TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
| |

Middleware Organization
and System Architectures

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

OBJECTIVES - 1/21

| = Questions from 1/19 |

= Assignment O: Cloud Computing Infrastructure Tutorial

= Class Activity: Architectural Styles

= Chapter 2.2: Middleware Organization
= Wrappers
= Interceptors

= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2021]
Y 2R e A T e e oy R F S T T = TP

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 10p

® Thursday surveys: due ~ Mon @ 10p

= TCSS558A > Assignments

Winter 2021
Home

Announcements

* Upcoming Assignments

Zoom o TCSS 558~ Online Daily Feedback Survey - 1/5
Chat “¥ Notavailable until Jan 5 at 1:30pm | Due Jan 6 3t 10pm | -/1pts
January 21, 2021 TCS5558: Applied Distributed Computing [Winter 2021] -
School of chnology, y Tacoma

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan 6 at 10pm Points 1 Questions 4
Available Jan 5 at 1:30pm - Jan 6 at 11:59pm 1 day Time Limit None

[Question1 05pts

©Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

2 2 3 4 5 6 i 8 9 10

wosta e wostly
Pavion To e e ama Baview Now to e

O Question2 05pts
Please rate the pace of today's class
1 2 3 4 s & 7 8 9 10
Stow Just gt Fast
TCSS558: Applied Distributed Computing [Winter 2021]
T b School of Engineering and Technology, University of Washington - Tacoma L64

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (20 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.65 (- previous 6.74)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.60 (T - previous 5.57)

TCS5558: Applied Distributed Computing [Winter 2021]
January 21, 2021 SRl e K holosyUniersity " T 165

Slides by Wes J. Lloyd

FEEDBACK FROM 1/19

= In this class. there are several times that you mentloned the
sensors are relatlvely cheaper than the micro processor. |
would Ilke to ask for a sensor network and distributed
network, what are the typlcal prices for sensors and
processors.

= Smart sensors are sensors with onboard compute

resources capable of performing data processing before
passing data on

= Features: programmable, data aggregation
= Specifics on pricing will depend on the application and
associated requirements
= Details go somewhat out of context for our class

January 21, 2021 TCSS558: App.lied I?islribu(ed Computing [.Wim:er 2021]) 166
School of Technology, University of Tacoma

L6.1

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

SMART SENSORS

= Building a smart sensor often involves combining an Arduino
or Raspberry Pl with custom
sensing hardware —

= Traditional temperature sensor
non-programmable

i Smart s-e—nst;component?;

TCSS558: Applied Distributed Computing [Winter 2021]
‘ sy i P ‘ i G ST ity ety f T

January 21, 2021

FEEDBACK - 2

= | think the Publish-subscribe architecture remalns lest clear to
me. Maybe Professor could go Into more detalls about the
coordinate table.

= Concepts:
= Temporal: is communication synchronous vs. asynchronous?
= Synchronous: client and server have a LIVE connection and
communicate directly with each other in-real-time
= Think phone call & LIVE conversation
= Asynchronous: client and server DO NOT HAVE LIVE
connection, communication is through cached messages
= Think EMAIL
= Referential: name, as in the name of the host or IP address
= Coupled: communication depends on ...
= Decoupled: communication DOES NOT depend on ...

TCS5558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

January 21, 2021

PUBLISH-SUBSCRIBE ARCHITECTURES

= Enables separation between processing and coordination
= Types of coordination:

Temporally coupled | Temporally decoupled
(at the same time) (at different times)

. Direct Mailbox
Referentially coupled -
Explicit synchronous Asynchronous by
(dependent on name) .
service call name (address)
. Event-based Shared data space
Referentially N :
Event notices Processes write tuples

decoupled

. published to shared to a shared data
(name not required)

bus, w/o addressing space
Publish and subscribe architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

s
chnology, y Tacoma ‘ ‘

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

= Event-based coordination | Gomponsnt | | Component ‘

= Processes do not know Subscribe | !
about each other explicitly

Notification
delivery

Publish

= Processes:

= Publish: a notification
describing an event

=Subscribe: to receive
notification of specific kinds of events

= Assumes subscriber is presently up (temporally coupled)
= Subscribers must actively MONITOR event bus

