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 Questions from 1/21

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Chapter 2.3: System Architectures
 Decentralized peer-to-peer architectures

 Hybrid architectures

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization
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 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 
class (22 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.73  ( - previous 6.65)  

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.50  ( - previous 5.60)
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MATERIAL / PACE

 How is a broker represented in middleware?
 Each application (circles) must provide

unique interface for every other application
 Example: 4 applications  12 wrappers
 N applications require ~(N2-N) wrappers
 Every app directly talks to every other app
 Broker model
 All interfaces consolidated in the broker
 Broker provides middleware (layer of 

abstraction) between applications
 Every app only talks to broker
 4 applications  just 4 wrappers to the broker
 Broker greatly improves maintainability 
  less custom app-to-app interfaces to maintain
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 Could you explain the graph for interceptors again?

 I  am not clear about when to use wrappers and when to use 
interceptors.

 Interceptors are used when leveraging RPC or Java RMI 
approaches

 Many remote object facilities such as Java RMI and RPC will
automate the creation of interceptors

 Programs may not be required to write or interact with the
interceptors directly 

 The interceptors graph shows the role interceptors play to 
translate a remote method invocation. 
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FEEDBACK - 2

 Object A can call a method belonging to Object B, while Object 
B resides on a different computer

 Object A is of fered a local interface that is exactly the same 
as the interface of fered by object B

 Object A calls a method in this inter face
 Call is transformed into a generic object invocation using the 

request-level interceptor offered by the middleware where A 
resides
 Abstracts object replication
 Requests can be sent to each replica

 This generic object invocation is transformed into a message 
by the message-level interceptor that is sent through the TCP-
layer offered by object A’s local OS.
 Turns method invocation into network call
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Request-level 
interceptor 
transforms: 
B.doit(val)

into generic call:
invoke(B,&doit,val)

Message-level 
interceptor in 
middleware 
sends message 
through OS 
(TCP/IP socket) 
to transfer data: 
send(B,”doit”,val)

Non-intercepted:

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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MIDDLEWARE: INTERCEPTORS - 2

If object is local

 Questions from 1/21

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Chapter 2.3: System Architectures
 Decentralized peer-to-peer architectures

 Hybrid architectures

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization
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 Preparing for Assignment 0:
 Establish AWS Account

 Standard account – ** request cloud credits from instructor **

 Specify “AWS CREDIT REQUEST” as subject of email

 Include email address of AWS account

 AWS Educate Starter account – some account limitations

 https://awseducate-starter-account-services.s3.amazonaws.com/ 
AWS_Educate_Starter_Account_Services_Supported.pdf

 Establish local Linux/Ubuntu environment

 Task 1 – AWS account setup

 Task 2 – Working w/ Docker,  creating Docker fi le for  Apache Tomcat

 Task 3 – Creating a Dockerfile for haproxy

 Task 4 – Working with Docker-Machine

 Task 5 – For Submission: Testing Alternate Server  Configurations
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ASSIGNMENT 0

 testFibPar.sh script is a parallel test script
 Orchestrates multiple threads on client to invoke server 

multiple times in parallel
 To simplify coordinate of parallel service calls in BASH, 

testFibPar.sh script ignores errors !!!  

 To help test cl ient-to-server connectivity, have created a new 
testFibService.sh script

 TEST 1: Network layer
 Ping (ICMP)

 TEST 2: Transport layer
 TCP: telnet (TCP Port 8080) – security group (firewall) test

 TEST 3: Application layer
 HTTP REST – web service test

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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CH 2.3: SYSTEM 
ARCHITECTURES
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 Questions from 1/21

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Chapter 2.3: System Architectures
 Decentralized peer-to-peer architectures

 Hybrid architectures

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization
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 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured 

 Unstructured

 Hierarchically organized

 Hybrid architectures

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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TYPES OF SYSTEM ARCHITECTURES

 Client/server:

 Nodes have specific roles

 Peer-to-peer:

 Nodes are seen as all equal…

 How should nodes be organized for communication?

