TCSS 558: Applied Distributed Computing January 28, 2021
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

TCSS 558:
OBJECTIVES - 1/28

APPLIED DISTRIBUTED COMPUTING
| |

| = Questions from 1/26 |
:E:: ﬁ = Assignment 0: Cloud Computing Infrastructure Tutorial
Processes: - ”“’ = New testFibService.sh script
Threads & Virtualization, = Assignment 1: Key/Value Store
Clients & Servers w[mw M = Chapter 3: Processes
." = Chapter 3.1: Threads
Wes J. Lloyd

School of Engi ing Context Switches
chool of Engineerin .
& Technology (SET) Threading Models

University of Washington - Tacoma ‘ Multithreaded clients/servers
= Chapter 3.2: Virtualization

= Chapter 3.3: Clients

= Chapter 3.4: Servers

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021] ‘ 52 ‘

School of Engineering and Technology, University of Washington - Tacoma

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan 6 at 10pm Points 1 Questions 4
ONLINE DAILY FEEDBACK SURVEY Available Jan 5 at 1:30pm - Jan 6 at 11:59pm 14sy Time Limit None
[Question1 05 pts
" Dally Feedback QUIZ in Canvas - Available After Each Class On a scale of 1 to 10, please classify your perspective on material covered in today's
= Extra credit available for completing surveys ON TIME chest
= Tuesday surveys: due by ~ Wed @ 10p 12 3 4 s 6 7 8 s 10
= Thursday surveys: due ~ Mon @ 10p Gt rene e 2 e You to Mo

= TCSS558A > Assignments

Winter 2021

Home
| Question2 05pts
Announcements
~ Upcoming Assignments Please rate the pace of today’s class:
Ztom 5 TCSS 558 - Online Daily Feedback Survey - 1/5 1 2 3 5 o Y U U o £
Ehat Not available untlJan 5 at 1:30pm | Due Jan 6 at 10pm | -/4pts st ot Rt o
TCSS558; Applied Distributed Computing [Wln(er 2021 TCSS558: Applied Distributed Computi
January 28, 2021 : 183 Applied Distributed Computing [Winter 2021]
5 ‘ School of Technology, Tacoma TR b School of Engineering and Technology, University of Washington - Tacoma L84

MATERIAL / PACE FEEDBACK FROM 1/26
. . . . s = The hybrid architecture remains the least clear to me.
 FLCRID BT YOI AR G Il GOt L B = A hybrld architecture combines more than one architecture:
class (22 respondents): Hiore tdh one .
= 1-mostly review, 5-equal new/review, 10-mostly new = EDGE COMPUTING EXAMPLE:
. H Cloud d:
= Average - 7.29 (1 - previous 6.73) " W °"ce“":zs §§§¥
-tO-| D [i
= Please rate the pace of today’s class: ::er t;) e |memea B
. . = Edg R
= 1-slow, 5-just right, 10-fast Cenfraleigzr e Ielzfnel‘r)\g
= Average - 5.81 (T - previous 5.50) TS 0 MR " E A EdgeE ii?
= Cloud data center: [server & ’e"’: =l
Heterogeneous ~ s
virtual machines:) D D End devices
Structured peer-to-peer 3?: -
learning
January 28, 2021 TC:SS[SS'Applved Dvs(rlbuledcﬁ?‘rcr‘\lz;;mg[an(erZOu]) o ‘ s ‘ January 28, 2021 If:sslsi. Applied Dlslnbu(.?edcﬁt:‘r;\lzz‘(;nglI[lelr\t"Er2?21] _ o ‘ 56 ‘

Slides by Wes J. Lloyd L8.1

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

FEEDBACK - 2

= Furthermore, | am wondering about the difference between
unstructured and structured peer to peer system.

= Structured peer-to-peer:
Features deterministic message routes and routing times
More rigid, changes require reconfiguration
= Dependable messaging

= Unstructured peer-to-peer:
Message routes need to be discovered
Topology is constantly changing
Changes are discovered on-the-fly
= Common with wireless systems where devices have unreliable
networks and power sources
= Best effort messaging

TCS5558: Applied Distributed Computing [Winter 2021]

L 2, P AT e v s s o T T T T

‘ &7 ‘

January 28, 2021

FEEDBACK - 3

= For Dynamic Topology - Chord System, how is the shortest
path O(log N)? (N is the number of nodes)

= Chord provides an alternative to implement a DHT but
without a fixed size such as with the four-dimensional
hypercube

= Each node keeps a finger table containing m entries

=m is the number of bits in the hash key
= A query is sent to an arbitrary node
= The node will look up the hash k in the finger table
= The finger table identifies the node to send the query to

= Nodes in the chord system are responsible for
maintaining up-to-date finger tables

TCSS558: Applied Distributed Computing [Winter 2021]
YA, A R e e o R P T =

HOW TO COMPUTE FINGER TABLE (FT)

= jth entry in ft at peer with id n is first node >= (n+2‘)(m%d 2m)
n

= For our example hash has 4 bits (m=4) 3
= Consider that we have 5 nodes n

= Let’s compute the finger table for n3

= Everytime a node wants to lookup a key it will ~ n10 né

pass the query to the first node which is the closest successor
or predecessor (going clockwise) of k in it’s finger table
" N3
i ft[i
4 né (3+2%(mod 24) hash i=0
5 n6é (3+21)(mod 24) hash I=1
7 n10 (3+22)(mod 24) hash i=2
11 n13 (3+23)(mod 24) hash i=3

TCS5558: Applied Distributed Computing [Winter 2021]

L 2, P e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms

‘ o ‘

5-NODE CHORD SYSTEM

= Consider a 5 node Chord system with a 4-bit hash

= A query is sent to an arbitrary node _/—ﬁ
Tinger table
start] node

()

finger table

start] node|

T e “le]
[N s

(. 70

- . Wl

finger table
start] node|

2 |
FR
810

Tinger table
start| node

finger table

TCSS558: Applied Distributed Computing [Winter 2021]

YA ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

1810

TO FIND THE DATA

= To lookup a item with hash key k, the node will pass the query
to the closest successor or predecessor of k in the finger table
(the node with the highest ID in the circle whose ID is smaller
than k)

= |f k=8 and the query first goes to node n3

= Query is passed to node n10

= Data each node is responsible for storing in this 5-node chord:
n0 k={14,15,0}
n3 k={1,2,3}
n6 k= {4,5,6}
n10 k= {7,8,9,10}
n13 k={11,12,13}

= Path to data n3 > n10 (data found) - 1 hop ~ O(log n)

TCS5558: Applied Distributed Computing [Winter 2021]

L 2, P Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

[an]

Slides by Wes J. Lloyd

The Instructor is unavailable for next Tuesday's
class due to a community service commitment

W

with the National Science Foundation. What is
your preference for next Tuesday's class?

Cancel class - NO CLASS ON
TUESDAY Feb 2nd

Reschedule class FOR MONDAY
Feb 1st at 6PM for 2 hours

Reduced class ON MONDAY Feb
1stat 6PM for 1 hour

Reduced class ON FRIDAY Feb
5that 11:30AM for 1 hour

No Preference

L8.2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 1/28

= Questions from 1/26

January 28, 2021

= Asslgnment 0: Cloud Computing Infrastructure Tutorlal
= New testFlbService.sh script

= Assignment 1: Key/Value Store
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCS5558: Applied Distributed Computing [Winter 2021]

L 2, P AT 6 e SR s o T T Sy T = TRy

E

ASSIGNMENT O

= Preparing for Assignment 0:
= Establish AWS Account
Standard account - ** request cloud credIts from Instructor **
= Specify “AWS CREDIT REQUEST" as subject of email
® Include email address of AWS account
AWS Educate Starter account - some account limitations
= https://awseducate-starter-account-services.s3.amazonaws.com/
AWS_Educate_Starter_Account_Services_Supported.pdf
= Establish local Linux/Ubuntu environment
= Task 1 - AWS account setup
= Task 2 - Working w/ Docker, creating Dockerfile for Apache Tomcat
= Task 3 - Creating a Dockerfile for haproxy
= Task 4 - Working with Docker-Machine
= Task 5 - For Submission: Testing Alternate Server Configurations

TCSS558: Applied Distributed Computing [Winter 2021]

YA, A R e e o R P T =

TESTING CONNECTIVITY TO SERVER

= testFibPar.sh script is a parallel test script
= Orchestrates multiple threads on client to invoke server
multiple times in parallel

= To simplify coordinate of parallel service calls in BASH,
testFibPar.sh script ignores errors !!!

= To help test client-to-server connectivity, have created a new
testFibService.sh script

= TEST 1: Network layer

= Ping (ICMP)
= TEST 2: Transport layer

= TCP: telnet (TCP Port 8080) - security group (firewall) test
= TEST 3: Application layer

= HTTP REST - web service test

TCS5558: Applied Distributed Computing [Winter 2021]

L 2, P e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms

[

OBJECTIVES - 1/28

= Questions from 1/26

= Assignment 0: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

| = Asslgnment 1: Key/Value Store |
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCS5558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2021 ‘ 1816 ‘

ASSIGNMENT 1

= TCP/UDP/RMI Key Value Store

= Implement a “GenericNode” project which assumes the role of
a client or server for a Key/Value Store

= Recommended in Java (11 or 8)

= Client node program interacts with server node to put, get,
delete, or list items in a key/value store

TCS5558: Applied Distributed Computing [Winter 2021]

L 2, P Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

E

Slides by Wes J. Lloyd

OBJECTIVES - 1/28

= Questions from 1/26

= Assignment 0: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= Assignment 1: Key/Value Store
| = Chapter 3: Processes |
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCS5558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

January 28, 2021 ‘ 1818 ‘

L8.3

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

January 28, 2021

=)

=)
asE
aE=

Scale
(running processes)

Workioad diversity
ess.

CH. 3: PROCESSES
CH. 3.1: THREADS

CHAPTER 3

= Chapter 3 titled “processes”

= Covers variety of distributed system implementation
details

= “Grab bag” of topics

= Processes/threads
= Virtualization

= Clients

= Servers

= Code migration

TCS5558: Applied Distributed Computing [Winter 2021]

School of Technology, University Tacoma ‘ 1820 ‘

January 28, 2021

OBJECTIVES - 1/28

= Questions from 1/26
= Assignment 0: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= Assignment 1: Key/Value Store
= Chapter 3: Processes
|_= Chapter 3.1: Threads |
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineeri chnology, University i - Tacoma

January 28, 2021

CH. 3.1 - THREADS |

= For implementing a server (or client) threads offer many
advantages vs. heavy weight processes

= What Is the difference between a process and a thread?

= (review?) from Operating Systems

= Key difference: what do threads share amongst each other
that processes do not.... ?

= What are the segments of a program stored In memory?

= Heap segment (dynamic shared memory)

= Code segment
= Stack segment
= Data segment (global variables)

TCS5558: Applied Distributed Computing [Winter 2021]

School of Technology, University of Tacoma ‘ e ‘

January 28, 2021

= Do several processes on an operating system share...
= Heap segment?
= Stack segment?
= Code segment?

= Can we run multiple copies of the same code?
= These may be managed as shared pages (across processes) in
memory

= Processes are isolated from each other by the 0S
= Each has a separate heap, stack, code segment

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y Tacoma

= Threads avoid the overhead of process creation
= No new heap or code segments required

= What Is a context switch?

= Context switching among threads is considered to be more
efficient than context switching processes

= Less elements to swap-in and swap-out

= Unikernel: specialized single process OS for the cloud

= Example: Osv, Clive, MirageOS (see: http://unikernel.org,)
= Single process operating system with many threads

= Developed for the cloud to run only one application at a time

TCS5558: Applied Distributed Computing [Winter 2021]

LT Schoolof echnoloayUniversityof Tacoma

Slides by Wes J. Lloyd

L8.4

TCSS 558: Applied Distributed Computing January 28, 2021
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

OSV: ONE PROCESS, MANY THREADS THREADS - 4

= Important implications with threads:
= (1) multi-threading should lead to performance gains

= (2) thread programming requires additional effort when
threads share memory

= Known as thread synchronlzatlon, or enabling concurrency

Threads

= Access to critical sections of code which modify shared
variables must be mutually exclusive
= No more than one thread can execute at any given time
= Critical sections must run atomlcally on the CPU

TC55558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2021]

January 28, 2021 School of Engineering and Technology, University of Washington - Tacoma

‘ 1825 ‘ January 28, 2021 ‘ 1826 ‘

BLOCKING THREADS INTERPROCESS COMMUNICATION
= Example: spreadsheet with formula to compute sum of column = |[PC - mechanism using pipes, message queues, and shared
= User modifies values in column memory segments
= |[PC mechanisms incur context switching
= Multiple threads: = Process I/0 must execute in kernel mode
1. Supports interaction (Ul) activity with user = How many context switches are requlired for process A to

send a message to process B using IPC?

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk Process A Process B
= #1C/S:
. Proc A>kernel thread | ———
= Single core CPU O tokemel space l S3: Switch from kemel
= Tasks appear as if they are performed simultaneously #2 C/S: e ,i i space to user space
= Multi core CPU Kernel thread>Proc B OP""""“QSVS‘E'“.\
= Tasks execute simultaneously . &

TC55558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2021]

January 28, 2021 School of Engineering and Technology, University of Washington - Tacoma

‘ 1827 ‘ January 28, 2021 ‘ 18.28 ‘

OBJECTIVES - 1/28 CONTEXT SWITCHING

= Questions from 1/26 = Direct overhead
= Assignment 0: Cloud Computing Infrastructure Tutorial = Time spent not executing program code (user or kernel)

= New testFibService.sh script = Time spent executing interrupt routines to swap memory segments
of different processes (or threads) in the CPU

[H .
Assignment 1 Key/Value Store = Stack, code, heap, registers, code pointers, stack pointers

= Chapter 3: Processes = Memory page cache invalidation
= Chapter 3.1: Threads
| Context Swlitches | = Indirect overhead
Threading Models = Overhead not directly attributed to the physical actions of the

context switch

= Captures performance degradation related to the side effects of
context switching (e.g. rewriting of memory caches, etc.)

= Primarily cache perturbation

Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

TCS$558: Applied Distributed Computing [Winter 2021]

January 28, 2021 School of Engineering and Technology, University of Washington - Tacoma

‘ 1829 ‘ January 28, 2021 ‘ 1830 ‘

Slides by Wes J. Lloyd L8.5

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

CONTEXT SWITCH -

CACHE PERTURBATION

= Refers to cache reorganization that occurs as a result of a
context switch

= Cache is not clear, but elements from cache are removed as a
result of another program running in the CPU

= 80% performance overhead from context switching results
from this “cache perturbation”

January 28, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineeri chnology, University i Tacoma

January 28, 2021

OBJECTIVES - 1/28

= Questions from 1/26
= Assignment 0: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script
= Assignment 1: Key/Value Store
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches

Threading Models |

Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

TCS5558: Applied Distributed Computing [Winter 2021]

YA, Sehoalor T TRy e

THREADING MODELS

= Many-to-one threadlng: multiple user-level threads per process
= Thread operations (create, delete, locks) run in user mode

= Multithreaded process mapped to single schedulable entity

= Only run thread per process runs at any given time

= Key take-away: thread management handled by user processes

= What are some advantages of many-to-one threading?

= What are some dlsadvantages?

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y Tacoma

THREADING MODELS - 2

= One-to-one threading: use of separate kernel threads for each
user process - also called kernel-level threads

= The kernel API calls (e.g. I/0, locking) are farmed out to an
existing kernel level thread

= Thread operations (create, delete, locks) run in kernel mode
= Threads scheduled individually by the 0S

= System calls required, context switches as expensive as
process context switching

= |dea is to have preinitialized kernel threads for user processes
= Linux uses this model...

= What are some advantages of one-to-one threading?

= What are some dlsadvantages?

TCsS558: Applied Distributed Computing [Winter 2021]
YA Sehosl of Engineerns and Technoleay)University or Washi Tecoma 834

APPLICATION EXAMPLES

= Google chrome: processes
= Apache tomcat webserver: threads

= Multiprocess programming avoids synchronization of
concurrent access to shared data, by providing coordination
and data sharing via interprocess communication (IPC)

= Each process maintains its own private memory

= While this approach avoids synchronizing concurrent access to
shared memory, what is the tradeoff(s) ??

= Replication instead of synchronization - must synchronize multiple
copies of the data

= Do distributed objects share memory?

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

1835
chnology, y Tacoma ‘ ‘

Slides by Wes J. Lloyd

WE WILL RETURN AT

2:46PM

L8.6

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

OBJECTIVES - 1/28

= Questions from 1/26
= Assignment 0: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script
= Assignment 1: Key/Value Store
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models

Multithreaded clients/servers |

= Chapter 3.2: Virtualization
= Chapter 3.3: Clients
= Chapter 3.4: Servers

January 28, 2021

January 28, 2021 TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 837

MULTITHREADED CLIENTS

= Web browser

= Uses threads to load and render portions of a web page to the
user in parallel

= A client could have dozens of concurrent connections all
loading in parallel

= testFibPar.sh
= Assignment O client script (GNU parallel)

= Important benefits:
= Several connections can be opened simultaneously

= Client: dozens of concurrent connections to the webserver all
loading data in parallel

TCSS558: Applied Distributed Computing [Winter 2021]

YA, A R e e o R P T =

MULTIPLE THREADS

= |n Linux, threads also receive a process ID (PID)
= To display threads of a process in Linux:

= |dentify parent process explicitly:
= top -H -p <pid>
= htop -p <pid>

= ps -iT <pid>

= Virtualbox process ~ 44 threads
= No mapping to guest # of processes/threads

TCSS558: Applied Distributed Computing [Winter 2021]
L 2, P SehooloiEr sineers K holomUnnersty f Tacoms

PROCESS METRICS

CPU

-cpuUsr: CPU time in user mode - dsw: disk sector writes

-cpuKrn: CPU time in kernel mode - dswrites: disk sector writes completed

-cpuldle: CPU idle time - dwm: merged adjacent disk writes

- cpuloWait: CPU time waiting for I/0 - writetime: time spent writing to disk

- cpulntSrvc:CPU time serving interrupts

- cpuSftintSrvc: CPU time serving soft interrupts M

-cpuNice: CPU time executing prioritized - nbs: network bytes sent
processes - nbr: network bytes received

- cpuSteal: CPU ticks lost to virtualized guests

- contextsw: # of context switches

-loadavg: (avg # proc / 60 secs)

LOAD AVERAGE

= Reported by: top, htop, w, uptime, and /proc/loadavg
= Updated every 5 seconds
= Average number of processes using or waiting for the CPU
= Three numbers show exponentially decaying usage
for 1 minute, 5 minutes, and 15 minutes
= One minute average: exponentially decaying average
= Load average = 1 = (avg last minute load) — 1/e = (avg load since boot)

= 1.0 = 1-CPU core fully loaded
= 2.0 = 2-CPU cores
= 3.0 = 3-CPU cores . . .

TCSS558: Applied Distributed Computing [Winter 2021]
L 2, P Sehoo[ofErsineers K holosyUniersity q Tacoma

Slides by Wes J. Lloyd

THREAD-LEVEL PARALLELISM

= Metric - measures degree of parallelism realized by running
system, by calculating average utilization:

N »
Zizl 1-Cj

— ¢

TLP =

= Ci - fraction of time that exactly | threads are executed

= N - maximum threads that can execute at any one time

= Web browsers found to have TLP from 1.5 to 2.5

= Clients for web browsing can utilize from 2 to 3 CPU cores
= Any more cores are redundant, and potentially wasteful

= Measure TLP to understand how many CPUs to provision

TCSS558: Applied Distributed Computing [Winter 2021]

LT Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

L8.7

TCSS 558: Applied Distributed Computing January 28, 2021
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

MULTITHREADED SERVERS SINGLE THREAD & FSM SERVERS

= Multiple threads essential for servers in distributed systems = Single thread server
= Even on single-core machines greatly improves performance
= Take advantage of idle/blocking time
= Two designs:

= Generate new thread for every request

= A single thread handles all client requests
= BLOCKS for I/0
= All waiting requests are queued until thread is available

= Thread pool - pre-initialize set of threads to service requests = Finite state machine

Dispatcher hread e R - =Server has a single thread of execution

=1/0 performing asynchronously (non-BLOCKing)
=Server handles other requests while waiting for I/0

—
LOLr

[Request coming in = Interrupt fired with /0 completes
from the network —f—{—
Operating system =Single thread “jumps” back into context to finish request
0 e st wngon s EX 20 oS ot wphngon ams EX

SERVER DESIGN ALTERNATIVES OBJECTIVES - 1/28
= A blocking system call implies that a thread servicing a * Questions from 1/26
request synchronously performs I/0 = Assignment 0: Cloud Computing Infrastructure Tutorial
= The thread BLOCKS to wait on disk/network |/0 before = New testFibService.sh script

proceeding with request processing = Assignment 1: Key/Value Store

= Chapter 3: Processes
= Consider the implications of these designs for responsiveness, p

availability, scalability. . . - e S MERES
. Context Switches
m Characteristics Threading Models
Multithreading Parallelism, blocking 1/0 Multithreaded clients/servers
Single-thread No parallelism, blocking /0 |_= Chapter 3.2: Virtuallzatlon]
Finite-state machine Parallelism, non-blocking 1/0 = Chapter 3.3: Clients
= Chapter 3.4: Servers
a1 e e o T B3 [e e o - s [e]

VIRTUALIZATION

= |nitially introduced in the 1970s
on IBM mainframe computers

= Legacy operating systems run in mainframe-based VMs
= Legacy software could be sustained by virtualizing legacy OSes
CH . 3_2: = 1970s virtualization went away as desktop/rack-based

VI RTUALIZATION hardware became inexpensive

= Virtualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

= VM-Ware virtual machines enable companies to host many
virtual servers with mixed OSes on private clusters

= Cloud computing: Amazon offers VMs as-a-service (laa$S)

TCsS558: Applied Distributed Computing [Winter 2021]
LT Sehodl of Engineerng and Technolosy University o Washi Tacoma

[e]

Slides by Wes J. Lloyd L8.8

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

January 28, 2021

TYPES OF VIRTUALIZATION

= Levels of Instructlons: Liraryfunctions __| APPication

= Hardware: CPU System calls

= Privileged instructions Privileged Operating system General

KERNEL MODE

= General instructions
USER MODE

= Operating system: system calls
= Library: programming APls: e.g. C/C++,C#, Java libraries

= Applicatlon:

= Goal of virtuallzation:
mimic these interface to provide a virtual computer

TCS5558: Applied Distributed Computing [Winter 2021]

L 2, P AT e v s s o T T T T

X

TYPES OF VIRTUALIZATION - 2

Application/Libraries

= Process virtual machine : I

= Interpret instructions: (interpreters) i sysen
(JavaVM) byte code > HW instructions y—
perating system
= Emulate instructions: (emulators) I ass
(Wine) windows code - Linux code Honlyme

= Native virtual machine monitor (VMM)
= Hypervisor (XEN): small OS with its own kernel
= Provides an interface for multiple guest OSes Opskating systen

Application/Libraries

= Facilitates sharing/scheduling of Vitual machine monitor

CPU, device I/0 among many guests T IT T

= Guest OSes require special kernel to interface w/ VMM | "

= Supports Paravlrtuallzatlon for performance boost to run code
directly on the CPU

= Type 1 hypervisor

TCSS558: Applied Distributed Computing [Winter 2021]

YA, A R e e o R P T =

TYPES OF VIRTUALIZATION - 3

= Hosted virtual machine monitor (VMM Aqghostoclizecies
= Runs atop of hosted operating system Operating system

T i —

= Uses host OS facilities for CPU scheduling, I/0
= Full virtualization
= Type 2 hypervisor
* Virtualbox Hardware

Virtual machine monitor

Operating system
: T T

= Textbook: note 3.5-good explanation of full vs. paravirtualization

= GOAL: run all user mode instructions directly on the CPU

= x86 instruction set has ~17 privileged user mode instructions

= Full virtualization: scan the EXE, insert code around privileged
instructions to divert control to the VMM

= Paravirtualization: special OS kernel eliminates side effects of
privileged instructions

TCS5558: Applied Distributed Computing [Winter 2021]

L 2, P e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms

El

EVOLUTION OF AWS VIRTUALIZATION

AWS EC2 Virtualization Types

Vs: Importance
Virtuallzation D Mos! ——————»- Least
In software Nearmatal perormance B N AR
Optimized performance % 4‘%* <) °“‘,’ %‘%’%‘#
o PUm——— %, NN
= AR
Paravirtual IR TV i
T VM | Fuly Emuiated
VH: od (2| vm Xen PV 3.0 PV drivers.
Virt 3| Xen HVM 3.0 PV drivers
4| V™ Xen HVYM 4.0.1 PVHVM drivers
In Hardware 5| vm Xen AWS 2013 PVHVM + SR-IOV(net)
6| VM Xen AWS 2017 PVHVM + SR-IOV(net, stor.)
H: 7] VM | _AWsNiozo17
O New [B | HW | AWS Bare Metal 2017, H|H|H|H|H[H
Bare Metal [alww[w[w]H]
VM: Virtual Machine. HW: Hardvare
VS: Vi Insoftware. VH: Vit in hware. P: Paravir, Notall combinations shown.
January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021] ‘ a5 ‘

School of Engineering and Technology, University of Washington - Tacoma

AWS VIRTUALIZATION - 2

= Full Virtuallzation - Fully Emulated
= Never used on EC2, before CPU extensions for virtualization
= Can boot any unmodified 0S
= Support via slow emulation, performance 2x-10x slower
= Paravirtuallzation: Xen PV 3.0
= Software: Interrupts, timers
= Paravirtual: CPU, Network I/0, Local+Network Storage
= Requires special OS kernels, interfaces with hypervisor for I/0
= Performance 1.1x - 1.5x slower than “bare metal”
= Instance store instances: 15T & 2" generation- m1.large, m2.xlarge
= Xen HVM 3.0
= Hardware virtualization: CPU, memory (CPU VT-x required)
= Paravirtual: network, storage
= Software: interrupts, timers
= EBS backed instances
= mi, cl instances

TCS5558: Applied Distributed Computing [Winter 2021]

L 2, P Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

El

AWS VIRTUALIZATION - 3

= XEN HVM 4.0.1
= Hardware virtualization: CPU, memory (CPU VT-x required)
= Paravirtual: network, storage, interrupts, timers
= XEN AWS 2013 (diverges from opensource XEN)
= Provides hardware virtualization for CPU, memory, network
= Paravirtual: storage, interrupts, timers
= Called Single root 1/0 Virtualization (SR-I0V)
= Allows sharing single physical PCI Express device (i.e. network adapter)
with multiple VMs
= Improves VM network performance
= 314 & 4th generation instances (c3 family)
= Network speeds up to 10 Gbps and 25 Gbhps
= XEN AWS 2047
= Provides hardware virtualization for CPU, memory, network, local disk
= Paravirtual: remote storage, Interrupts, timers
= Introduces hardware virtualization for EBS volumes (c4 instances)
= Instance storage hardware virtualization (x1.32xlarge, i3 family)

TCSS558: Applied Distributed Computing [Winter 2021]

LT Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

Slides by Wes J. Lloyd

L8.9

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

AWS VIRTUALIZATION - 4

= AWS Nlitro 2017
disk, remote disk, Interrupts, timers
= November 2017
= 5th generation instances - ¢5 instances (also ¢5d, c5n)

= Based on KVM hypervisor
= Overhead around ~1%

= All aspects of virtualization enhanced with HW-level support

= Provides hardware virtualization for CPU, memory, network, local

= Goal: provide performance indistinguishable from “bare metal”

January 28, 2021

TCsS558: Applied Distributed Computing [Winter 2021]
L 2, P i G ST ity ety f T

OBJECTIVES - 1/28

= Questions from 1/26
= Assignment 0: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script
= Assignment 1: Key/Value Store
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization

|__= Chapter 3.3: Clients |
= Chapter 3.4: Servers
TCSS558: Applied Distributed Computing [Winter 2021]
YA, e BT e o Ty i = e ‘ 186 ‘

CH. 3.3: CLIENTS

TYPES OF CLIENTS

= Thick clients
=Web browsers
Client-side scripting
= Mobile apps
= Multi-tier MVC apps

EThin clients
= Remote desktops/GUIs (very thin)

TCsS558: Applied Distributed Computing [Winter 2021]
YA ‘Schoolof iteennw and Teclnoleay)Unversity orWashi Tecoma Lese

CLIENTS

. . T Client machine’ erver machine|
= Application specific protocol
5 " Applcat FET=
= Thick clients e Application- e
. . . spedific
= Clients maintain local data Migdleware | protocol Middleware
Local 0S8

= Middleware (APls) Local 08

= Clients synchronize data with remote nodes
= Example: shared calendar application

-

= Application independent Client machine Server machine|
= Thin clients
. .]| nopication-
= Client acts as a remote terminal i
. . Middleware protocol Middieware
= Provides interface to user (GUI / Ul) Todics ToaTs
= Server houses entire application stack |

TCsS558: Applied Distributed Computing [Winter 2021]
L 2, P Sehoo[ofErsineers K holosyUniersity q Tacoma

X WINDOWS

= Layered architecture to transport Ul over network
= Remote desktop functionality for Linux/Unix systems
= X kernel acts as a server

= Provides the X protocol: application level protocol

= Xlib instances (client applications) exchange data and
events with X kernels (servers)

= Clients and servers on single machine = Linux GUI

= Client and server communication transported over the
network - remote Linux GUI

January 28, 2021 TCs$558: Applied Distributed Computing [Winter 2021]

School of Technology, University of Washington - Tacoma ‘ e ‘

Slides by Wes J. Lloyd

L8.10

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

X WINDOWS - 2

= Window manager:
= Application running
atop of X-windows
which provides flair
= Many variants
= Without X windows is
quite bland

TCS5558: Applied Distributed Computing [Winter 2021]

L 2, P AT e v s s o T T T T

ok B o

January 28, 2021

= Layered archltecture

Application Clients - User Productivity
OpenOffice.org, Firefox, Gimp

= X-kernel: low level
interface/APIs for
controlling screen,

Desktop Environment - Application and
File Mana%!m

ent
Gnome/KDE panels, desktop icon managers

i Window and Compositing Manager - i
eI key board Placement and Controls Of Windows GTK, Borollm:)(aw
and mouse events Compiz, Metacity kwin e

(X window Server)

Session Manager
1 . gnome-session, ksmserver
= Provided on Linux

as Xlib

isplay Manager 1 X Server Startup
. and User Authentication
= Provides network gdm,kdm, xdm
enabled GUI

XWindow Server - Display Hardware Management

= Layering allows for

use for custom
window managers

Network Transports - Client -Server Connections
TCP/IP Unix domain sockets

TCSS558: Applied Distributed Computing [Winter 2021]

eatarV[28 2028 School of Engineering and Technology, University of Washington - Tacoma L8.62

EXAMPLE: VNC SERVER

®" sudo apt-get update

= # ubuntu 16.04
=" sudo apt-get install ubuntu-desktop

daemon metacity nautilus gnome-terminal

" # on ubuntu 18.04
" sudo apt install xfce4 xfced-goodies

= sudo apt-get install tightvncserver # both

= Start VNC server to create initial config file
® vncserver :1

= How to Install VNC server on Ubuntu EC2 Instance VM:

®" sudo apt-get install gnome-panel gnome-settings-

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y i Tacoma

EXAMPLE: VNC SERVER - UBUNTU 16.04

= On the VM: edit config file: nano ~/.vnc/xstartup

= Replace contents as below (Ubuntu 16.04):
#!/bin/sh

export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &

nautilus &
gnome-terminal &

January 28, 2021

TCS5558: Applied Distributed Computing [Winter 2021] ot
School of Engineering and Technology, University of Washington - Tacoma

= On the VM:
= Edit config file: nano ~/.vnc/xstartup
= Replace contents as below (Ubuntu 18.04):

EXAMPLE: VNC SERVER - UBUNTU 18.04

#!/bin/bash
xrdb $HOME/.Xresources
startxfced &

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

Technology, y i Tacoma

EXAMPLE: VNC SERVER - 3

= On the VM: reload config by restarting server
® vncserver -kill :1
® yncserver :1

= Open port 22 & 5901 in EC2 security group:

Editinbound rules x

Type § Protocol (1 Port Range (i Source (i

Gusiom TCP Rue v TR 5501

TCSS558: Applied Distributed Computing [Winter 2021]

LT Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

Slides by Wes J. Lloyd

L8.11

TCSS 558: Applied Distributed Computing January 28, 2021
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

EXAMPLE: VNC CLIENT EXAMPLE: VNC CLIENT - 2

= On the client (e.g. laptop): ® On the client (e.g. laptop):

= Create SSH connection to securely forward port 5901 on the = Use a VNC Client to connect
EC2 instance to your localhost port 5901

= This way your VNC client doesn’t need an SSH key

= Remmina is provided by default on Ubuntu 16.04
= Can “google” for many others
= Remmina login:

= Chose “VNC” protocol

= Log into “localhost:5901"

ssh —-i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
-f -1 <username> <EC2-instance ip_address>

= For example: § vnC - [[localhost:ss01 Connect!

ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f - frieme=|Grovy [Server
1 ubuntu 52.111.202.44

January 28, 2021 TCS5558: Applied Distributed Computing [Winter 2021]

TCSS558: Applied Distributed Computing [Winter 2021]
AT e v s s o T T T T ‘ 1867 ‘ YA,

School of Engineering and Technology, University of Washington - Tacoma ‘ 1868 ‘

REMOTE COMPUTER IN THE CLOUD THIN CLIENTS

= EC2 instance o S

2 o = Thin clients
with a GUI. . .!!!

= X windows protocol
= A variety of other remote desktop protocols exist:

Remote deskicp protocols include the followng:

« Apple Remote Desktop Protocol (ARD) - Original protocol for Apple Remots Deskiop on macOS mectines.

« Appliance Link Protocol (ALP) - a Sun Microsystems specific prorocol feattring audio (play znd record), reiate printing, remote USB, acoeerated viceo

« HP Remote Graphics Software (RGS) ~ a propristary protocol designed by Hewlett-Packard specfically for high end workstaiion remoting and collzboration,

« Independent Computing Arcritecturs (ICA) ~ a propristary protocol designed by Citrx Systems

« NX technology (NaMachire \X) - Cross platform protocol featuring audio, vido, remote frintirg, remote USE, H254-enabled.

* PC-over-IP (PCoIP) - a pioprietary protocal used by Vhware (iicensed from Teradici)?

« Remore Deskiop Protocol (RDP) — a Windows-specifc prctocol featuring audio and remote prirting

« Remore Frame Buffer Frotocol (RFB) - A framebufter level cross-platform prorocol that UNC is based on,

« SPICE (Simple Protocol for Indeperdent Computing Environments) — remote-display system builtfor vrtual environmenis by Qurrranet, now Red Hat

« Splashtop - a high performancs remote deskiop protocol developed by Splashtap, fuly optimized for hardware (+.264) including Intel / AVD chipsets, NVIDIA
of media cadecs, Splashtop can deliver figh frame rates vith low latency, and also low power consumption

« X Window System (XL1) - awellestablished cross-platfor protecal mainly used for displaying local applications; XL1 is network transparent

January 28, 2021 TCS5558: Applied Distributed Computing [Winter 2021]

TCSS558: Applied Distributed Computing [Winter 2021]
e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms ‘ 1869 ‘ YA

ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma ‘ 870 ‘

THIN CLIENTS - 2 THIN CLIENTS - 3

= Applications should separate application logic from Ul = Virtual network computing (VNC)
= When application logic and Ul interaction are tightly coupled = Send display over the network at the pixel level
many requests get sent to X kernel (instead of X lib events)

= Client must wait for response

= Synchronous behavior and app-to-Ul coupling adverselt affects
performance of WAN / Internet

= Reduce pixel encodings to save bandwidth - fewer colors
= Pixel-based approaches loose application semantics
= Can transport any GUI this way

= Protocol optimizatlons: reduce bandwidth by shrinking size of
X protocol messages

= Send only differences between messages with same identifier
= Optimizations enable connections with 9600 kbps

= THINC- hybrid approach

= Send video device driver commands over network
= More powerful than pixel based operations

= Less powerful compared to protocols such as X

January 28, 2021 TCS5558: Applied Distributed Computing [Winter 2021]

TCSS558: Applied Distributed Computing [Winter 2021]
Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms ‘ 871 ‘ LT

School of Engineering and Technology, University of Washington - Tacoma

=3

Slides by Wes J. Lloyd L8.12

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

January 28, 2021

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols

Plxel-level Graphles Ilb
VNC ['] X11
< i >

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y Tacoma

TRADEOFFS: ABSTRACTION OF REMOTE
DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics lib
VNC n X11

< 1 >

e Generic - no app context e Application context

e Graphics data is available

o Higher network bandwidth e Ul data/operations

e Fewer colors e Lower network bandwidth
o Utilize graphics compression o More colors

L]

More network traffic

TCS5558: Applied Distributed Computing [Winter 2021]

YA, Sehoalor T TRy T

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY

= Clients help enable distribution transparency of servers

= Replication transparency
= Client aggregates responses from multiple servers
= Only the client knows of replicas

Client machine erver 1 erver Server 3
Client Server Server Server
appl appl appl appl
Y
N . A A

lient sidé handles
request replication

Replicated request

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021] 1875
School of

chnology, y Tacoma

CLIENT ROLES IN PROVIDING
DISTRIBUTION TRANSPARENCY - 2

= Location/relocation/migration transparency

= Harness convenient naming system to allow client to infer new
locations

= Server inform client of moves / Client reconnects to new endpoint
= Client hides network address of server, and reconnects as needed
= May involve temporary loss in performance

= Replication transparency
= Client aggregates responses from multiple servers

= Failure transparency
= Client retries, or maps to another server, or uses cached data

= Concurrency transparency
= Transaction servers abstract coordination of multithreading

TCS5558: Applied Distributed Computing [Winter 2021]

School of Technology, University of Tacoma ‘ e ‘

January 28, 2021

OBJECTIVES - 1/28

= Questions from 1/26
= Assignment 0: Cloud Computing Infrastructure Tutorial
= New testFibService.sh script

= Assignment 1: Key/Value Store
= Chapter 3: Processes
= Chapter 3.1: Threads
Context Switches
Threading Models
Multithreaded clients/servers
= Chapter 3.2: Virtualization
= Chapter 3.3: Clients

= Chapter 3.4: Servers

January 28, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y - Tacoma

H. 3.4: SERVERS

Slides by Wes J. Lloyd

L8.13

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

January 28, 2021

SERVERS

= Cloud & Distributed Systems - rely on LInux

= http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions

= |T is moving to the cloud. And, what powers the cloud?

*Linux
= Uptime Institute survey - 1,000 IT executives (2016)
= 50% of IT executives - plan to migrate majority of IT workloads to
off-premise to cloud or colocation sites
= 23% expect the shift in 2017, 70% by 2020...
= Docker on Windows / Mac 0S X
= Based on Linux
= Mac: Hyperkit Linux VM
= Windows: Hyper-V Linux VM

TCS5558: Applied Distributed Computing [Winter 2021]

L 2, P AT e v s s o T T T T

SERVERS - 2

= Servers implement a specific service for a collection of clients
= Servers wait for incoming requests, and respond accordingly

= Server types
= Iteratlve: immediately handle client requests

= Concurrent: Pass client request to separate thread

= Multithreaded servers are concurrent servers
= E.g. Apache Tomcat

= Alternative: fork a new process for each incoming request
= Hybrid: mix the use of multiple processes with thread pools

TCSS558: Applied Distributed Computing [Winter 2021]

END POINTS

= Clients connect to servers via:
IP Address and Port Number

= How do ports get assigned?
= Many protocols support “default” port numbers
= Client must find IP address(es) of servers

= A single server often hosts multiple end points
(servers/services)

= When designing new TCP client/servers must be careful
not to repurpose ports already commonly used by others

TCSS558: Applied Distributed Computing [Winter 2021]
L 2, P e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms test

January 28, 2021 School of Engineering and Technology, University of Washington - Tacoma
CoMMON PORTS packetlife.net
TCP/UDP Port Numbers
7 Echo 554 RTSP 2745 EEEEE G891-6901
19 Chargen 546-547 DHCPVG 2967 Symantec AV 6970 Quicktime
20-21 F1P 560 rmonitor 3050 Interbase DB 7212 Ghostsurf
22 GSHECE 563 3074 (ECKEENIN 7648-7649
23 Telnet 587 SMTP 3124 HTTP Proxy 8000 Internet Radio
25 surP 591 FileMaker 3127 DGO 8080 HTTP Proxy
42 WINS Replication 593 Microsoft DCOM 3128 HTTP Proxy 8086-8087 Kaspersky AV
43 WHOIS 631 Internet Printing 3222 Gap 8118 Privoxy
49 TACACS 636 3260 iSCs! Target 8200 VMware Server
53 DNS 639 MSDP (PIM) 3306 MysQL 8500 Adobe ColdFusion
6768 DHCP/BOOTP 646 LDP (PLS) 3389 Terminal Server 5767 FEATGSEERRIN
69 TFTP 691 MS Exchange 3689 iTunes Py]
70 Gopher 860 iSCS! 3690 Subversion 9100 HP JetDirect
79 Finger 873 rsync 3724 |GABAWSTEE 9101-9103 Bacula
80 HTTP 902 VMuware Server 3784-3785 Ventrio o119 FXENI
88 Kerberos 989-990 [FFIUEHSSENN 4333 msoL 9800 WebDAV
102 WS Exchange 993 iMAPA versSL aaan osos RESSHNNN
110 POP3 995 4664 Google Desktop 9955 [EEGHSEUGEIN
113 Ident 1025 Microsoft RPC 4672 eMule 9999 Urchin
119 NNTP (Usenet) 1026-1029 Windows Messenger 4899 Radmin 10000 Webrmin
123 NTP 1080 SOCKS Proxy 5000 UPnP 10000 BackupExec
135 Microsoft RPC 1080 5001 Slingbox 10113-10116 NetiQ
137-139 NetBIOS 1194 OpenVPN 5001 iperf 11371 OpenPGP
143 ara 1214 5004-5005 RTP |
161-162 SNMP. 1241 Nessus 5050 ahoenMessengen 12345 (SIS
177 xDMCP 1311 Dell OpenManage 5060 SIP 13720-13721 NetBackup
129 5GP 2337 iASTER— 290 24567

TYPES OF SERVERS

=Daemon server
= Example: NTP server

=Superserver

= Stateless server
= Example: Apache server

m Stateful server
= Object servers

=EJB servers

January 28, 2021

TCSS558: Applied Distributed Computing [Winter 2021] s
School of Engineering and Technology, University of Washington - Tacoma

NTP EXAMPLE

= Daemon servers
= Run locally on Linux
=Track current server end points (outside servers)

= Example: network time protocol (ntp) daemon
Listen locally on specific port (ntp is 123)
Daemons routes local client traffic to the configured
endpoint servers
University of Washington: time.u.washington.edu
Example “ntpg -p”
= Queries local ntp daemon, routes traffic to configured server(s)

TCS$558: Applied Distributed Computing [Winter 2021] ‘ 884 ‘

LT Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

Slides by Wes J. Lloyd

L8.14

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

SUPERSERVER

= Linux inetd / xinetd
= Single superserver
= Extended internet service daemon
= Not installed by default on Ubuntu
= Intended for use on server machines

E.g. ftp, pop, telnet

services

= Check what ports you're listening on:
®" sudo netstat -tap | grep LISTEN

= inetd daemon responds to multiple endpoints for multiple

= Used to configure box as a server for multiple internet services

= Requests fork a process to run required executable program

January 28, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
L 2, P AT e v s s o T T T T

E

INTERRUPTING A SERVER

= Server design issue:
= Active client/server communication is taking place over a port
= How can the server / data transfer protocol support interruption?

= Consider transferring a 1 GB image, how do you pass a
unrelated message in this stream?

1. Out-of-band data: special messages sent in-stream to support
interrupting the server (TCP urgent data)
2. Use a separate connection (different port) for admin control info

Example: sftp secure file transfer protocol
= Once a file transfer is started, can’t be stopped easily
= Must kill the client and/or server

TCSS558: Applied Distributed Computing [Winter 2021]

YA, A R e e o R P T =

STATELESS SERVERS

= Data about state of clients is not stored

= Also function-as-a-service (FaaS) platforms

= Loosing log files typically has minimal consequences

time (to support sessions)
= Soft state information expires and is deleted

= Example: web application servers are typically stateless

= Loss of stateless data doesn’t disrupt server availability

= Many servers maintain information on clients (e.g. log files)

= Soft state: server maintains state on the client for a limited

TCSS558: Applied Distributed Computing [Winter 2021]
L 2, P e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms

E

STATEFUL SERVERS

= Maintain persistent information about clients
= Information must be explicitly deleted by the server

= Example:
File server - allows clients to keep local file copies for RW

= Server tracks client file permissions and most recent versions
= Table of (client, file) entries

= If server crashes data must be recovered
= Entire state before a crash must be restored
= Fault tolerance - Ch. 8

TCSS558: Applied Distributed Computing [Winter 2021]

YA ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

STATEFUL SERVERS - 2

= Session state
= Tracks series of operations by a single user
= Maintained temporarily, not indefinitely
= Often retained for multi-tier client server applications
= Minimal consequence if session state is lost
= Clients must start over, reinitialize sessions

= Permanent state
= Customer information, software keys

= Client-side cookies

locally in “cookies”
= Cookies are not executable, simply client-side data

= When servers don’t maintain client state, clients can store state

TCSS558: Applied Distributed Computing [Winter 2021]
L 2, P Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

E

OBJECT SERVERS

= OBJECTIVE: Host objects and enable remote client access
= Do not provide a specific service
= Do nothing if there are no objects to host
= Support adding/removing hosted objects
= Provide a home where objects live
= Objects, themselves, provide “services”

= Object parts
= State data
= Code (methods, etc.)

= Translent object(s)
= Objects with limited lifetime (< server)

= Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”).

= Disadvantage: ization may be expensive
= Alternative: preinitialize and retain objects on server start-up

TCS$558: Applied Distributed Computing [Winter 2021]

LT Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

Slides by Wes J. Lloyd

L8.15

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

OBJECT SERVERS - 2

= Should ob)ect servers Isolate memory for object Instances?
= Share neither code nor data
= May be necessary if objects couple data and implementation

= Object server threading designs:
= Single thread of control for object server
= One thread for each object
= Servers use separate thread for client requests

= Threads created on demand vs.
Server maintains pool of threads

= What are the tradeoffs for creating server threads on demand vs.
using a thread pool?

TCS5558: Applied Distributed Computing [Winter 2021]

L 2, P AT e v s s o T T T T

El

January 28, 2021

EJB - ENTERPRISE JAVA BEANS

= EJB- specialized Java object hosted by a EJB web container
= 4 types: stateless, stateful, entity, and message-driven beans
= Provides “middleware” standard (framework) for implementing
back-ends of enterprise applications
= EJB web application containers integrate support for:
= Transaction processing
= Persistence
= Concurrency
= Event-driven programming
= Asynchronous method invocation
= Job scheduling
= Naming and discovery services (JNDI)
= Interprocess communication
= Security
= Software component deployment to an application server

TCSS558: Applied Distributed Computing [Winter 2021]

YA, A R e e o R P T =

APACHE WEB SERVER

= Highly configurable, extensible, platform independent
= Supports TCP HTTP protocol communication

= Uses hooks - placeholders for group of functions

= Requests processed in phases by hooks

Module Module

Module

L

Function

= Many hooks:
= Translate a URL
= Write info to log

: p e
= Check client ID T
= Check access rights DD\—é \ﬁ m 1 ‘
= Hooks processed in order =7=! " Hooks point to functions in modules
enforcing flow-of-control / [|

| Apache core
= Functions in replaceable Zunctions called per hook
modules Roquest Rosponse

TCSS558: Applied Distributed Computing [Winter 2021]

FETTeT 2 P School of Engineering and Technology, University of Washington - Tacoma

SERVER CLUSTERS

= Hosted across an LAN or WAN
= Collection of interconnected machines
= Can be organized in tiers:

= Web server > app server > DB server

= App and DB server sometimes integrated

Logical switch
(possibly multiple)

Application/compute servers Distributed
file/database
system

Dispatched
request

T
1
[

Client requests

NN

L

1]

g
|

First fier Second tier Third tier

TCSS558: Applied Distributed Computing [Winter 2021]

YA ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

LAN REQUEST DISPATCHING

= Front end of three tier architecture (logical switch) provides
distribution transparency - hides multiple servers

= Transport-layer switches: switch accepts TCP connection
requests, hands off to a server
= Example: hardware load balancer (F5 networks - Seattle)
= HW Load balancer - OSI layers 4-7

= Network-address-translation (NAT) approach:
= All requests pass through switch
= Switch sits in the middle of the client/server TCP connection
= Maps (rewrites) source and destination addresses
= Connection hand-off approach:
= TCP Handoff: switch hands of connection to a selected server

TCS5558: Applied Distributed Computing [Winter 2021]

L 2, P Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

=l

LAN REQUEST DISPATCHING - 2

= Who is the best server to handle the request?

= Switch plays important role in e ocatin
distributing requests oingle TCP ="

= Implements load balancing

= Round-robin - routes client
requests to servers in a looping
fashion

= Transport-level - route client
requests based on TCP port number

= Content-aware request distribution - route requests based on
inspecting data payload and determining which server node
should process the request

Response__|

Request -
(handed off)

TCS$558: Applied Distributed Computing [Winter 2021]

LT Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

Slides by Wes J. Lloyd

L8.16

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

January 28, 2021

WIDE AREA CLUSTERS

= Deployed across the internet

= Leverage resource/infrastructure from Internet Service
Providers (ISPs)

= Cloud computing simplifies building WAN clusters

= Resource from a single cloud provider can be combined to
form a cluster

= For deploylng a cloud-based cluster (WAN), what are the
implications of deploying nodes to:

® (1) a single availability zone (e.g. us-east-1e)?

® (2) across multiple availability zones?

TC55558: Applied Distributed Computing [Winter 2021] ‘ e

L 2, P AT e v s s o T T T T

WAN REQUEST DISPATCHING

= Goal: minimize network latency using WANs (e.g. Internet)
= Send requests to nearby servers

= Request dispatcher: routes requests to nearby server

= Example: Domain Name System
= Hierarchical decentralized naming system

= Linux: find your DNS servers:

Find you device name of interest
nmcli dev

Show device configuration

nmcli device show <device name>

January 28, 2021 TC55558: Applied Distributed Computing [Winter 2021] ‘ 5o ‘

School of Engineering and Technology, University of Washington - Tacoma

DNS LOOKUP

= First query local server(s) for address
= Typically there are (2) local DNS servers
= One is backup
= Hostname may be cached at local DNS server
= E.g. www.google.com
= If not found, local DNS server routes to other servers
= Routing based on components of the hostname

= DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

= Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

January 28, 2021 TCS5558: Applied Distributed Computing [Winter 2021] ‘ 1899

School of Engineering and Technology, University of Washington - Tacoma

Local Name Server
5. lterative Query to root
4.Check > (root)
Cache 6. Name Server for .edu
b -
13. Update B — Root Name Server
Cache - D
Cache
Server T 7. Iterative
3.Recursive Quisty to ad d
L
Que: edu
2 “I'P dress 8. Name Server for
googleplex.edu
. Check .edu Name Server
- 50 9. lterative Query "
o googleplex.edu
15. Updat ’
Cachie < 10. Name Server for googleplex
Cache Resolver compsci.googleplex.edu
googleplex.edu
1. Re:olmnt Name Server
=" | [16. Roquested 11. lterative Query to %
IP Address compsci.googleplex.edu m
e
g m 12. 1P Address for >
) wwww.net.compsci.googlepler.edt comnsc googlepler.edu
me Server

17. HTTP Request
User & Browser P

Client

DNS: LINUX COMMANDS

" nslookup <ip addr / hostname>
= Name server lookup - translates hostname or IP to the inverse

" traceroute <ip addr / hostname>
= Traces network path to destination
= By default, output is limited to 30 hops, can be increased

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L8.101

January 28, 2021

DNS EXAMPLE - WAN DISPATCHING

Ping www.google.com in WA from wireless network:

= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

= Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)
Ping www.google.com in VA (us-east-1) from EC2 instance:

= nslookup: 1 address returned, choose 172.217.9.196

= Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

From VA EC2 instance, ping WA www.google server
Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)
Pinging the WA-local server is ~60x slower from VA

= From local wireless network, ping VA us-east-1 google :
Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCS5558: Applied Distributed Computing [Winter 2021] ‘ L5102

LT Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

Slides by Wes J. Lloyd

L8.17

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:
= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

January 28, 2021

Latency to ping VA server in WA: ~3.63x

WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x

VA client: local-google 1.278ms to WA-google 62.349!

= From local wireless network, ping VA us-east-1 google :
= Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

January 28, 2021 TCSS558: App.lied D.is(ributed Computing [Winter 2021])
school of y

Technology, Universi

18.103

Tacoma

Slides by Wes J. Lloyd

QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2021]

panumvi2erz 2t School of Engineering and Technology, University of Washington -

L8.18

