
TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.1

Middleware Organization
and System Architectures

Wes J. Lloyd
School of Engineering
& Technology (SET)
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization
 Wrappers

 Interceptors

 Chapter 2.3: System Architectures
 Centralized system architectures

 Decentralized peer-to-peer architectures

 Hybrid architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.2

OBJECTIVES – 1/21

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.3

ONLINE DAILY FEEDBACK SURVEY

January 21, 2021
TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma L6.4

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.3

 Please classify your perspective on material covered in today’s
class (20 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.65 (- previous 6.74)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.60 (- previous 5.57)

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.5

MATERIAL / PACE

 In this class, there are several t imes that you mentioned the
sensors are relatively cheaper than the micro processor. I
would like to ask for a sensor network and distributed
network, what are the typical prices for sensors and
processors.

 Smart sensors are sensors with onboard compute
resources capable of performing data processing before
passing data on
 Features: programmable, data aggregation

 Specifics on pricing will depend on the application and
associated requirements
 Details go somewhat out of context for our class

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.6

FEEDBACK FROM 1/19

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.4

 Building a smart sensor often involves combining an Arduino
or Raspberry PI with custom
sensing hardware →

 Traditional temperature sensor
non-programmable

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.7

SMART SENSORS

thermocouple

Smart sensor components

 I think the Publish-subscribe architecture remains lest clear to
me. Maybe Professor could go into more details about the
coordinate table.

 Concepts:
 Temporal: is communication synchronous vs. asynchronous?
 Synchronous: client and server have a LIVE connection and

communicate directly with each other in-real-time
 Think phone call & LIVE conversation

 Asynchronous: client and server DO NOT HAVE LIVE
connection, communication is through cached messages
 Think EMAIL

 Referential: name, as in the name of the host or IP address
 Coupled: communication depends on …
 Decoupled: communication DOES NOT depend on …

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.8

FEEDBACK - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.5

 Enables separation between processing and coordination

 Types of coordination:

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.9

PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled
(dependent on name)

Direct
Explicit synchronous
service call

Mailbox
Asynchronous by
name (address)

Referentially
decoupled
(name not required)

Event-based
Event notices
published to shared
bus, w/o addressing

Shared data space
Processes write tuples
to a shared data
space

Publish and subscribe architectures

 Event-based coordination

 Processes do not know
about each other explicitly

 Processes:

Publish: a notification
describing an event

Subscribe: to receive
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

 Subscribers must actively MONITOR event bus

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.10

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.6

 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples

(subscribe)

 When tuples are added,
subscribers are notified of
matches

 Key characteristic:
Processes have no explicit
reference to each other

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.11

PUBLISH SUBSCRIBE ARCHITECTURES - 3

 Kindly suggest some additional reading material on
Architectures. I would l ike to understand more about
Temporal/Referential coupling/decoupling

 See Chapter 6.3 on Publish-subscribe systems pg. 242-253 in
Distributed Systems: Concepts and Design,
George Coulouris, Jean Doll imore, et al.
5th Edition, Pearson, 2011.

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.12

FEEDBACK

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.7

 Can you use diagrams to explain the difference between
stateless and stateful?

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.13

FEEDBACK - 3

eCommerce
website
example

 Stateful webservices often have requirement
to store user session information local to the server
processing the request

 Gateway/load
balancer needs
to be aware of
this

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.14

FEEDBACK - 4

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.8

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization
 Wrappers

 Interceptors

 Chapter 2.3: System Architectures
 Centralized system architectures

 Decentralized peer-to-peer architectures

 Hybrid architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.15

OBJECTIVES – 1/21

 Preparing for Assignment 0:
 Establish AWS Account

 Standard account – ** request cloud credits from instructor **

 Specify “AWS CREDIT REQUEST” as subject of email

 Include email address of AWS account

 AWS Educate Starter account – some account limitations

 https://awseducate-starter-account-services.s3.amazonaws.com/
AWS_Educate_Starter_Account_Services_Supported.pdf

 Establish local Linux/Ubuntu environment

 Task 1 – AWS account setup

 Task 2 – Working w/ Docker, creating Docker fi le for Apache Tomcat

 Task 3 – Creating a Dockerfile for haproxy

 Task 4 – Working with Docker-Machine

 Task 5 – For Submission: Testing Alternate Server Configurations

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.16

ASSIGNMENT 0

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.9

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization
 Wrappers

 Interceptors

 Chapter 2.3: System Architectures
 Centralized system architectures

 Decentralized peer-to-peer architectures

 Hybrid architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.17

OBJECTIVES – 1/21

IN-CLASS ACTIVITY:
ARCHITECTURAL

STYLES

L6.18

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.10

 We will form groups of ~2-3 and enter breakout rooms
 Each group will complete a Google Doc worksheet
 Add names to Google Doc as they appear in Canvas
 Once completed, one person submits a PDF of the Google