TCSS558: Applied Distributed Computing [Winter 2021]

LY 2 ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

PUBLISH SUBSCRIBE ARCHITECTURES - 3

= Shared data space
= Full decoupling (name and time)
= Processes publish “tuples” to shared dataspace (publish)

= Processes provide search pattern to find tuples
(subscribe)

| Component I | Component I
= When tuples are added,
subscribers are notified of Publish Subscribe Data
matches Y y | deliver
o

= Key characteristic:
Processes have no explicit
reference to each other

Shared (persistent) data space

TCSS558: Applied Distributed Computing [Winter 2021]
iy i P Sehoo[ofErsineers K holosyUniersity q Tacoma

FEEDBACK

= Kindly suggest some additional reading material on
Architectures. | would like to understand more about

Temporal/Referential coupling/decoupling

= See Chapter 6.3 on Publish-subscribe systems pg. 242-253 in
Distributed Systems: Concepts and Design,
George Coulouris, Jean Dollimore, et al.
5th Edition, Pearson, 2011.

TCSS558: Applied Distributed Computing [Winter 2021]

LAY 2R Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

Slides by Wes J. Lloyd

L6.2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

FEEDBACK - 3

= Can you use dlagrams to explain the difference between
stateless and stateful?

eCommerce
website
example
Stateless Stateful
No session Session
No Login Login
No Basket Basket_ g
Static Content Dynamic Content

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y Tacoma

FEEDBACK - 4

= Stateful webservices often have requirement
to store user session information local to the server
processing the request

Stateful and Stateless Applications

= Gateway/load
balancer needs

Stateless
to.be aware of ot Microservice A
this GV i

Stateful T seter

N i Service | Microservice B
Services : = Partitions
Gateway Service ¥ -

TCS5558: Applied Distributed Computing [Winter 2021]

School of Technology, University Tacoma ‘ R ‘

January 21, 2021

OBJECTIVES - 1/21

= Questions from 1/19

| = Assignment O: Cloud Computing Infrastructure Tutorial |

= Class Activity: Architectural Styles

= Chapter 2.2: Middleware Organization
= Wrappers
= Interceptors

= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

January 21, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineeri iversi i

1615
chnology, y - Tacoma ‘

ASSIGNMENT O

= Preparing for Assignment 0:
= Establish AWS Account
Standard account - ** request cloud credlIts from Instructor **
= Specify “AWS CREDIT REQUEST" as subject of email
® Include email address of AWS account
AWS Educate Starter account - some account limitations
= https://awseducate-starter-account-services.s3.amazonaws.com/
AWS_Educate_Starter_Account_Services_Supported.pdf
= Establish local Linux/Ubuntu environment
= Task 1 - AWS account setup
= Task 2 - Working w/ Docker, creating Dockerfile for Apache Tomcat
= Task 3 - Creating a Dockerfile for haproxy
= Task 4 - Working with Docker-Machine
= Task 5 - For Submission: Testing Alternate Server Configurations

TCS5558: Applied Distributed Computing [Winter 2021]

LY 2 Schoolof EchnoloayiUniversiyer Tecoma

OBJECTIVES - 1/21

= Questions from 1/19

= Assignment O: Cloud Computing Infrastructure Tutorial

| = Class Actlvity: Archltectural Styles |
= Chapter 2.2: Middleware Organization
= Wrappers
= Interceptors
= Chapter 2.3: System Architectures
= Centralized system architectures

= Decentralized peer-to-peer architectures
= Hybrid architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y - Tacoma

i

IN-CLASS ACTIVITY:

ARCHITECTURAL
STYLES

Slides by Wes J. Lloyd

L6.3

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

CLASS ACTIVITY 2

= We will form groups of ~2-3 and enter breakout rooms
= Each group will complete a Google Doc worksheet
= Add names to Google Doc as they appear in Canvas

= Once completed, one person submits a PDF of the Google
Doc to Canvas

= Instructor will score all group members based on the
uploaded PDF file

= To get started:
= Log into your *** UW Google Account ***
= Link to shared Google Drive
= Follow link:

https://tinyurl.com/y43bflzs

January 21, 2021

TCS5562: Software Engineering for Cloud Computing [Fall 2020]
o el ