
TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.1

Processes:
Threads & Virtualization,
Clients & Servers

Wes J. Lloyd
School of Engineering
& Technology (SET)
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Questions from 1/26

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Assignment 1: Key/Value Store

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma
L8.2

OBJECTIVES – 1/28

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.3

ONLINE DAILY FEEDBACK SURVEY

January 28, 2021
TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma L8.4

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.3

 Please classify your perspective on material covered in today’s
class (22 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.29 ( - previous 6.73)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.81 ( - previous 5.50)

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.5

MATERIAL / PACE

 The hybrid architecture remains the least clear to me.

 A hybrid architecture combines more than one architecture:

 EDGE COMPUTING EXAMPLE:

 End of network:
Unstructured
peer-to-peer

 Edge Server:
Centralized
routes to Internet

 Cloud data center:
Heterogeneous
virtual machines:
Structured peer-to-peer

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.6

FEEDBACK FROM 1/26

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.4

 Furthermore, I am wondering about the difference between
unstructured and structured peer to peer system.

 Structured peer-to-peer:
Features deterministic message routes and routing t imes
More rigid, changes require reconfiguration

 Dependable messaging

 Unstructured peer-to-peer:
Message routes need to be discovered
Topology is constantly changing
Changes are discovered on-the-fly

 Common with wireless systems where devices have unreliable
networks and power sources

 Best effort messaging

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.7

FEEDBACK - 2

 For Dynamic Topology - Chord System, how is the shortest
path O(log N)? (N is the number of nodes)

 Chord provides an alternative to implement a DHT but
without a fixed size such as with the four-dimensional
hypercube

 Each node keeps a finger table containing m entries

m is the number of bits in the hash key

 A query is sent to an arbitrary node

 The node will look up the hash k in the finger table

 The finger table identifies the node to send the query to

 Nodes in the chord system are responsible for
maintaining up-to-date finger tables

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.8

FEEDBACK - 3

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.5

 i th entry in ft at peer with id n is f irst node >= (n+2i)(mod 2m)

 For our example hash has 4 bits (m=4)

 Consider that we have 5 nodes

 Let’s compute the finger table for n3

 Everytime a node wants to lookup a key it will
pass the query to the f irst node which is the closest successor
or predecessor (going clockwise) of k in it’s finger table

 N3
i f t[i]

4 (3+20)(mod 24) hash i=0
5 (3+21)(mod 24) hash i=1
7 (3+22)(mod 24) hash i=2
11 (3+23)(mod 24) hash i=3

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.9

HOW TO COMPUTE FINGER TABLE (FT)

n0
n3

n6
n10

n13
clockwise

n6
n6

n10
n13

 Consider a 5 node Chord system with a 4-bit hash

 A query is sent to an arbitrary node

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.10

5-NODE CHORD SYSTEM

1000

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.6

 To lookup a item with hash key k , the node wil l pass the query
to the closest successor or predecessor of k in the finger table
(the node with the highest ID in the circle whose ID is smaller
than k)

 If k =8 and the query first goes to node n3

 Query is passed to node n10

 Data each node is responsible for storing in this 5-node chord:
n0 k={14,15,0}
n3 k= {1,2,3}
n6 k= {4,5,6}
n10 k= {7,8,9,10}
n13 k= {11,12,13}

 Path to data n3  n10 (data found) – 1 hop  O(log n)

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.11

TO FIND THE DATA

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma L10.12

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.7

 Questions from 1/26

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Assignment 1: Key/Value Store

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma
L8.13

OBJECTIVES – 1/28

 Preparing for Assignment 0:
 Establish AWS Account

 Standard account – ** request cloud credits from instructor **

 Specify “AWS CREDIT REQUEST” as subject of email

 Include email address of AWS account

 AWS Educate Starter account – some account limitations

 https://awseducate-starter-account-services.s3.amazonaws.com/
AWS_Educate_Starter_Account_Services_Supported.pdf

 Establish local Linux/Ubuntu environment

 Task 1 – AWS account setup

 Task 2 – Working w/ Docker, creating Docker fi le for Apache Tomcat

 Task 3 – Creating a Dockerfile for haproxy

 Task 4 – Working with Docker-Machine

 Task 5 – For Submission: Testing Alternate Server Configurations

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.14

ASSIGNMENT 0

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.8

 testFibPar.sh script is a parallel test script
 Orchestrates multiple threads on client to invoke server

multiple times in parallel
 To simplify coordinate of parallel service calls in BASH,

testFibPar.sh script ignores errors !!!

 To help test cl ient-to-server connectivity, have created a new
testFibService.sh script

 TEST 1: Network layer
 Ping (ICMP)

 TEST 2: Transport layer
 TCP: telnet (TCP Port 8080) – security group (firewall) test

 TEST 3: Application layer
 HTTP REST – web service test

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.15

TESTING CONNECTIVITY TO SERVER

 Questions from 1/26

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Assignment 1: Key/Value Store

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma
L8.16

OBJECTIVES – 1/28

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.9

 TCP/UDP/RMI Key Value Store

 Implement a “GenericNode” project which assumes the role of
a client or server for a Key/Value Store

 Recommended in Java (11 or 8)

 Client node program interacts with server node to put, get,
delete, or l ist items in a key/value store

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.17

ASSIGNMENT 1

 Questions from 1/26

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Assignment 1: Key/Value Store

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma
L8.18

OBJECTIVES – 1/28

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.10

CH. 3: PROCESSES
CH. 3.1: THREADS

L8.19

 Chapter 3 titled “processes”

 Covers variety of distributed system implementation
details

 “Grab bag” of topics

 Processes/threads

 Virtualization

 Clients

 Servers

 Code migration

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.20

CHAPTER 3

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.11

 Questions from 1/26

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Assignment 1: Key/Value Store

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma
L8.21

OBJECTIVES – 1/28

 For implementing a server (or cl ient) threads offer many
advantages vs. heavy weight processes

 What is the difference between a process and a thread?
 (review?) from Operating Systems

 Key dif ference : what do threads share amongst each other
that processes do not…. ?

 What are the segments of a program stored in memory?
 Heap segment (dynamic shared memory)

 Code segment

 Stack segment

 Data segment (global variables)

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.22

CH. 3.1 - THREADS

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.12

 Do several processes on an operating system share…
 Heap segment?

 Stack segment?

 Code segment?

 Can we run multiple copies of the same code?

 These may be managed as shared pages (across processes) in
memory

 Processes are isolated from each other by the OS
 Each has a separate heap, stack, code segment

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.23

THREADS - 2

 Threads avoid the overhead of process creation

 No new heap or code segments required

 What is a context switch?

 Context switching among threads is considered to be more
efficient than context switching processes

 Less elements to swap-in and swap-out

 Unikernel: specialized single process OS for the cloud

 Example: Osv, Clive, MirageOS (see: ht tp://unikernel .org/projects/)

 Single process operating system with many threads

 Developed for the cloud to run only one application at a t ime

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.24

THREADS - 3

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.13

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.25

OSV: ONE PROCESS, MANY THREADS

 Important implications with threads:

 (1) multi-threading should lead to performance gains

 (2) thread programming requires additional effort when
threads share memory

 Known as thread synchronization, or enabling concurrency

 Access to critical sections of code which modify shared
variables must be mutually exclusive

 No more than one thread can execute at any given time

 Critical sections must run atomically on the CPU

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.26

THREADS - 4

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.14

 Example: spreadsheet with formula to compute sum of column

 User modifies values in column

 Multiple threads:

1. Supports interaction (UI) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

 Single core CPU
 Tasks appear as if they are performed simultaneously

 Multi core CPU
 Tasks execute simultaneously

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.27

BLOCKING THREADS

 IPC – mechanism using pipes, message queues, and shared
memory segments

 IPC mechanisms incur context switching
 Process I/O must execute in kernel mode

 How many context switches are required for process A to
send a message to process B using IPC?

 #1 C/S:
Proc Akernel thread


#2 C/S:
Kernel threadProc B

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.28

INTERPROCESS COMMUNICATION

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.15

 Questions from 1/26

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Assignment 1: Key/Value Store

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma
L8.29

OBJECTIVES – 1/28

 Direct overhead
 Time spent not executing program code (user or kernel)

 Time spent executing interrupt routines to swap memory segments
of different processes (or threads) in the CPU

 Stack, code, heap, registers, code pointers, stack pointers

 Memory page cache invalidation

 Indirect overhead
 Overhead not directly attributed to the physical actions of the

context switch

 Captures performance degradation related to the side effects of
context switching (e.g. rewriting of memory caches, etc.)

 Primarily cache perturbation

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.30

CONTEXT SWITCHING

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.16

 Refers to cache reorganization that occurs as a result of a
context switch

 Cache is not clear, but elements from cache are removed as a
result of another program running in the CPU

 80% performance overhead from context switching results
from this “cache perturbation”

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.31

CONTEXT SWITCH –
CACHE PERTURBATION

 Questions from 1/26

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Assignment 1: Key/Value Store

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma
L8.32

OBJECTIVES – 1/28

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.17

 Many-to-one threading: multiple user-level threads per process

 Thread operations (create, delete, locks) run in user mode

 Multithreaded process mapped to single schedulable entity

 Only run thread per process runs at any given time

 Key take-away: thread management handled by user processes

 What are some advantages of many-to-one threading?

 What are some disadvantages?

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.33

THREADING MODELS

 One-to-one threading: use of separate kernel threads for each
user process - also called kernel-level threads

 The kernel API calls (e.g. I/O, locking) are farmed out to an
existing kernel level thread

 Thread operations (create, delete, locks) run in kernel mode
 Threads scheduled individually by the OS
 System calls required, context switches as expensive as

process context switching
 Idea is to have preinitialized kernel threads for user processes
 Linux uses this model…

 What are some advantages of one-to-one threading?

 What are some disadvantages?
January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma
L8.34

THREADING MODELS - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.18

 Google chrome: processes

 Apache tomcat webserver: threads

 Multiprocess programming avoids synchronization of
concurrent access to shared data, by providing coordination
and data sharing via interprocess communication (IPC)

 Each process maintains its own private memory

 While this approach avoids synchronizing concurrent access to
shared memory, what is the tradeoff(s) ??
 Replication instead of synchronization – must synchronize multiple

copies of the data

 Do distributed objects share memory?

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.35

APPLICATION EXAMPLES

WE WILL RETURN AT
2:46PM

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.19

 Questions from 1/26

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Assignment 1: Key/Value Store

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma
L8.37

OBJECTIVES – 1/28

 Web browser
 Uses threads to load and render portions of a web page to the

user in parallel
 A client could have dozens of concurrent connections all

loading in parallel

 testFibPar.sh
 Assignment 0 cl ient script (GNU parallel)

 Important benefits:
 Several connections can be opened simultaneously
 Client: dozens of concurrent connections to the webserver all

loading data in parallel

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.38

MULTITHREADED CLIENTS

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.20

 In Linux, threads also receive a process ID (PID)

 To display threads of a process in Linux:

 Identify parent process explicitly:

 top –H –p <pid>

 htop –p <pid>

 ps –iT <pid>

 Virtualbox process ~ 44 threads

 No mapping to guest # of processes/threads

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.39

MULTIPLE THREADS

PROCESS METRICS

CPU
- cpuUsr: CPU time in user mode
- cpuKrn: CPU time in kernel mode
- cpuIdle: CPU idle time
- cpuIoWait: CPU time waiting for I/O
- cpuIntSrvc:CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts
- cpuNice: CPU time executing prioritized

processes
- cpuSteal: CPU ticks lost to virtualized guests
- contextsw: # of context switches
- loadavg: (avg # proc / 60 secs)

Disk
- dsr: disk sector reads
- dsreads: disk sector reads completed
- drm: merged adjacent disk reads
- readtime: time spent reading from
disk
- dsw: disk sector writes
- dswrites: disk sector writes completed
- dwm: merged adjacent disk writes
- writetime: time spent writing to disk

Network
- nbs: network bytes sent
- nbr: network bytes received

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.21

 Reported by: top, htop , w , uptime , and /proc/loadavg

 Updated every 5 seconds

 Average number of processes using or waiting for the CPU

 Three numbers show exponentially decaying usage
for 1 minute, 5 minutes, and 15 minutes

 One minute average: exponentially decaying average
 Load average = 1 ▪ (avg last minute load) – 1/e ▪ (avg load since boot)

 1.0 = 1-CPU core fully loaded

 2.0 = 2-CPU cores

 3.0 = 3-CPU cores . . .

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.41

LOAD AVERAGE

 Metric – measures degree of parallelism realized by running
system, by calculating average uti lization:

 Ci – fraction of t ime that exactly I threads are executed

 N – maximum threads that can execute at any one time

 Web browsers found to have TLP from 1.5 to 2.5

 Clients for web browsing can uti lize from 2 to 3 CPU cores

 Any more cores are redundant, and potentially wasteful

 Measure TLP to understand how many CPUs to provision

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.42

THREAD-LEVEL PARALLELISM

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.22

 Multiple threads essential for servers in distr ibuted systems

 Even on single-core machines greatly improves per formance

 Take advantage of idle/blocking time

 Two designs:
 Generate new thread for every request

 Thread pool – pre-initialize set of threads to service requests

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.43

MULTITHREADED SERVERS

 Single thread server

 A single thread handles all client requests

 BLOCKS for I/O

 All waiting requests are queued until thread is available

 Finite state machine

 Server has a single thread of execution

 I/O performing asynchronously (non-BLOCKing)

 Server handles other requests while waiting for I/O

 Interrupt fired with I/O completes

 Single thread “jumps” back into context to finish request

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.44

SINGLE THREAD & FSM SERVERS

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.23

 A blocking system call implies that a thread servicing a
request synchronously performs I/O

 The thread BLOCKS to wait on disk/network I/O before
proceeding with request processing

 Consider the implications of these designs for responsiveness,
availabil ity, scalability. . .

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.45

SERVER DESIGN ALTERNATIVES

Model Characteristics
Multithreading Parallelism, blocking I/O

Single-thread No parallelism, blocking I/O

Finite-state machine Parallelism, non-blocking I/O

 Questions from 1/26

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Assignment 1: Key/Value Store

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma
L8.46

OBJECTIVES – 1/28

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.24

CH. 3.2:
VIRTUALIZATION

L8.47

 Init ially introduced in the 1970s
on IBM mainframe computers

 Legacy operating systems run in mainframe-based VMs

 Legacy software could be sustained by vir tualizing legacy OSes

 1970s vir tualization went away as desktop/rack-based
hardware became inexpensive

 Virtualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

 VM-Ware vir tual machines enable companies to host many
virtual servers with mixed OSes on private clusters

 Cloud computing: Amazon offers VMs as-a-service (IaaS)

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.48

VIRTUALIZATION

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.25

 Levels of instructions:

 Hardware: CPU

 Privileged instructions
KERNEL MODE

 General instructions
USER MODE

 Operating system: system calls

 Library: programming APIs: e.g. C/C++,C#, Java libraries

 Application:

 Goal of virtualization:
mimic these interface to provide a vir tual computer

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.49

TYPES OF VIRTUALIZATION

 Process vir tual machine
 Interpret instructions: (interpreters)

(JavaVM) byte code  HW instructions
 Emulate instructions: (emulators)

(Wine) windows code  Linux code

 Native virtual machine monitor (VMM)
 Hypervisor (XEN): small OS with its own kernel
 Provides an interface for multiple guest OSes
 Facilitates sharing/scheduling of

CPU, device I/O among many guests
 Guest OSes require special kernel to interface w/ VMM
 Supports Paravirtualization for performance boost to run code

directly on the CPU
 Type 1 hypervisor

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.50

TYPES OF VIRTUALIZATION - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.26

 Hosted virtual machine monitor (VMM)
 Runs atop of hosted operating system
 Uses host OS facilities for CPU scheduling, I/O
 Full virtualization
 Type 2 hypervisor
 Virtualbox

 Textbook: note 3.5–good explanation of full vs. paravir tualization

 GOAL: run all user mode instructions directly on the CPU
 x86 instruction set has ~17 privileged user mode instructions
 Full virtualization: scan the EXE, insert code around privi leged

instructions to diver t control to the VMM
 Paravirtualization: special OS kernel eliminates side effects of

privileged instructions

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.51

TYPES OF VIRTUALIZATION - 3

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.52

EVOLUTION OF AWS VIRTUALIZATION

Fro m ht t p :// www.brendangregg. co m/b lo g/ 2017 -11 -29/ aws - ec 2- v i r t u a l i zat io n -2017. ht ml

VS:

V i r tual izat ion

In sof tware

P :

Parav ir tual

VH :

V i r tual izat ion

In Hardware

H:

Hardware

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.27

 Ful l V ir tualization - Ful ly Emulated
 Never used on EC2, before CPU extensions for virtualization
 Can boot any unmodified OS
 Support via slow emulation, performance 2x-10x slower

 Paravirtualization: Xen PV 3.0
 Software: Interrupts, timers
 Paravirtual: CPU, Network I/O, Local+Network Storage
 Requires special OS kernels, interfaces with hypervisor for I/O
 Performance 1.1x – 1.5x slower than “bare metal”
 Instance store instances: 1ST & 2nd generation- m1.large, m2.xlarge

 Xen HVM 3.0
 Hardware virtualization: CPU, memory (CPU VT-x required)
 Paravirtual: network, storage
 Software: interrupts, timers
 EBS backed instances
 m1, c1 instances

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.53

AWS VIRTUALIZATION - 2

 XEN HVM 4.0.1
 Hardware virtualization: CPU, memory (CPU VT-x required)
 Paravirtual: network, storage, interrupts, timers

 XEN AWS 2013 (diverges from opensource XEN)
 Provides hardware virtualization for CPU, memory, network
 Paravirtual: storage, interrupts, timers
 Called Single root I/O Virtualization (SR-IOV)
 Allows sharing single physical PCI Express device (i.e. network adapter)

with multiple VMs
 Improves VM network performance
 3rd & 4th generation instances (c3 family)
 Network speeds up to 10 Gbps and 25 Gbps

 XEN AWS 2017
 Provides hardware virtualization for CPU, memory, network, local disk
 Paravirtual: remote storage, interrupts, timers
 Introduces hardware virtualization for EBS volumes (c4 instances)
 Instance storage hardware virtualization (x1.32xlarge, i3 family)

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.54

AWS VIRTUALIZATION - 3

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.28

 AWS Nitro 2017
 Provides hardware virtualization for CPU, memory, network, local

disk, remote disk, interrupts, timers

 All aspects of virtualization enhanced with HW-level support

 November 2017

 Goal: provide performance indistinguishable from “bare metal”

 5th generation instances – c5 instances (also c5d, c5n)

 Based on KVM hypervisor

 Overhead around ~1%

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.55

AWS VIRTUALIZATION - 4

 Questions from 1/26

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Assignment 1: Key/Value Store

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma
L8.56

OBJECTIVES – 1/28

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.29

CH. 3.3: CLIENTS

L8.57

 Thick clients
Web browsers
 Client-side scripting

Mobile apps

Multi-tier MVC apps

 Thin clients
Remote desktops/GUIs (very thin)

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.58

TYPES OF CLIENTS

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.30

 Application specific protocol
 Thick clients

 Clients maintain local data

 Middleware (APIs)

 Clients synchronize data with remote nodes

 Example: shared calendar application

 Application independent
 Thin clients

 Client acts as a remote terminal

 Provides interface to user (GUI / UI)

 Server houses entire application stack

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.59

CLIENTS

 Layered architecture to transport UI over network

 Remote desktop functionality for Linux/Unix systems

 X kernel acts as a server

 Provides the X protocol: application level protocol

 Xlib instances (client applications) exchange data and
events with X kernels (servers)

 Clients and servers on single machine  Linux GUI

 Client and server communication transported over the
network  remote Linux GUI

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.60

X WINDOWS

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.31

 Window manager:

 Application running
atop of X-windows
which provides flair

 Many variants

 Without X windows is
quite bland

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.61

X WINDOWS - 2

January 28, 2021
TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma L8.62

 Layered architecture

 X-kernel: low level
interface/APIs for
controlling screen,
capturing keyboard
and mouse events
(X window Server)

 Provided on Linux
as Xlib

 Provides network
enabled GUI

 Layering allows for
use for custom
window managers

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.32

 How to Install VNC server on Ubuntu EC2 instance VM:
 sudo apt-get update

 # ubuntu 16.04
 sudo apt-get install ubuntu-desktop
 sudo apt-get install gnome-panel gnome-settings-
daemon metacity nautilus gnome-terminal

 # on ubuntu 18.04
 sudo apt install xfce4 xfce4-goodies

 sudo apt-get install tightvncserver # both

 Start VNC server to create initial config file
 vncserver :1

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.63

EXAMPLE: VNC SERVER

 On the VM: edit config file: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 16.04):

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.64

EXAMPLE: VNC SERVER – UBUNTU 16.04

#!/bin/sh

export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &
nautilus &
gnome-terminal &

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.33

 On the VM:
 Edit config fi le: nano ~/.vnc/xstartup

 Replace contents as below (Ubuntu 18.04):

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.65

EXAMPLE: VNC SERVER – UBUNTU 18.04

#!/bin/bash
xrdb $HOME/.Xresources
startxfce4 &

 On the VM: reload config by restarting server
 vncserver -kill :1

 vncserver :1

 Open port 22 & 5901 in EC2 security group:

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.66

EXAMPLE: VNC SERVER - 3

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.34

 On the client (e.g. laptop):

 Create SSH connection to securely forward port 5901 on the
EC2 instance to your localhost port 5901

 This way your VNC client doesn’t need an SSH key

ssh –i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
-f -l <username> <EC2-instance ip_address>

 For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
l ubuntu 52.111.202.44

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.67

EXAMPLE: VNC CLIENT

 On the client (e.g. laptop):

 Use a VNC Client to connect

 Remmina is provided by default on Ubuntu 16.04

 Can “google” for many others

 Remmina login:

 Chose “VNC” protocol

 Log into “localhost:5901”

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.68

EXAMPLE: VNC CLIENT - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.35

 EC2 instance
with a GUI. . .!!!

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.69

REMOTE COMPUTER IN THE CLOUD

 Thin clients
 X windows protocol

 A variety of other remote desktop protocols exist:

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.70

THIN CLIENTS

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.36

 Applications should separate application logic from UI

 When application logic and UI interaction are tightly coupled
many requests get sent to X kernel

 Client must wait for response

 Synchronous behavior and app-to-UI coupling adverselt affects
performance of WAN / Internet

 Protocol optimizations: reduce bandwidth by shrinking size of
X protocol messages

 Send only differences between messages with same identifier

 Optimizations enable connections with 9600 kbps

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.71

THIN CLIENTS - 2

 Virtual network computing (VNC)

 Send display over the network at the pixel level
(instead of X l ib events)

 Reduce pixel encodings to save bandwidth – fewer colors

 Pixel-based approaches loose application semantics

 Can transport any GUI this way

 THINC- hybrid approach

 Send video device driver commands over network

 More powerful than pixel based operations

 Less powerful compared to protocols such as X

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.72

THIN CLIENTS - 3

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.37

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.73

TRADEOFFS: ABSTRACTION OF REMOTE
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.74

TRADEOFFS: ABSTRACTION OF REMOTE
DISPLAY PROTOCOLS

 Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics l ib
VNC X11

● Generic – no app context ● Application context
● Graphics data is available
● Higher network bandwidth ● UI data/operations
● Fewer colors ● Lower network bandwidth
● Util ize graphics compression ● More colors
● More network traffic

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.38

 Clients help enable distribution transparency of servers

 Replication transparency
 Client aggregates responses from multiple servers

 Only the client knows of replicas

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.75

CLIENT ROLES IN PROVIDING
DISTRIBUTION TRANSPARENCY

 Location/relocation/migration transparency
 Harness convenient naming system to allow client to infer new

locations

 Server inform client of moves / Client reconnects to new endpoint

 Client hides network address of server, and reconnects as needed

 May involve temporary loss in performance

 Replication transparency
 Client aggregates responses from multiple servers

 Failure transparency
 Client retries, or maps to another server, or uses cached data

 Concurrency transparency
 Transaction servers abstract coordination of multithreading

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.76

CLIENT ROLES IN PROVIDING
DISTRIBUTION TRANSPARENCY - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.39

 Questions from 1/26

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Assignment 1: Key/Value Store

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization

 Chapter 3.3: Clients

 Chapter 3.4: Servers
January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma
L8.77

OBJECTIVES – 1/28

CH. 3.4: SERVERS

L8.78

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.40

 Cloud & Distributed Systems – rely on Linux

 http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any -questions/

 IT is moving to the cloud. And, what powers the cloud?

Linux
 Uptime Institute survey - 1 ,000 IT executives (2016)
 50% of IT executives – plan to migrate majority of IT workloads to

off-premise to cloud or colocation sites

 23% expect the shift in 2017, 70% by 2020…

 Docker on Windows / Mac OS X

 Based on Linux
 Mac: Hyperkit Linux VM

 Windows: Hyper-V Linux VM
January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma
L8.79

SERVERS

 Servers implement a specific service for a collection of cl ients

 Servers wait for incoming requests, and respond accordingly

 Server types

 I terative: immediately handle cl ient requests

 Concurrent: Pass cl ient request to separate thread

 Multithreaded servers are concurrent servers
 E.g. Apache Tomcat

 Alternative : fork a new process for each incoming request

 Hybrid : mix the use of multiple processes with thread pools

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.80

SERVERS - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.41

 Clients connect to servers via:
IP Address and Port Number

 How do ports get assigned?

Many protocols support “default” port numbers

 Client must find IP address(es) of servers

 A single server often hosts multiple end points
(servers/services)

When designing new TCP client/servers must be careful
not to repurpose ports already commonly used by others

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.81

END POINTS

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.82

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.42

Daemon server
 Example: NTP server

Superserver

Stateless server
 Example: Apache server

Stateful server

Object servers

EJB servers

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.83

TYPES OF SERVERS

 Daemon servers

 Run locally on Linux

 Track current server end points (outside servers)

 Example: network time protocol (ntp) daemon
 Listen locally on specific port (ntp is 123)

 Daemons routes local client traffic to the configured
endpoint servers

 University of Washington: time.u.washington.edu
 Example “ntpq –p”

 Queries local ntp daemon, routes traffic to configured server(s)

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.84

NTP EXAMPLE

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.43

 Linux inetd / xinetd
 Single superserver
 Extended internet service daemon
 Not installed by default on Ubuntu
 Intended for use on server machines
 Used to configure box as a server for multiple internet services
 E.g. ftp, pop, telnet

 inetd daemon responds to multiple endpoints for multiple
services
 Requests fork a process to run required executable program

 Check what ports you’re listening on:
 sudo netstat -tap | grep LISTEN

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.85

SUPERSERVER

 Server design issue:
 Active client/server communication is taking place over a port

 How can the server / data transfer protocol support interruption?

 Consider transferring a 1 GB image, how do you pass a
unrelated message in this stream?

1. Out-of-band data: special messages sent in-stream to support
interrupting the server (TCP urgent data)

2. Use a separate connection (different port) for admin control info

 Example: sftp secure file transfer protocol
 Once a file transfer is started, can’t be stopped easily

 Must kill the client and/or server

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.86

INTERRUPTING A SERVER

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.44

 Data about state of cl ients is not stored

 Example: web application servers are typically stateless
 Also function-as-a-service (FaaS) platforms

 Many servers maintain information on clients (e.g. log files)

 Loss of stateless data doesn’t disrupt server availability
 Loosing log files typically has minimal consequences

 Soft state: server maintains state on the client for a limited
time (to support sessions)

 Soft state information expires and is deleted

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.87

STATELESS SERVERS

 Maintain persistent information about clients

 Information must be explicitly deleted by the server

 Example:
File server - al lows clients to keep local fi le copies for RW

 Server tracks client fi le permissions and most recent versions
 Table of (client, file) entries

 If server crashes data must be recovered

 Entire state before a crash must be restored

 Fault tolerance - Ch. 8

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.88

STATEFUL SERVERS

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.45

 Session state
 Tracks series of operations by a single user

 Maintained temporarily, not indefinitely

 Often retained for multi-tier client server applications

 Minimal consequence if session state is lost

 Clients must start over, reinitialize sessions

 Permanent state
 Customer information, software keys

 Client-side cookies
 When servers don’t maintain client state, clients can store state

locally in “cookies”

 Cookies are not executable, simply client-side data

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.89

STATEFUL SERVERS - 2

 OBJECTIVE: Host objects and enable remote client access
 Do not provide a specific service

 Do nothing if there are no objects to host
 Suppor t adding/removing hosted objects
 Provide a home where objects l ive
 Objects, themselves , provide “services”

 Object par ts
 State data
 Code (methods, etc.)

 Transient object(s)
 Objects with limited lifetime (< server)
 Created at first invocation, destroyed when no longer used

(i.e. no clients remain “bound”).
 Disadvantage: initialization may be expensive
 Alternative: preinitialize and retain objects on server start-up

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.90

OBJECT SERVERS

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.46

 Should object servers isolate memory for object instances?
 Share neither code nor data
 May be necessary if objects couple data and implementation

 Object server threading designs:
 Single thread of control for object server
 One thread for each object
 Servers use separate thread for client requests

 Threads created on demand vs.
Server maintains pool of threads

 What are the tradeoffs for creating server threads on demand vs.
using a thread pool?

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.91

OBJECT SERVERS - 2

 EJB- specialized Java object hosted by a EJB web container
 4 types: stateless, stateful, entity, and message-driven beans
 Provides “middleware” standard (framework) for implementing

back-ends of enterpr ise applications
 EJB web application containers integrate suppor t for:

 Transaction processing
 Persistence
 Concurrency
 Event-driven programming
 Asynchronous method invocation
 Job scheduling
 Naming and discovery services (JNDI)
 Interprocess communication
 Security
 Software component deployment to an application server

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.92

EJB – ENTERPRISE JAVA BEANS

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.47

 Highly configurable, extensible, platform independent

 Supports TCP HTTP protocol communication

 Uses hooks – placeholders for group of functions

 Requests processed in phases by hooks

 Many hooks:
 Translate a URL

 Write info to log

 Check client ID

 Check access rights

 Hooks processed in order
enforcing flow-of-control

 Functions in replaceable
modules

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.93

APACHE WEB SERVER

Hooks point to functions in modules

 Hosted across an LAN or WAN

 Collection of interconnected machines

 Can be organized in tiers:
 Web server  app server  DB server

 App and DB server sometimes integrated

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.94

SERVER CLUSTERS

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.48

 Front end of three tier architecture (logical switch) provides
distribution transparency – hides multiple servers

 Transport-layer switches: switch accepts TCP connection
requests, hands off to a server
 Example: hardware load balancer (F5 networks – Seattle)

 HW Load balancer - OSI layers 4-7

 Network-address-translation (NAT) approach:
 All requests pass through switch

 Switch sits in the middle of the client/server TCP connection

 Maps (rewrites) source and destination addresses

 Connection hand-off approach:
 TCP Handoff: switch hands of connection to a selected server

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.95

LAN REQUEST DISPATCHING

 Who is the best server to handle the request?

 Switch plays important role in
distributing requests

 Implements load balancing

 Round-robin – routes client
requests to servers in a looping
fashion

 Transport-level – route client
requests based on TCP port number

 Content-aware request distribution – route requests based on
inspecting data payload and determining which server node
should process the request

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.96

LAN REQUEST DISPATCHING - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.49

 Deployed across the internet

 Leverage resource/infrastructure from Internet Service
Providers (ISPs)

 Cloud computing simplifies building WAN clusters

 Resource from a single cloud provider can be combined to
form a cluster

 For deploying a cloud-based cluster (WAN), what are the
implications of deploying nodes to:

 (1) a single availability zone (e.g. us-east-1e)?

 (2) across multiple availability zones?

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.97

WIDE AREA CLUSTERS

 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System
 Hierarchical decentralized naming system

 Linux: find your DNS servers:

Find you device name of interest

nmcli dev

Show device configuration

nmcli device show <device name>

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.98

WAN REQUEST DISPATCHING

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.50

 First query local server(s) for address

 Typically there are (2) local DNS servers
 One is backup

 Hostname may be cached at local DNS server
 E.g. www.google.com

 If not found, local DNS server routes to other servers

 Routing based on components of the hostname

 DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

 Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.99

DNS LOOKUP

January 28, 2021
TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma L8.100

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.51

 nslookup <ip addr / hostname>

 Name server lookup – translates hostname or IP to the inverse

 traceroute <ip addr / hostname>

 Traces network path to destination

 By default, output is l imited to 30 hops, can be increased

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.101

DNS: LINUX COMMANDS

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.102

DNS EXAMPLE – WAN DISPATCHING

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 28, 2021

Slides by Wes J. Lloyd L8.52

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.103

DNS EXAMPLE – WAN DISPATCHING

Latency to ping VA server in WA: ~3.63x
WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x
VA client: local-google 1.278ms to WA-google 62.349!

QUESTIONS

January 28, 2021
TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma L8.104