Doc to Canvas
 Instructor will score all group members based on the

uploaded PDF file
 To get started:
 Log into your *** UW Google Account ***
 Link to shared Google Drive
 Follow link:

https://tinyurl.com/y43bflzs

October 7, 2020 TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.19

CLASS ACTIVITY 2

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.20

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.11

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization
 Wrappers

 Interceptors

 Chapter 2.3: System Architectures
 Centralized system architectures

 Decentralized peer-to-peer architectures

 Hybrid architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.21

OBJECTIVES – 1/21

CH 2.2: MIDDLEWARE
ORGANIZATION

January 21, 2021
TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma L6.22

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.12

Relies on two important design patterns:

Wrappers

 Interceptors

Both help achieve the goal of openness

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.23

MIDDLEWARE ORGANIZATION

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization
 Wrappers

 Interceptors

 Chapter 2.3: System Architectures
 Centralized system architectures

 Decentralized peer-to-peer architectures

 Hybrid architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.24

OBJECTIVES – 1/21

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.13

 Wrappers (also called adapters)
 WHY?: Interfaces available from legacy software may not be

sufficient for all new applications to use
 WHAT: Special “frontend” components that provide interfaces for

clients
 Interface wrappers transform client requests to “implementation”

(i.e. legacy software) at the component-level
 Can then provide modern service interfaces for legacy code/systems
 Components encapsulate (i.e. abstract) dependencies to meet all

preconditions to operate and host legacy code
 Interfaces parameterize legacy functions, abstract environment

configuration (i.e. make into black box)

 Contributes towards system OPENNESS
 Example: Amazon S3: S3 HTTP REST interface
 GET/PUT/DELETE/POST: requests handed off for fulfi llment

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.25

MIDDLEWARE: WRAPPERS

 Inter-application communication
 Applications may provide unique interface for

every client application

 Scalability suffers
 N applications O(N2) wrappers

 ALTERNATE: Use a Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate
with the broker

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.26

MIDDLEWARE: WRAPPERS - 2

clients

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.14

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization
 Wrappers

 Interceptors

 Chapter 2.3: System Architectures
 Centralized system architectures

 Decentralized peer-to-peer architectures

 Hybrid architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.27

OBJECTIVES – 1/21

 Interceptor

Software construct, breaks flow of control, allows
other application code to be executed

 Interceptors send calls to other servers, or to ALL
servers that replicate an object while abstracting
the distribution and/or replication
 Used to enable remote procedure calls (RPC), remote

method invocation (RMI)

Object A calls method belonging to object B
 Interceptors route calls to object B regardless of location
January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma
L6.28

MIDDLEWARE: INTERCEPTORS

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.15

Request-level
interceptor
transforms:
B.doit(val)

into generic call:
invoke(B,&doit,val)

Message-level
interceptor in
middleware
sends message
through OS
(TCP/IP socket)
to transfer data:
send(B,”doit”,val)

Non-intercepted:

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.29

MIDDLEWARE: INTERCEPTORS - 2

If object is local

 MIDDLEWARE: Provides local inter face matching Object B to
Object A

 Object A calls Object B’s method provided by local interface

 A’s call is transformed into a “generic object invocation” by
request-level interceptor

 “Generic object invocation” is transformed into a message by
message-level interceptor and sent over Object A’s network to
Object B

 Interception automatically routes calls to all object replicas

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.30

MIDDLEWARE INTERCEPTION - METHOD

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.16

 GOAL: It should be possible to modify middleware without loss
of availability
 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime
by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support
modifiabil ity at runtime ?

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.31

MODIFIABLE MIDDLEWARE

WE WILL RETURN AT
2:36PM

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.17

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization
 Wrappers

 Interceptors

 Chapter 2.3: System Architectures
 Centralized system architectures

 Decentralized peer-to-peer architectures

 Hybrid architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.33

OBJECTIVES – 1/21

CH 2.3: SYSTEM
ARCHITECTURES

January 21, 2021
TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma L6.34

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.18

 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring
system design problems

 Expressed as a logical organization of components
and connectors

 Deciding on the system components, their
interactions, and placement is a “realization” of an
architectural style

 System architectures represent designs used in
practice

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.35

SYSTEM ARCHITECTURES

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization
 Wrappers

 Interceptors

 Chapter 2.3: System Architectures
 Centralized system architectures

 Decentralized peer-to-peer architectures

 Hybrid architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.36

OBJECTIVES – 1/21

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.19

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.37

TYPES OF SYSTEM ARCHITECTURES

 Clients request services
 Servers provide services
 Request-reply behavior

 Connectionless protocols (UDP)
 Assume stable network communication with no failures
 Best effort communication: No guarantee of message

arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received
 But what is the server doing?

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.38

CENTRALIZED:
SIMPLE CLIENT-SERVER ARCHITECTURE

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.20

 Connectionless cont’d

 Is resending the client request a good idea?

 Examples:
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide-area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.39

CLIENT-SERVER PROTOCOLS

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer l ived connections
 Example: database connections often retained

 Ongoing debate:

 How do you dif ferentiate between a cl ient and server?

 Roles are blurred

 Blurred Roles Example: Distributed databases

 DB nodes both service client requests, *and* submit new
requests to other DB nodes for replication, synchronization, etc.

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.40

CLIENT-SERVER PROTOCOLS - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.21

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.41

TCP/UDP

Connectionless (UDP)
stateless

Connection-oriented (TCP)
stateful

Advantages

Disadvantages

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.42

CONNECTIONLESS VS
CONNECTION ORIENTED

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.22

Connectionless (UDP)
stateless

Connection-oriented (TCP)
stateful

Advantages • Fast to communicate (no
connection overhead)

• Broadcast to an audience
• Network bandwidth savings

• Message delivery confirmation
• Idempotence not required
• Messages automatically resent

- if client (or network) is
temporarily unavailable

• Message sequences
guaranteed

Disadvantages • Cannot tell difference of
request vs. response failure

• Requires idempotence
• Clients must be online and

ready to receive messages

• Connection setup is time-
consuming

• More bandwidth is required
(protocol, retries, multinode-
communication)

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.43

CONNECTIONLESS VS
CONNECTION ORIENTED

 Where should functionality be distributed?
 At the client?
 At the server?

 Why should we consider component composition?

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.44

MULTITIERED ARCHITECTURES

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.23

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways
n components can be
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14
7

n . . .

SC15
SC14
SC13
SC12
SC11
SC10
SC9
SC8
SC7
SC6
SC5
SC4
SC3
SC2
SC1

CPU time disk reads disk writes network reads network writes

∆ Resource Utilization Change
Min to Max Utilization

m-bound d-bound

CPU time: 6.5% 5.5%
Disk sector reads: 14.8% 819.6%
Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

Resource utilization profile changes
from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean
• Shows relative magnitude of performance variance

Two application variants tested
• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.24

47

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆ Performance Change:
Min to max performance

M-bound: 14%
D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D),
fi leserver (F), and logging server (L)

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.48

MULTITIERED ARCHITECTURES - 2

M

D F L

client Server as a client

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.25

 Vertical distribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers
 M – The application server

 D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distr ibute load

 Load balancing

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.49

MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

 Sharding: portions of a database map” to a specific server

 Distributed hash table

 Or replica servers

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.50

MULTITIERED RESOURCE SCALING - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.26

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization
 Wrappers

 Interceptors

 Chapter 2.3: System Architectures
 Centralized system architectures

 Decentralized peer-to-peer architectures

 Hybrid architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.51

OBJECTIVES – 1/21

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.52

TYPES OF SYSTEM ARCHITECTURES

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.27

 Client/server:

 Nodes have specific roles

 Peer-to-peer:

 Nodes are seen as all equal…

 How should nodes be organized for communication?

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.53

DECENTRALIZED PEER-TO-PEER
ARCHITECTURES

 Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)

 Organization assists in data lookups

 Data indexed using “semantic-free” indexing

 Key / value storage systems

 Key used to look-up data

 Nodes store data associated with a subset of keys

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.54

STRUCTURED PEER-TO-PEER

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.28

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements wil l have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.55

DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs represented as 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number
of varying bits between neighboring nodes and destination

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.56

FIXED HYPERCUBE EXAMPLE

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.29

 Example: f ixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.57

FIXED HYPERCUBE EXAMPLE - 2

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Does i t matter which node is selected for the first hop?

