW - 3

= What about config #2?
= Config #1, doesn’t restrict the container’s access to the VM’s CPUs
" The Linux CPU scheduler tries to schedule 10 fibonacci service
requests on 2 vCPU cores
= In config #2, we apply a vCPU limit
= Each container is only allowed 0.66% of 1 vCPU
= This way the VM with 3 containers only uses 2 vCPUs
= PROBLEM: there are now 10 requests sent to 3 containers where each
container has 0.66 vCPUs
= Config #2 PROVISIONING RATIO: 3.33 requests / 0.66 vCPUs = 5.05
= Config #1 PROVISIONING RATIO: 10 requests / 2 vCPUs = 5.00
= Conflg #1 and #2 are essentlally the same

= Question: what is the effect of “restricting CPU time” for the
contalner?

TCS5558: Applied Distributed Computing [Winter 2021]

it RI2E e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms ‘ 1015 ‘

OBJECTIVES - 2/4

= Questions from 1/28

= Assignment 1: Key/Value Store
= Java Maven project template files posted

= Midterm Thursday February 11
= 274 hour - Tuesday February 9 - practice midterm questions

= Chapter 3: Processes
= Chapter 3.1: Threads
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ i

ASSIGNMENT 1

= TCP/UDP/RMI Key Value Store

= Implement a “GenericNode” project which assumes the role of
a client or server for a Key/Value Store

= Recommended in Java (11 or 8)

= Client node program interacts with server node to put, get,
delete, or list items in a key/value store

TCS5558: Applied Distributed Computing [Winter 2021]

it RI2E Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms ‘ 1917 ‘

OBJECTIVES - 2/4

= Questions from 1/28

= Assignment 1: Key/Value Store
= Java Maven project template files posted

= Midterm Thursday February 11
= 2nd hour - Tuesday February 9 - practice midterm questions

= Chapter 3: Processes
= Chapter 3.1: Threads
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

February 4, 2021 TCS$558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 118

Slides by Wes J. Lloyd

L9.3

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

February 4, 2021

OBJECTIVES - 2/4

= Questions from 1/28

= Assignment 1: Key/Value Store
= Java Maven project template files posted
= Midterm Thursday February 11
= 2" hour - Tuesday February 9 - practice midterm questions

= Chapter 3: Processes
= Chapter 3.1: Threads
| Threading Models |
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCsS558: Applied Distributed Computing [Winter 2021]
Lt RI2E i G ST ity ety T - TR

Scale
(running processes)

Workdoad diversity
(process types)

CH. 3: PROCESSES
CH. 3.1: THREADS

THREADING MODELS

= Many-to-one threadlng: multiple user-level threads per process
= Thread operations (create, delete, locks) run in user mode

= Multithreaded process mapped to single schedulable entity

= Only run thread per process runs at any given time

= Key take-away: thread management handled by user processes

= What are some advantages of many-to-one threading?

= What are some dlsadvantages?

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y Tacoma

THREADING MODELS - 2

= One-to-one threading: use of separate kernel threads for each
user process - also called kernel-level threads

= The kernel API calls (e.g. I/0, locking) are farmed out to an
existing kernel level thread

= Thread operations (create, delete, locks) run in kernel mode

= Threads scheduled individually by the 0S

= System calls required, context switches as expensive as
process context switching

= |dea is to have preinitialized kernel threads for user processes

= Linux uses this model...

= What are some advantages of one-to-one threading?

= What are some dlsadvantages?

TCsS558: Applied Distributed Computing [Winter 2021]
(il i] Sehosl of Engineerns and Technoleay)University or Washi Tecoma L2z

APPLICATION EXAMPLES

= Google chrome: processes
= Apache tomcat webserver: threads

= Multiprocess programming avoids synchronization of
concurrent access to shared data, by providing coordination
and data sharing via interprocess communication (IPC)

= Each process maintains its own private memory

= While this approach avoids synchronizing concurrent access to
shared memory, what is the tradeoff(s) ??

= Replication instead of synchronization - must synchronize multiple
copies of the data

= Do distributed objects share memory?

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineeri chnology, University i Tacoma

February 4, 2021 ‘ 1923 ‘

OBJECTIVES - 2/4

= Questions from 1/28

= Assignment 1: Key/Value Store
= Java Maven project template files posted
= Midterm Thursday February 11
= 27d hour - Tuesday February 9 - practice midterm questions
= Chapter 3: Processes
= Chapter 3.1: Threads
Threading Models

Multithreaded clients/servers |

= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCsS558: Applied Distributed Computing [Winter 2021]
(e] Sehosl of Engineenng snd Technoloay Unrversity of WashinatoniSkTecoma

Slides by Wes J. Lloyd

L9.4

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 4, 2021

MULTITHREADED CLIENTS

= Web browser

= Uses threads to load and render portions of a web page to the
user in parallel

= A client could have dozens of concurrent connections all
loading in parallel

= testFIbPar.sh
= Assignment O client script (GNU parallel)

= Important benefits:

= Several connections can be opened simultaneously

= Client: dozens of concurrent connections to the webserver all
loading data in parallel

TCS5558: Applied Distributed Computing [Winter 2021]

Lt RI2E AT e v s s o T T T T

MULTIPLE THREADS

® In Linux, threads also receive a process ID (PID)
= To display threads of a process in Linux:

= |[dentify parent process explicitly:
= top -H -p <pid>
= htop -p <pid>

= ps -iT <pid>

= Virtualbox process ~ 44 threads
= No mapping to guest # of processes/threads

TCSS558: Applied Distributed Computing [Winter 2021]

(i] A R e e o R P T =

PROCESS METRICS

isk sector reads completed
drm: merged adjacent disk reads
- readtime: time spent reading from
CPU disk
-cpuUsr: CPU time in user mode - dsw: disk sector writes
-cpuKrn: CPU time in kernel mode - dswrites: disk sector writes completed
-cpuldle: CPU idle time - dwm: merged adjacent disk writes
- cpuloWait: CPU time waiting for I/0 - wri me: time spent writing to disk
- cpulntSrve:CPU time serving interrupts
- cpuSftintSrvc: CPU time serving soft interrupts M
- cpuNice: CPU time executing prioritized - nbs: network bytes sent
processes -n etwork bytes received
- cpuSteal: CPU ticks lost to virtualized guests
- contextsw: # of context switches
-loadavg: (avg # proc / 60 secs)

LOAD AVERAGE

= Reported by: top, htop, w, uptime, and /proc/loadavg
= Updated every 5 seconds
= Average number of processes using or waiting for the CPU
= Three numbers show exponentially decaying usage
for 1 minute, 5 minutes, and 15 minutes
= One minute average: exponentially decaying average
= Load average = 1 = (avg last minute load) — 1/e = (avg load since boot)

= 1.0 = 1-CPU core fully loaded
= 2.0 = 2-CPU cores
= 3.0 =3-CPUcores . ..

TCSS558: Applied Distributed Computing [Winter 2021]

(il i] ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

THREAD-LEVEL PARALLELISM

= Metric - measures degree of parallelism realized by running
system, by calculating average utilization:

N -
):,‘:1 1-C

1—co

TLP =

= Ci - fraction of time that exactly | threads are executed

= N - maximum threads that can execute at any one time

= Web browsers found to have TLP from 1.5 to 2.5

= Clients for web browsing can utilize from 2 to 3 CPU cores
= Any more cores are redundant, and potentially wasteful

= Measure TLP to understand how many CPUs to provision

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

62
chnology, y Tacoma ‘ ‘

MULTITHREADED SERVERS

= Multiple threads essential for servers in distributed systems
= Even on single-core machines greatly improves performance
= Take advantage of idle/blocking time
= Two designs:

= Generate new thread for every request

= Thread pool - pre-initialize set of threads to service requests

Request dispatched
Dispatcher thread toa worker thread Server

.
—, \4\ Worker thread

LI

Operating system

IRequest coming in
rom the network

TCSS558: Applied Distributed Computing [Winter 2021]

(e] Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

Slides by Wes J. Lloyd

L9.5

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 4, 2021

SINGLE THREAD & FSM SERVERS

= Single thread server
= A single thread handles all client requests
= BLOCKS for 1/0
= All waiting requests are queued until thread is available

= Finite state machine
=Server has a single thread of execution
=1/0 performing asynchronously (non-BLOCKing)
=Server handles other requests while waiting for 1/0
= Interrupt fired with I/0 completes
=Single thread “jumps” back into context to finish request

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

’ 1931
chnology, y Tacoma ‘ ‘

SERVER DESIGN ALTERNATIVES

= A blocking system call implies that a thread servicing a
request synchronously performs I/0

= The thread BLOCKS to wait on disk/network I/0 before
proceeding with request processing

= Consider the implications of these designs for responsiveness,
availability, scalability. . .

m Characteristics

Multithreading Parallelism, blocking 1/0
Single-thread No parallelism, blocking I/0
Finite-state machine Parallelism, non-blocking I/0

TCsS558: Applied Distributed Computing [Winter 2021]
(i] e BT e o Ty f T

OBJECTIVES - 2/4

= Questions from 1/28

= Assignment 1: Key/Value Store
= Java Maven project template files posted
= Midterm Thursday February 11
= 27 hour - Tuesday February 9 - practice midterm questions
= Chapter 3: Processes
= Chapter 3.1: Threads
Threading Models
Multithreaded clients/servers
| = Chapter 3.2: Virtualization |
= Chapter 3.3: Clients
= Chapter 3.4: Servers

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

’ 1933
chnology, y - Tacoma ‘ ‘

CH. 3.2:
VIRTUALIZATION

VIRTUALIZATION

= |nitially introduced in the 1970s
on IBM mainframe computers

= Legacy operating systems run in mainframe-based VMs
= Legacy software could be sustained by virtualizing legacy OSes

= 1970s virtualization went away as desktop/rack-based
hardware became inexpensive

= Virtualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

= VM-Ware virtual machines enable companies to host many
virtual servers with mixed OSes on private clusters

= Cloud computing: Amazon offers VMs as-a-service (laaS)

TCsS558: Applied Distributed Computing [Winter 2021]
it RI2E Sehoo[ofErsineers K holosyUniersity q Tacoma

TYPES OF VIRTUALIZATION

= Levels of InStructlons: Liraryfunctions _ | APPication

= Hardware: CPU System calls

Operating system

= Privileged instructions Privileged
KERNEL MODE

= General instructions
USER MODE

= Operating system: system calls
= Library: programming APls: e.g. C/C++,C#, Java libraries

General

= Application:

= Goal of virtuallzation:
mimic these interface to provide a virtual computer

TCsS558: Applied Distributed Computing [Winter 2021]
(e] Sehodl of Engineerng and Technolosy University o Washi Tacoma

Slides by Wes J. Lloyd

L9.6

TCSS 558: Applied Distributed Computing February 4, 2021
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

TYPES OF VIRTUALIZATION - 2

TYPES OF VIRTUALIZATION - 3

Application/Libraries

= Process virtual machine : : = Hosted virtual machine monitor (VMM) Spplcuiont Srarke
= Interpret instructions: (interpreters) St S/ = Runs atop of hosted operating system Operating system
(JavaVM) byte code > HW instructions Operating system = Uses host OS facilities for CPU scheduling, 1/0 e
= Emulate instructions: (emulators) I 1 T = Full virtualization
(Wine) windows code - Linux code Rardvas Operating system
.

= Type 2 hypervisor
= Virtualbox Hardware

= Native virtual machine monitor (VMM)
= Hypervisor (XEN): small OS with its own kernel
= Provides an interface for multiple guest OSes

= Facilitates sharing/scheduling of
CPU, device I/0 among many guests

Application/Libraries
= Textbook: note 3.5-good explanation of full vs. paravirtualization
= GOAL: run all user mode instructions directly on the CPU

= x86 instruction set has ~17 privileged user mode instructions

= Guest OSes require special kernel to interface w/ VMM = Full virtualization: scan the EXE, insert code around privileged
= Supports Paravlrtuallzatlon for performance boost to run code instructions to divert control to the VMM

directly on the CPU = Paravirtualization: special OS kernel eliminates side effects of
= Type 1 hypervisor privileged instructions

TCS5558: Applied Distributed Computing [Winter 2021]

TCS5558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

R Rb EE ‘ 937 ‘ EEDiatvis 2028 A R e e o R P T = ‘ Lo38 ‘

EVOLUTION OF AWS VIRTUALIZATION AWS VIRTUALIZATION - 2

= Full Virtuallzation - Fully Emulated

AWS EC2 Virtualization Types = Never used on EC2, before CPU extensions for virtualization

Vs: . o
— pdance = Can boot any unmodified 0S
Virtuallzation P —— Most ————— Least . y A
NG = Support via slow emulation, performance 2x-10x slower
In software Near-matal performance a (,,t,’q% N
Optimized performance %, "“%*/%’o‘,}"'%%’q% = Paravlirtuallzation: Xen PV 3.0
0 \%
P: Poorperforancs lﬁ%a) %%"09‘:’5)'% = Software: Interrupts, timers
Paravirtual T o o ia = Paravirtual: CPU, Network /0, Local+Network Storage
T vm Fully Emulated = Requires special 0OS kernels, interfaces with hypervisor for I/0
VH: Oid =SV Xen PV 3.0 PV drivers. = Performance 1.1x - 1.5x slower than “bare metal”
Vir 3 1M e 80 VA = Instance store instances: 15T & 2"d generation- m1.large, m2.xlarge
4 wm Xen HVM 4.0.1 PVHVM drivers.
[o S| VM | XenAWs 201 | PVHVM+ SRiOVineD = Xen HVM 3.0
[Aet AN 20 AR ENHV IS SE IOV (0ot Hon) = Hardware virtualization: CPU, memory (CPU VT-x required)
H: 7] AWS Nito 2017 . i)
Hardware New (BT AT e e e 56T £ T T N U Parawrtua}l. network, §torage
ey v v v n]n] = Software: interrupts, timers
VM: Virtual Machine. HW: Hardware. * EBS backed instances

V: Vil in software. VH: Vir. in hardware. P: Paravir. Not all combinations shown.

= mi, cl instances

TCS5558: Applied Distributed Computing [Winter 2021]

TCS5558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

February 4, 2021 ‘ 139 ‘ February 4, 2021 School of Engineering and Technology, University of Washington - Tacoma ‘ e ‘

AWS VIRTUALIZATION - 3 AWS VIRTUALIZATION - 4

= XEN HVM 4.0.1

= AWS Nitro 2017
= Hardware virtualization: CPU, memory (CPU VT-x required) -

= Paravirtual: network, storage, interrupts, timers = Provides hardware virtualization for CPU, memory, network, local
= XEN AWS 2013 (diverges from opensource XEN) disk, remote disk, Interrupts, timers

= Provides hardware virtualization for CPU, memory, network = All aspects of virtualization enhanced with HW-level support

= Paravirtual: storage, interrupts, timers = November 2017

= Called Single root I/0 Virtualization (SR-I0V)

= Allows sharing single physical PCI Express device (i.e. network adapter)
with multiple VMs = 5th generation instances - ¢5 instances (also ¢5d, c5n)

= Improves VM network performance = Based on KVM hypervisor

= 314 & 4th generation instances (c3 family)

= Network speeds up to 10 Gbps and 25 Gbps

= XEN AWS 2017

= Provides hardware virtualization for CPU, memory, network, local disk

= Paravirtual: remote storage, Interrupts, timers

= Introduces hardware virtualization for EBS volumes (c4 instances)

= Instance storage hardware virtualization (x1.32xlarge, i3 family)

= Goal: provide performance indistinguishable from “bare metal”

= Overhead around ~1%

TCS5558: Applied Distributed Computing [Winter 2021]

TCS5558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

eI b EE o ‘ EEDatyi 2028 Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma ‘ Loz ‘

Slides by Wes J. Lloyd L9.7

TCSS 558: Applied Distributed Computing

February 4, 2021
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

WE WILL RETURN AT
2:50PM

OBJECTIVES - 2/4

= Questions from 1/28

= Assignment 1: Key/Value Store
= Java Maven project template files posted
= Midterm Thursday February 11
= 27d hour - Tuesday February 9 - practice midterm questions
= Chapter 3: Processes
= Chapter 3.1: Threads
= Threading Models
= Multithreaded clients/servers
= Chapter 3.2: Virtualization

| = Chapter 3.3: Clients |
= Chapter 3.4: Servers
February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021] oan
4, School of Engineeri jversity i - Tacoma

CH. 3.3: CLIENTS

TYPES OF CLIENTS

= Thick clients
=Web browsers
= Client-side scripting
= Mobile apps
= Multi-tier MVC apps

EThin clients
= Remote desktops/GUIs (very thin)

February 4, 2021

TCS5558: Applied Distributed Computing [Winter 2021]
School of Engineeri iversity i

Tacoma

as |

CLIENTS

= Example: shared calendar application

= Application independent

. . T Client machi ichir .
= Application specific protocol B - = Layered architecture to transport Ul over network
* Thick clients hicamull) o :Mi“"“’"
fcation-

R o A Fepodt = Remote desktop functionality for Linux/Unix systems
= Clients maintain local data Middleware | protocol Middleware
= Middleware (APIs) Loow 08 Losslos = X kernel acts as a server
= Clients synchronize data with remote nodes . J—

= Provides the X protocol: application level protocol
= Xlib instances (client applications) exchange data and

Tacoma

St maciine Severedme| events with X kernels (servers)
= Thin clients
Appli - A i i i i

0 AR CES 65 6 e e Applcation = Clients and servers on single machine = Linux GUI

. . Middley protocol Middi n A A
= Provides interface to user (GUI / Ul) s T = Client and server communication transported over the
= Server houses entire application stack | > network - remote Linux GUI

N:a'wm'k

February 4, 2021 ;Cfs‘zifi;App.lied D.is(ribuliedcﬁ?‘r:lzs":ng[.Win(.e,vZOZ]]) Tacoma 19.47 February 4, 2021 ;ﬁ:zlsi;App.lied I?istribu(edcompu(ing[.\Mn':eyrzﬂzll) 19.48 ‘

Slides by Wes J. Lloyd

L9.8

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

X WINDOWS - 2

= Window manager:
= Application running
atop of X-windows
which provides flair
= Many variants
= Without X windows is
quite bland

TCS5558: Applied Distributed Computing [Winter 2021]

Lt RI2E AT e v s s o T T T T

ok B o

February 4, 2021

= Lavered archltecture | PpictonGents- UseProduciiy |

OpenOffice.org, Firefox, Gimp

= X-kernel: low level
interface/APIs for
controlling screen,

Desktop Environment - Application and
File Mana%!m

ent
Gnome/KDE panels, desktop icon managers

i Window and Compositing Manager - i
eI key board Placement and Controls Of Windows GTK, Borollm:)(aw
and mouse events Compiz, Metacity kwin e

(X window Server)

Session Manager
1 . gnome-session, ksmserver
= Provided on Linux

as Xlib

isplay Manager 1 X Server Startup
. and User Authentication
= Provides network gdm,kdm, xdm
enabled GUI

XWindow Server - Display Hardware Management

= Layering allows for

use for custom
window managers

Network Transports - Client -Server Connections
TCP/IP Unix domain sockets

TCSS558: Applied Distributed Computing [Winter 2021]

LTy b School of Engineering and Technology, University of Washington - Tacoma 1950

EXAMPLE: VNC SERVER

sudo apt-get update

ubuntu 16.04
sudo apt-get install ubuntu-desktop

daemon metacity nautilus gnome-terminal

on ubuntu 18.04
sudo apt install xfced4 xfced-goodies

sudo apt-get install tightvncserver # both

Start VNC server to create initial config file
vncserver :1

= How to Install VNC server on Ubuntu EC2 Instance VM:

sudo apt-get install gnome-panel gnome-settings-

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y Tacoma

EXAMPLE: VNC SERVER - UBUNTU 16.04

= On the VM: edit config file: nano ~/.vnc/xstartup

= Replace contents as below (Ubuntu 16.04):
#!/bin/sh

export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &

nautilus &
gnome-terminal &

TCSS558: Applied Distributed Computing [Winter 2021]

(il i] ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

= On the VM:
= Edit config file: nano ~/.vnc/xstartup
= Replace contents as below (Ubuntu 18.04):

EXAMPLE: VNC SERVER - UBUNTU 18.04

#!/bin/bash
xrdb $HOME/.Xresources
startxfced &

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

Technology, y Tacoma

VNC SERVER - UBUNTU 20.04 - GNOME

install vnc server

sudo apt install tigervnc-standalone-server
Sudo apt install ubuntu-gnome-desktop

vncserver :1 # creates a config file
vncserver -kill :1 # stop server

vi ~/.vnc/xstartup # edit config file

#!/bin/sh

Start Gnome 3 Desktop

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r $HOME/ .Xresources] && xrdb $HOME/.Xresources
vncconfig -iconic &

dbus-launch --exit-with-session gnome-session &

sudo systemctl start gdm
sudo systemctl enable gdm
vncserver :1

start gnome desktop

restart vnc server

TCSS558: Applied Distributed Computing [Winter 2021]

(e] Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

Slides by Wes J. Lloyd

L9.9

TCSS 558: Applied Distributed Computing February 4, 2021
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

EXAMPLE: VNC SERVER - 3 EXAMPLE: VNC CLIENT

= On the VM: reload config by restarting server
® vncserver -kill :1

= On the client (e.g. laptop):

= Create SSH connection to securely forward port 5901 on the
EC2 instance to your localhost port 5901

= This way your VNC client doesn’t need an SSH key

" vncserver :1

= Open port 22 & 5901 in EC2 security group:

ssh —-i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
Edit inbound rules x -f -1 <username> <EC2-instance ip_address>

Type I Protocol (1 Port Range (| Source (i

where v 00000 [

= For example:

= ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
e E3 1 ubuntu 52.111.202.44
February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma ‘ 195 ‘ February 4, 2021 19356

School of Engineering and Technology, University of Washington - Tacoma

EXAMPLE: VNC CLIENT - 2 REMOTE COMPUTER IN THE CLOUD

= On the client (e.g. laptop): = EC2 instance
= Use a VNC Client to connect with a GUI. . .I!!
= Remmina is provided by default on Ubuntu 16.04
= Can “google” for many others
® Remmina login:

= Chose “VNC” protocol

= Log into “localhost:5901"

Remote Desktop Client

7 vne ~ [localhost:s901 Connect!

JName~ Group Server

February 4, 2021 TCS5558: Applied Distributed Computing [Winter 2021]

TCSS558: Applied Distributed Computing [Winter 2021]
e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms ‘ Los7 ‘ (il i]

School of Engineering and Technology, University of Washington - Tacoma

THIN CLIENTS THIN CLIENTS - 2

= Thin clients

= Applications should separate application logic from Ul
= X windows protocol

= When application logic and Ul interaction are tightly coupled
= A variety of other remote desktop protocols exist: many requests get sent to X kernel

- ;
Remote deskiop protocols include the folowing: Client must wait for response
+ Agple Remote Deskiop Prctosol (ARD) ~ Orignal protocal for Apple Remcte Deskiop on macOS machines
+ Agpliance Lk Protocol (ALP) — a Sun Microsystems-speciic protccel featurng aud (play ard ecord), femote pining, femote USE, accsleraied video
+ HP Remoie Graphics Sofvare (RGS) - a propritary prctocoldesigned by Hewlit-Packard soecifcallyfo high end workstation remoing and collaboration

= Synchronous behavior and app-to-Ul coupling adverselt affects
performance of WAN / Internet

« Independent Computing Archi —apropriecary protocol designd by Citix Systems

« N technology (NoMaching NX) - Cross platform protocol featuring aucio, video, remcte printing, remote USB, H264-encbled = Protocol optimlzatlons: reduce bandwidth by shrinking size of
» PC-over-IP (PColP)—a proprietary protocol usad by VMware (licensed from Teradici)l!

+ Remote Deskiop Protocal (RDP) —a Wincows-specifc protocal festuring audio and remte printing X protocol messages

+ Remote Frame Buffer Protocal (RFE) — A framebufer level cross-platform pratocel tha: NC is based on. = Send only differences between messages with same identifier
+ SPICE (Simple Protocol ‘or Independert Computing Environments) — remote-display sysien buit fo virual environments by Qumranet, now Red Hat

« Splashtop—a high performance remote desktop protocol developed by Splashiop, fully optimized for hardware (H 264 including Itel / AMD chipsets, NVIDIA = Optimizations enable connections with 9600 kbps
of media codecs, Splashiop can defiver high frame tates wiih low latency, and also low powsr consumpton.

« X Window System (1) - a wel-estabished c'oss-platform protocol mainly used for cisplaying local applicasions; XLLis network transparent

TCSS558: Applied Distributed Computing [Winter 2021]
it RI2E Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms 109

School of Engineering and Technology, University of Washington - Tacoma

February 4, 2021 TCsS558: Applied Distributed Computing [Winter 2021] ‘ os ‘

Slides by Wes J. Lloyd L9.10

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 4, 2021

THIN CLIENTS - 3

= Virtual network computing (VNC)

= Send display over the network at the pixel level
(instead of X lib events)

= Reduce pixel encodings to save bandwidth - fewer colors
= Pixel-based approaches loose application semantics
= Can transport any GUI this way

= THINC- hybrid approach

= Send video device driver commands over network
= More powerful than pixel based operations

= Less powerful compared to protocols such as X

TCS5558: Applied Distributed Computing [Winter 2021]

Lt RI2E AT e v s s o T T T T

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphlcs llb
VNC ['] X11
< i >

TCSS558: Applied Distributed Computing [Winter 2021]

(i] A R e e o R P T =

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics lib
VNC n X11

< U >
e Generic - no app context e Application context

e Graphics data is available

e Higher network bandwidth e Ul data/operations

e Fewer colors e Lower network bandwidth
e Utilize graphics compression e More colors

e More network traffic

TCS5558: Applied Distributed Computing [Winter 2021]

it RI2E e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY

= Clients help enable distribution transparency of servers

= Replication transparency
= Client aggregates responses from multiple servers
= Only the client knows of replicas

Client machine erver 1 erver erver 3
Client Server Server Server
appl appl appl appl
Y
S . A A

lent sidé handies N~

equest replication

Replicated request

TCSS558: Applied Distributed Computing [Winter 2021]

(il i] ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

3

CLIENT ROLES IN PROVIDING
DISTRIBUTION TRANSPARENCY - 2

= Location/relocation/migration transparency

= Harness convenient naming system to allow client to infer new
locations

= Server inform client of moves / Client reconnects to new endpoint
= Client hides network address of server, and reconnects as needed
= May involve temporary loss in performance

= Replication transparency
= Client aggregates responses from multiple servers
= Failure transparency

= Client retries, or maps to another server, or uses cached data

= Concurrency transparency
= Transaction servers abstract coordination of multithreading

TCS5558: Applied Distributed Computing [Winter 2021]

it RI2E Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

Slides by Wes J. Lloyd

OBJECTIVES - 2/4

= Questions from 1/28

= Assignment 1: Key/Value Store
= Java Maven project template files posted
= Midterm Thursday February 11
= 274 hour - Tuesday February 9 - practice midterm questions
= Chapter 3: Processes
= Chapter 3.1: Threads
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients

= Chapter 3.4: Servers |
TCSS558: Applied Distributed Computing [Winter 2021]
(e] Sehosl of Engineenng snd Technoloay Unrversity of WashinatoniSkTecoma 106

L9.11

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

February 4, 2021

3.4: SERVERS

SERVERS

= Cloud & Distributed Systems - rely on LInux

= http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

= |IT is moving to the cloud. And, what powers the cloud?

*Linux
= Uptime Institute survey - 1,000 IT executives (2016)
= 50% of IT executives - plan to migrate majority of IT workloads to
off-premise to cloud or colocation sites
= 23% expect the shift in 2017, 70% by 2020...
= Docker on Windows / Mac 0S X
= Based on Linux
= Mac: Hyperkit Linux VM
= Windows: Hyper-V Linux VM

TCsS558: Applied Distributed Computing [Winter 2021]
(i] e BT e o Ty f T

SERVERS - 2

= Server types
= |teratlve: immediately handle client requests

= Multithreaded servers are concurrent servers
= E.g. Apache Tomcat

= Servers implement a specific service for a collection of clients
= Servers wait for incoming requests, and respond accordingly

= Concurrent: Pass client request to separate thread

= Alternative: fork a new process for each incoming request
= Hybrid: mix the use of multiple processes with thread pools

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

Technology, y Tacoma

END POINTS

= Clients connect to servers via:
IP Address and Port Number

= How do ports get assigned?
= Many protocols support “default” port numbers
= Client must find IP address(es) of servers

= A single server often hosts multiple end points
(servers/services)

=When designing new TCP client/servers must be careful
not to repurpose ports already commonly used by others

TCS5558: Applied Distributed Computing [Winter 2021]

(il i] Schoolof EchnoloayiUniversiyer Tecoma

CoMMON PORTS
TCP/UDP Port Numbers

7 Echo 554 RTSP 2745
19 Chargen 546-547 DHCPV6 2967 Symantec AV
20-21 FTP 560 rmonitor 3050 Interbase DB
» SN o RS o
23 Telnet 587 SMTP 3124 HTTP Proxy
25 smTP 591 FileMaker 3127
42 WINS Replication 593 Microsoft DCOM 3128 HTTP Proxy
43 WHoIS 631 Internet Printing 3222 GLep
49 TacACS 636 3260 iSCsi Target
53 DNS 639 MSDP (PIM) 3306 MysQL
67-68 DHCP/BOOTP 646 LDP (MPLS) 3389 Terminal Server
69 TFTP 691 M Exchange 3689 iTunes
70 Gopher 860 iSCS! 3690 Subversion
79 Finger 873 rsync 3724
80 HTTP 902 VMware Server 3784-3785 Ventrilo
88 Kerberos 989-990 FEBEISSHN 4333 msqL
102 Ms Exchange 993 IMAPA over SSL P
110 PoP3 995 FORSOIEHSSIN 4664 Google Deskiop
113 ident 1025 Microsoft RPC 4672
119 NNTP (Usenet) 1026-1029 Windows Messenger 4899 Radmin
123 NTP 1080 SOCKS Proxy 5000 UPnP
135 Microsoft RPC 1080 [ESERIN 5001 Slingbox
137-139 NetBios 1194 OpenvPN 5001 iperf
143 MAPa 1214 KEEI 5004-5005 RTP
161-162 SNMP 1241 Nessus 5050 faRgoliessengen)
177 xoMCP 1311 Dell OpenManage 5060 SiP
120 8ce 1337 ViASTER— 130

Slides by Wes J. Lloyd

packetlife.net

6891-6901
6970 Quicktime
7212 Ghostsurt
7648-7649
8000 Internet Radio
8080 HTTP Proxy
8086-8087 Kaspersky AV
8118 Privoxy
8200 VMware Server
8500 Adobe ColdFusion
8767
8866
9100 HP JetDirect
9101-9103 Bacula
9119
9800 WebDAV
9898
9988
9999 Urchin
10000 Webmin
10000 BackupExec
10113-10116 NetiQ
11371 OpenPGP
12035-12036
12345
13720-13721 NetBackup

TYPES OF SERVERS

=Daemon server
= Example: NTP server

=Superserver

= Stateless server
= Example: Apache server

= Stateful server
= QObject servers

= EJB servers

TCS5558: Applied Distributed Computing [Winter 2021]

School of Technology, University of Tacoma ‘ 72

February 4, 2021

L9.12

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

NTP EXAMPLE

= Daemon servers
= Run locally on Linux
=Track current server end points (outside servers)

= Example: network time protocol (ntp) daemon
Listen locally on specific port (ntp is 123)

Daemons routes local client traffic to the configured
endpoint servers

University of Washington: time.u.washington.edu
Example “ntpg -p”
= Queries local ntp daemon, routes traffic to configured server(s)

TCS5558: Applied Distributed Computing [Winter 2021]

Lt RI2E AT e v s s o T T T T

February 4, 2021

SUPERSERVER

= Linux inetd / xinetd
= Single superserver
= Extended internet service daemon
= Not installed by default on Ubuntu
= Intended for use on server machines
= Used to configure box as a server for multiple internet services
E.g. ftp, pop, telnet

= inetd daemon responds to multiple endpoints for multiple
services

= Requests fork a process to run required executable program

= Check what ports you’'re listening on:
®" sudo netstat -tap | grep LISTEN

TCSS558: Applied Distributed Computing [Winter 2021]

(i] A R e e o R P T =

INTERRUPTING A SERVER

= Server design issue:
= Active client/server communication is taking place over a port
= How can the server / data transfer protocol support interruption?

= Consider transferring a 1 GB image, how do you pass a
unrelated message in this stream?

1. Out-of-band data: special messages sent in-stream to support
interrupting the server (TCP urgent data)
2. Use a separate connection (different port) for admin control info

= Example: sftp secure file transfer protocol
= Once a file transfer is started, can’t be stopped easily
= Must kill the client and/or server

TCS5558: Applied Distributed Computing [Winter 2021]

it RI2E e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms

STATELESS SERVERS

= Data about state of clients is not stored
= Example: web application servers are typically stateless
= Also function-as-a-service (FaaS) platforms

= Many servers maintain information on clients (e.g. log files)

= Loss of stateless data doesn’t disrupt server availability
= Loosing log files typically has minimal consequences

= Soft state: server maintains state on the client for a limited
time (to support sessions)

= Soft state information expires and is deleted

TCSS558: Applied Distributed Computing [Winter 2021]

(il i] ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

STATEFUL SERVERS

®= Maintain persistent information about clients
= Information must be explicitly deleted by the server

= Example:
File server - allows clients to keep local file copies for RW

= Server tracks client file permissions and most recent versions
= Table of (client, file) entries

= |f server crashes data must be recovered
= Entire state before a crash must be restored
= Fault tolerance - Ch. 8

TCS5558: Applied Distributed Computing [Winter 2021]

it RI2E Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

STATEFUL SERVERS - 2

= Session state
= Tracks series of operations by a single user
= Maintained temporarily, not indefinitely
= Often retained for multi-tier client server applications
= Minimal consequence if session state is lost
= Clients must start over, reinitialize sessions

= Permanent state
= Customer information, software keys

= Client-side cookies

= When servers don’t maintain client state, clients can store state
locally in “cookies”
= Cookies are not executable, simply client-side data

TCS$558: Applied Distributed Computing [Winter 2021]

(e] Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

Slides by Wes J. Lloyd

L9.13

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

February 4, 2021

OBJECT SERVERS

= OBJECTIVE: Host objects and enable remote client access
= Do not provide a specific service
= Do nothing if there are no objects to host
= Support adding/removing hosted objects
= Provide a home where objects live
= Objects, themselves, provide “services”

= Object parts
= State data
= Code (methods, etc.)

= Translent ob)ect(s)
= Objects with limited lifetime (< server)

= Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”).

= Disadvantage: initialization may be expensive
= Alternative: preinitialize and retain objects on server start-up

TCS5558: Applied Distributed Computing [Winter 2021]

Lt RI2E AT e v s s o T T T T

OBJECT SERVERS - 2

= Should obJect servers Isolate memory for object Instances?
= Share neither code nor data
= May be necessary if objects couple data and implementation

= Object server threading designs:
= Single thread of control for object server
= One thread for each object
= Servers use separate thread for client requests

= Threads created on demand vs.
Server maintains pool of threads

= What are the tradeoffs for creating server threads on demand vs.
using a thread pool?

TCSS558: Applied Distributed Computing [Winter 2021]

(i] A R e e o R P T = ‘ o0 ‘

EJB - ENTERPRISE JAVA BEANS

= EJB- specialized Java object hosted by a EJB web container

back-ends of enterprise applications
= EJB web application containers integrate support for:
= Transaction processing
= Persistence
= Concurrency
= Event-driven programming
= Asynchronous method invocation
= Job scheduling
= Naming and discovery services (JNDI)
= Interprocess communication
= Security
= Software component deployment to an application server

= 4 types: stateless, stateful, entity, and message-driven beans
= Provides “middleware” standard (framework) for implementing

TCS5558: Applied Distributed Computing [Winter 2021]

it RI2E e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms

APACHE WEB SERVER

= Highly configurable, extensible, platform independent

= Supports TCP HTTP protocol communication

= Uses hooks - placeholders for group of functions

= Requests processed in phases by hooks

= Many hooks:
= Translate a URL N D!E‘
= Write info to log h e -
= Check client ID
= Check access rights

Module

Function

Link between
function and hool]