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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 Nodes organized using specific topology 
(e.g. ring, binary-tree, grid, etc.)

 Organization assists in data lookups

 Data indexed using “semantic-free” indexing

 Key / value storage systems

 Key used to look-up data

 Nodes store data associated with a subset of keys

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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STRUCTURED PEER-TO-PEER

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements wil l  have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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DISTRIBUTED HASH TABLE (DHT)
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 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit  code (0000 to 1111)

 Hash data items to 4-bit  key (1 of 16 slots)

 Distance (number of hops) determined by identifying number 
of varying bits between neighboring nodes and destination

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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FIXED HYPERCUBE EXAMPLE

 Example: f ixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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FIXED HYPERCUBE EXAMPLE - 2
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 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does i t  matter which node is selected for the first hop?

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.21

WHICH CONNECTOR LEADS TO THE 
SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent– bad path)

0101 (3 bits dif ferent– bad path)

 Fixed hypercube requires static topology

 Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a cer tain size

 Chord system – DHT (again in ch.5)

 Dynamic topology

 Nodes organized in ring

 Every node has unique ID

 Each node connected with other nodes (shortcuts)

 Shortest path between any pair of nodes is ~ order O(log N)

 N is the total number of nodes

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains finger table of successor nodes

 Client sends key/value 
lookup to any node

 Node forwards cl ient 
request to node with 
m-bit ID closest to, but 
not greater than key k 

 Nodes must continually 
refresh finger tables by 
communicating with 
adjacent nodes to 
incorporate node 
joins/departures
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CHORD SYSTEM

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facil itates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor l ists constantly refreshed
 Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible
 How would you calculate the route algorithmically?

 Routes must be discovered

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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UNSTRUCTURED PEER-TO-PEER
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 Flooding
 [Node u] sends request for data item to all  neighbors
 [Node v]
 Searches locally, responds to u (or forwarder) if having data

 Forwards request to ALL neighbors

 Ignores repeated requests

 Features
 High network traffic

 Fast search results by saturating the network with requests

 Variable # of hops

 Max number of hops or time-to-live (TTL) often specified

 Requests can “retry” by gradually increasing TTL/max hops until 
data is found

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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SEARCHING FOR DATA:
UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]
 If [node v] does not have data, forwards request to a 

random neighbor
 Features
 Low network traffic
 Akin to sequential search
 Longer search time
 [node u] can start “n” random walks simultaneously to 

reduce search time
 As few as n=16..64 random walks sufficient to reduce search 

time  (LV et al. 2002)
 Timeout required - need to coordinate stopping network-wide 

walk when data is found…

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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SEARCHING FOR DATA - 2
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 Policy-based search methods

 Incorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of 
queries

 Nodes maintain lists of preferred neighbors which often 
succeed at resolving queries

 Favor neighbors having highest number of neighbors

 Can help minimize hops
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SEARCHING FOR DATA - 3

 Problem:
Adhoc system search per formance does not scale well  as 
system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs)   (video streaming)

 Store (cache) data at nodes local to the requester (client)

 Broker node – tracks resource usage and node availability
 Track where data is needed

 Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

 Super peer –Broker node, routes client requests to storage 
nodes

 Weak peer – Store data

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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 Super peers
 Head node of local centralized network
 Interconnected via overlay network with other super peers
 May have replicas for fault tolerance

 Weak peers
 Rely on super peers to find data

 Leader-election problem:
 Who can become a

super peer?
 What requirements 

must be met to become 
a super peer?

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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HIERARCHICAL 
PEER-TO-PEER NETWORKS - 2

 Questions from 1/21

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Chapter 2.3: System Architectures
 Decentralized peer-to-peer architectures

 Hybrid architectures

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization
January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured 

 Unstructured

 Hierarchically organized

 Hybrid architectures
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TYPES OF SYSTEM ARCHITECTURES

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:
 Adhoc peer-to-peer devices connect to the internet through an 

edge server (origin server) 

 Edge servers (provided by an ISP) can optimize content and 
application distribution by storing assets near the edge

 Example:
 AWS Lambda@Edge: Enables Node.js Lambda Functions to 

execute “at the edge” harnessing existing CloudFront Content 
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws-lambda-at-edge
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HYBRID 
ARCHITECTURES
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 Fog computing:
 Extend the scope of managed resources beyond the 

cloud to leverage compute and storage capacity of 
end-user devices  

 End-user devices become part of the overall system 

 Middleware extended to incorporate managing edge 
devices as participants in the distributed system  

 Cloud  in the sky   
 compute/resource capacity is huge, but far away…

 Fog  (devices) on the ground   
 compute/resource capacity is constrained and local…
January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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HYBRID 
ARCHITECTURES - 2

 BitTorrent Example:
File sharing system – users must contribute as a fi le host to 
be eligible to download fi le resources 

 Original implementation features hybrid architecture

 Leverages idle cl ient network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well  
known address to access torrent fi le

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading fi le chunks and immediately then 
participates to reserve downloaded content or network 
bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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COLLABORATIVE DISTRIBUTED 
SYSTEM EXAMPLE
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WE WILL RETURN AT 
2:40PM

 What is difference in finding/disseminating data in 
unstructured vs. structured peer-to-peer networks?
 Spreading/finding data

 Flooding, Random walk

 What are some advantages of a decentralized structured peer-
to-peer architecture?

 What are some disadvantages?

 What are some advantages of a decentralized unstructured 
peer-to-peer architecture?

 What are some disadvantages? 

REVIEW QUESTIONS

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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 Questions from 1/21

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Chapter 2.3: System Architectures
 Decentralized peer-to-peer architectures

 Hybrid architectures

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization
January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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CH. 3: PROCESSES
CH. 3.1: THREADS
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 Chapter 3 titled “processes”

 Covers variety of distributed system implementation 
details

 “Grab bag” of topics

 Processes/threads

 Virtualization

 Clients

 Servers

 Code migration

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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CHAPTER 3

 Questions from 1/21

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Chapter 2.3: System Architectures
 Decentralized peer-to-peer architectures

 Hybrid architectures

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization
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 For implementing a server (or cl ient) threads offer many 
advantages vs. heavy weight processes

 What is the difference between a process and a thread?
 (review?) from Operating Systems

 Key dif ference :  what do threads share amongst each other 
that processes do not…. ?

 What are the segments of a program stored in memory?
 Heap segment (dynamic shared memory)

 Code segment

 Stack segment

 Data segment (global variables)

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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CH. 3.1 - THREADS

 Do several processes on an operating system share…
 Heap segment?

 Stack segment?

 Code segment?

 Can we run multiple copies of  the same code?

 These may be managed as shared pages (across processes) in 
memory

 Processes are isolated from each other by the OS
 Each has a separate heap, stack, code segment

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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THREADS - 2
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 Threads avoid the overhead of process creation

 No new heap or code segments required

 What is a context switch? 

 Context switching among threads is considered to be more 
efficient than context switching processes

 Less elements to swap-in and swap-out

 Unikernel: specialized single process OS for the cloud

 Example: Osv, Clive, MirageOS (see: ht tp://unikernel .org/projects/)

 Single process operating system with many threads

 Developed for the cloud to run only one application at a t ime

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
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THREADS - 3
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OSV: ONE PROCESS, MANY THREADS
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 Important implications with threads:

 (1) multi-threading should lead to performance gains

 (2) thread programming requires additional effort when 
threads share memory

 Known as thread synchronization, or enabling concurrency

 Access to critical sections of code which modify shared 
variables must be mutually exclusive

 No more than one thread can execute at any given time

 Critical sections must run atomically on the CPU

January 26, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L7.45

THREADS - 4

 Example: spreadsheet with formula to compute sum of column

 User modifies values in column

 Multiple threads:

1. Supports interaction (UI) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

 Single core CPU
 Tasks appear as if they are performed simultaneously

 Multi core CPU
 Tasks execute simultaneously 
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TCSS 558: Applied Distributed Computing
[Winter 2021]  School of Engineering and Technology, 
UW-Tacoma

January 26, 2021

Slides by Wes J. Lloyd L7.24

 IPC – mechanism using pipes, message queues, and shared 
memory segments

 IPC mechanisms incur context switching
 Process I/O must execute in kernel mode

 How many context switches are required for process A to 
send a message to process B using IPC?

 #1 C/S:
Proc Akernel thread


#2 C/S:
Kernel threadProc B
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INTERPROCESS COMMUNICATION

 Questions from 1/21

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Chapter 2.3: System Architectures
 Decentralized peer-to-peer architectures

 Hybrid architectures

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization
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 Direct overhead
 Time spent not executing program code (user or kernel)

 Time spent executing interrupt routines to swap memory segments 
of different processes (or threads) in the CPU

 Stack, code, heap, registers, code pointers, stack pointers

 Memory page cache invalidation

 Indirect overhead
 Overhead not directly attributed to the physical actions of the 

context switch

 Captures performance degradation related to the side effects of 
context switching  (e.g. rewriting of memory caches, etc.)

 Primarily cache perturbation 
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CONTEXT SWITCHING

 Refers to cache reorganization that occurs as a result of a 
context switch

 Cache is not clear, but elements from cache are removed as a 
result of another program running in the CPU

 80% performance overhead from context switching results 
from this “cache perturbation”
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CONTEXT SWITCH –
CACHE PERTURBATION
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 Questions from 1/21

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Chapter 2.3: System Architectures
 Decentralized peer-to-peer architectures

 Hybrid architectures

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization
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 Many-to-one threading: multiple user-level threads per process

 Thread operations (create, delete, locks) run in user mode 

 Multithreaded process mapped to single schedulable entity

 Only run thread per process runs at any given time

 Key take-away: thread management handled by user processes

 What are some advantages of many-to-one threading?

 What are some disadvantages?
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 One-to-one threading: use of separate kernel threads for each 
user process - also called kernel-level threads

 The kernel API calls (e.g. I/O, locking) are farmed out to an 
existing kernel level thread  

 Thread operations (create, delete, locks) run in kernel mode
 Threads scheduled individually by the OS
 System calls required, context switches as expensive as 

process context switching
 Idea is to have preinitialized kernel threads for user processes
 Linux uses this model…

 What are some advantages of one-to-one threading?

 What are some disadvantages?
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THREADING MODELS - 2

 Google chrome: processes

 Apache tomcat webserver: threads

 Multiprocess programming avoids synchronization of 
concurrent access to shared data, by providing coordination 
and data sharing via interprocess communication (IPC) 

 Each process maintains its own private memory

 While this approach avoids synchronizing concurrent access to 
shared memory, what is the tradeoff(s) ??
 Replication instead of synchronization – must synchronize multiple 

copies of the data

 Do distributed objects share memory?
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 Questions from 1/21

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Chapter 2.3: System Architectures
 Decentralized peer-to-peer architectures

 Hybrid architectures

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization
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 Web browser
 Uses threads to load and render portions of a web page to the 

user in parallel
 A client could have dozens of concurrent connections all 

loading in parallel

 testFibPar.sh
 Assignment 0 cl ient script  (GNU parallel)

 Important benefits:
 Several connections can be opened simultaneously
 Client: dozens of concurrent connections to the webserver all 

loading data in parallel
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 In Linux, threads also receive a process ID (PID)

 To display threads of a process in Linux:

 Identify parent process explicitly:

 top –H –p <pid>

 htop –p <pid>

 ps –iT <pid>

 Virtualbox process ~ 44 threads

 No mapping to guest # of processes/threads
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MULTIPLE THREADS

PROCESS METRICS

CPU
- cpuUsr: CPU time in user mode
- cpuKrn: CPU time in kernel mode 
- cpuIdle: CPU idle time 
- cpuIoWait: CPU time waiting for I/O
- cpuIntSrvc:CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts
- cpuNice: CPU time executing prioritized

processes
- cpuSteal: CPU ticks lost to virtualized guests
- contextsw: # of context switches 
- loadavg: (avg # proc / 60 secs)

Disk
- dsr: disk sector reads 
- dsreads: disk sector reads completed 
- drm: merged adjacent disk reads 
- readtime: time spent reading from 
disk 
- dsw: disk sector writes 
- dswrites: disk sector writes completed
- dwm: merged adjacent disk writes 
- writetime: time spent writing to disk 

Network
- nbs: network bytes sent 
- nbr: network bytes received 
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 Reported by: top,  htop ,  w , uptime , and /proc/loadavg

 Updated every 5 seconds

 Average number of processes using or waiting for the CPU

 Three numbers show exponentially decaying usage
for 1 minute, 5 minutes, and 15 minutes

 One minute average: exponentially decaying average
 Load average = 1 ▪ (avg last minute load) – 1/e ▪ (avg load since boot)

 1.0 = 1-CPU core fully loaded

 2.0 = 2-CPU cores

 3.0 = 3-CPU cores . . .
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LOAD AVERAGE

 Metric – measures degree of parallelism realized by running 
system, by calculating average uti lization:

 Ci – fraction of t ime that exactly I  threads are executed

 N – maximum threads that can execute at any one time

 Web browsers found to have TLP from 1.5 to 2.5

 Clients for web browsing can uti lize from 2 to 3 CPU cores

 Any more cores are redundant, and potentially wasteful

 Measure TLP to understand how many CPUs to provision
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 Multiple threads essential for servers in distr ibuted systems

 Even on single-core machines greatly improves per formance

 Take advantage of idle/blocking time

 Two designs:
 Generate new thread for every request

 Thread pool – pre-initialize set of threads to service requests
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MULTITHREADED SERVERS

 Single thread server

 A single thread handles all client requests

 BLOCKS for I/O

 All waiting requests are queued until thread is available

 Finite state machine

 Server has a single thread of execution

 I/O performing asynchronously (non-BLOCKing) 

 Server handles other requests while waiting for I/O

 Interrupt fired with I/O completes

 Single thread “jumps” back into context to finish request
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 A blocking system call implies that a thread servicing a 
request synchronously performs I/O 

 The thread BLOCKS to wait on disk/network I/O before 
proceeding with request processing

 Consider the implications of these designs for responsiveness, 
availabil ity, scalability. . .
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SERVER DESIGN ALTERNATIVES

Model Characteristics
Multithreading Parallelism, blocking I/O 

Single-thread No parallelism, blocking I/O

Finite-state machine Parallelism, non-blocking I/O

 Questions from 1/21

 Assignment 0: Cloud Computing Infrastructure Tutorial
 New testFibService.sh script

 Chapter 2.3: System Architectures
 Decentralized peer-to-peer architectures

 Hybrid architectures

 Chapter 3: Processes
 Chapter 3.1: Threads

 Context Switches

 Threading Models

 Multithreaded clients/servers

 Chapter 3.2: Virtualization
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CH. 3.2: 
VIRTUALIZATION

L7.65

 Init ially introduced in the 1970s
on IBM mainframe computers

 Legacy operating systems run in mainframe-based VMs

 Legacy software could be sustained by vir tualizing legacy OSes

 1970s vir tualization went away as desktop/rack-based 
hardware became inexpensive

 Virtualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

 VM-Ware vir tual machines enable companies to host many 
virtual servers with mixed OSes on private clusters

 Cloud computing: Amazon offers VMs as-a-service (IaaS)
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VIRTUALIZATION
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 Levels of  instructions:

 Hardware: CPU

 Privileged instructions
KERNEL MODE

 General instructions
USER MODE

 Operating system: system calls

 Library: programming APIs: e.g. C/C++,C#, Java libraries

 Application: 

 Goal of virtualization:
mimic these interface to provide a vir tual computer
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TYPES OF VIRTUALIZATION

 Process vir tual machine
 Interpret instructions: (interpreters)

(JavaVM)  byte code  HW instructions
 Emulate instructions: (emulators)

(Wine)  windows code  Linux code

 Native virtual machine monitor (VMM)
 Hypervisor (XEN): small OS with its own kernel 
 Provides an interface for multiple guest OSes
 Facilitates sharing/scheduling of 

CPU, device I/O among many guests
 Guest OSes require special kernel to interface w/ VMM
 Supports Paravirtualization for performance boost to run code 

directly on the CPU 
 Type 1 hypervisor
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TCSS 558: Applied Distributed Computing
[Winter 2021]  School of Engineering and Technology, 
UW-Tacoma

January 26, 2021

Slides by Wes J. Lloyd L7.35

 Hosted virtual machine monitor (VMM)
 Runs atop of hosted operating system
 Uses host OS facilities for CPU scheduling, I/O
 Full virtualization
 Type 2 hypervisor
 Virtualbox

 Textbook: note 3.5–good explanation of full  vs. paravir tualization

 GOAL: run all  user mode instructions directly on the CPU
 x86 instruction set has ~17 privileged user mode instructions
 Full virtualization: scan the EXE, insert code around privi leged 

instructions to diver t control to the VMM
 Paravirtualization: special OS kernel eliminates side effects of 

privileged instructions
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TYPES OF VIRTUALIZATION - 3
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EVOLUTION OF AWS VIRTUALIZATION

Fro m ht t p :// www.brendangregg. co m/b lo g/ 2017 -11 -29/ aws - ec 2- v i r t u a l i zat io n -2017. ht ml

VS:

V i r tual izat ion

In  sof tware

P :

Parav ir tual

VH :

V i r tual izat ion

In  Hardware

H:

Hardware
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 Ful l  V ir tualization - Ful ly Emulated 
 Never used on EC2, before CPU extensions for virtualization
 Can boot any unmodified OS
 Support via slow emulation, performance 2x-10x slower

 Paravirtualization: Xen PV 3.0
 Software: Interrupts, timers
 Paravirtual: CPU, Network I/O, Local+Network Storage
 Requires special OS kernels, interfaces with hypervisor for I/O
 Performance 1.1x – 1.5x slower than “bare metal”
 Instance store instances: 1ST & 2nd generation- m1.large, m2.xlarge

 Xen HVM 3.0
 Hardware virtualization: CPU, memory (CPU VT-x required)
 Paravirtual: network, storage
 Software: interrupts, timers
 EBS backed instances
 m1, c1 instances
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AWS VIRTUALIZATION - 2

 XEN HVM 4.0.1
 Hardware virtualization: CPU, memory (CPU VT-x required)
 Paravirtual: network, storage, interrupts, timers

 XEN AWS 2013 (diverges from opensource XEN)
 Provides hardware virtualization for CPU, memory, network
 Paravirtual: storage, interrupts, timers
 Called Single root I/O Virtualization (SR-IOV)
 Allows sharing single physical PCI Express device (i.e. network adapter) 

with multiple VMs
 Improves VM network performance
 3rd & 4th generation instances (c3 family)
 Network speeds up to 10 Gbps and 25 Gbps

 XEN AWS 2017
 Provides hardware virtualization for CPU, memory, network, local disk
 Paravirtual: remote storage, interrupts, timers
 Introduces hardware virtualization for EBS volumes (c4 instances)
 Instance storage hardware virtualization (x1.32xlarge, i3 family)
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AWS VIRTUALIZATION - 3
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 AWS Nitro 2017
 Provides hardware virtualization for CPU, memory, network, local 

disk, remote disk, interrupts, timers

 All aspects of virtualization enhanced with HW-level support

 November 2017

 Goal: provide performance indistinguishable from “bare metal”

 5th generation instances – c5 instances (also c5d, c5n)

 Based on KVM hypervisor

 Overhead around ~1%
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AWS VIRTUALIZATION - 4

QUESTIONS
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