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.58

WHICH CONNECTOR LEADS TO THE
SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit dif ferent than 1110)

0110 (1 bit dif ferent than 1110)

0011 (3 bits dif ferent– bad path)

0101 (3 bits dif ferent– bad path)

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.30

 Fixed hypercube requires static topology

 Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a cer tain size

 Chord system – DHT (again in ch.5)

 Dynamic topology

 Nodes organized in ring

 Every node has unique ID

 Each node connected with other nodes (shortcuts)

 Shortest path between any pair of nodes is ~ order O(log N)

 N is the total number of nodes

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.59

DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains finger table of successor nodes

 Client sends key/value
lookup to any node

 Node forwards cl ient
request to node with
m-bit ID closest to, but
not greater than key k

 Nodes must continually
refresh finger tables by
communicating with
adjacent nodes to
incorporate node
joins/departures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.60

CHORD SYSTEM

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.31

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facil itates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor l ists constantly refreshed
 Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible
 How would you calculate the route algorithmically?

 Routes must be discovered

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.61

UNSTRUCTURED PEER-TO-PEER

 Flooding
 [Node u] sends request for data item to all neighbors
 [Node v]
 Searches locally, responds to u (or forwarder) if having data

 Forwards request to ALL neighbors

 Ignores repeated requests

 Features
 High network traffic

 Fast search results by saturating the network with requests

 Variable # of hops

 Max number of hops or time-to-live (TTL) often specified

 Requests can “retry” by gradually increasing TTL/max hops until
data is found

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.62

SEARCHING FOR DATA:
UNSTRUCTURED PEER-TO-PEER SYSTEMS

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.32

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]
 If [node v] does not have data, forwards request to a

random neighbor
 Features
 Low network traffic
 Akin to sequential search
 Longer search time
 [node u] can start “n” random walks simultaneously to

reduce search time
 As few as n=16..64 random walks sufficient to reduce search

time (LV et al. 2002)
 Timeout required - need to coordinate stopping network-wide

walk when data is found…

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.63

SEARCHING FOR DATA - 2

 Policy-based search methods

 Incorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of
queries

 Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

 Favor neighbors having highest number of neighbors

 Can help minimize hops

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.64

SEARCHING FOR DATA - 3

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.33

 Problem:
Adhoc system search per formance does not scale well as
system grows

 Allow nodes to assume ROLES to improve search

 Content delivery networks (CDNs) (video streaming)

 Store (cache) data at nodes local to the requester (client)

 Broker node – tracks resource usage and node availability
 Track where data is needed

 Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

 Super peer –Broker node, routes client requests to storage
nodes

 Weak peer – Store data

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.65

HIERARCHICAL
PEER-TO-PEER NETWORKS

 Super peers
 Head node of local centralized network
 Interconnected via overlay network with other super peers
 May have replicas for fault tolerance

 Weak peers
 Rely on super peers to find data

 Leader-election problem:
 Who can become a

super peer?
 What requirements

must be met to become
a super peer?

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.66

HIERARCHICAL
PEER-TO-PEER NETWORKS - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.34

 Questions from 1/19

 Assignment 0: Cloud Computing Infrastructure Tutorial

 Class Activity: Architectural Styles

 Chapter 2.2: Middleware Organization
 Wrappers

 Interceptors

 Chapter 2.3: System Architectures
 Centralized system architectures

 Decentralized peer-to-peer architectures

 Hybrid architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.67

OBJECTIVES – 1/21

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.68

TYPES OF SYSTEM ARCHITECTURES

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.35

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:
 Adhoc peer-to-peer devices connect to the internet through an

edge server (origin server)

 Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

 Example:
 AWS Lambda@Edge: Enables Node.js Lambda Functions to

execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

 https://www.infoq.com/news/2017/07/aws-lambda-at-edge

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.69

HYBRID
ARCHITECTURES

 Fog computing:
 Extend the scope of managed resources beyond the

cloud to leverage compute and storage capacity of
end-user devices

 End-user devices become part of the overall system

 Middleware extended to incorporate managing edge
devices as participants in the distributed system

 Cloud in the sky
 compute/resource capacity is huge, but far away…

 Fog (devices) on the ground
 compute/resource capacity is constrained and local…
January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma
L6.70

HYBRID
ARCHITECTURES - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

Slides by Wes J. Lloyd L6.36

 BitTorrent Example:
File sharing system – users must contribute as a fi le host to
be eligible to download fi le resources

 Original implementation features hybrid architecture

 Leverages idle cl ient network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well
known address to access torrent fi le

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading fi le chunks and immediately then
participates to reserve downloaded content or network
bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L6.71

COLLABORATIVE DISTRIBUTED
SYSTEM EXAMPLE

QUESTIONS

January 21, 2021
TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma L6.72