) i m
= Hooks processed in order ‘E‘ Hooks point to functions in modules

/

enforcing flow-of-control / 1

Apache core
" Functions in replaceable furetins caked For oo L[—l—‘
modules Roquest Response

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ e ‘

February 4, 2021

SERVER CLUSTERS

= Hosted across an LAN or WAN
= Collection of interconnected machines
= Can be organized in tiers:

= Web server > app server > DB server

= App and DB server sometimes integrated

Logical switch
(possibly multiple)

Application/compute servers Distributed
fle/database
system

mE—
mE——
[]

Dispatched

Client requests request

NN

First fier Second tier Third tier

TCS5558: Applied Distributed Computing [Winter 2021]

it RI2E ‘ Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

LAN REQUEST DISPATCHING

= Front end of three tier architecture (logical switch) provides
distribution transparency - hides multiple servers

= Transport-layer switches: switch accepts TCP connection
requests, hands off to a server
= Example: hardware load balancer (F5 networks - Seattle)
= HW Load balancer - OSl layers 4-7

= Network-address-translation (NAT) approach:
= All requests pass through switch
= Switch sits in the middle of the client/server TCP connection
= Maps (rewrites) source and destination addresses
= Connection hand-off approach:
= TCP Handoff: switch hands of connection to a selected server

TCS$558: Applied Distributed Computing [Winter 2021]

(e] Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma ‘ Lo ‘

Slides by Wes J. Lloyd

L9.14

TCSS 558: Applied Distributed Computing February 4, 2021

[Winter 2021] School of Engineering and Technology,
UW-Tacoma

WIDE AREA CLUSTERS

LAN REQUEST DISPATCHING - 2

= Deployed across the internet
= Leverage resource/infrastructure from Internet Service
Providers (ISPs)

= Who is the best server to handle the request?

= Switch plays important role in s =
distributing requests pingle TCP ——— = = Cloud computing simplifies building WAN clusters

= Resource from a single cloud provider can be combined to
form a cluster

= Implements load balancing

" Round-robln - routes client
requests to servers in a looping
fashion

= Transport-level - route client
requests based on TCP port number

= Content-aware request distribution - route requests based on
inspecting data payload and determining which server node
should process the request

TC55558: Applied Distributed Computing [Winter 2021] Loss
School of Engineering and Technology, University of Washington - Tacoma

= For deploylng a cloud-based cluster (WAN), what are the
implications of deploying nodes to:

® (1) a single availability zone (e.g. us-east-1e)?

® (2) across multiple availability zones?

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021] ‘ oss ‘

February 4, 2021 School of Engineering and Technology, University of Washington - Tacoma

DNS LOOKUP

WAN REQUEST DISPATCHING

= First query local server(s) for address

= Typically there are (2) local DNS servers
= One is backup

= Hostname may be cached at local DNS server

= E.g. www.google.com
= |f not found, local DNS server routes to other servers
= Routing based on components of the hostname

= DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

= Goal: minimize network latency using WANs (e.g. Internet)
= Send requests to nearby servers

= Request dispatcher: routes requests to nearby server
= Example: Domain Name System

= Hierarchical decentralized naming system
= Linux: find your DNS servers:

Find you device name of interest

nmcli dev

Show device configuration

nmcli device show <device name>

February 4, 2021

TC55558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

= Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

TCS$558: Applied Distributed Computing [Winter 2021] ‘ L1988 ‘

(il i] ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

Local Name Server

5. lterative Query to root

4.Check

(root)

DNS: LINUX COMMANDS

Cache 6. Name Server for .edu
& W
7 13, Update, Root Name Server
 —
Cache .
Server T 7. iterative " nslookup <ip addr / hostname>
_ Query to .edu
3. Recus
| Susry to e’ SIS)
nnes'“ 14. edu = Name server lookup - translates hostname or IP to the inverse
hieass 8. Name Server for
(googleplex.edu
z.cc::x P -cauiiame: Segrer = traceroute <ip addr / hostname>
— g 9. lterative Query S
@15_ &@ to googleplex-edu > = Traces network path to destination
et 10. Name Server for googleplex = By default, output is limited to 30 hops, can be increased
Cache Resolver compsci.googleplex.edu
googleplex.edu
1.Resolution Name Server
| o emerted 11, lterative Query to :
1P Address ‘compsci.googleplex.edu
compsci

12.1P Address for
i edt

0

User & Browser

Client

17. HTTP Request

Name Server

February 4, 2021 TCsS558: Applied Distributed Computing [Winter 2021] ‘ 090 ‘

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L9.15

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

DNS EXAMPLE - WAN DISPATCHING

Ping www.google.com in WA from wireless network:

= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

= Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)
Ping www.google.com in VA (us-east-1) from EC2 instance:

= nslookup: 1 address returned, choose 172.217.9.196

= Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

From VA EC2 instance, ping WA www.google server
Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)
Pinging the WA-local server is ~60x slower from VA

From local wireless network, ping VA us-east-1 google :
Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

February 4, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y Tacoma

February 4, 2021

DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:
= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

Latency to ping VA server in WA: ~3.63x

WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x

VA client: local-google 1.278ms to WA-google 62.349!

= From local wireless network, ping VA us-east-1 google :
= Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCS5558: Applied Distributed Computing [Winter 2021]

February 4, 2021 School of Technology, Tacoma o

QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington -

February 4, 2021

Slides by Wes J. Lloyd

L9.16

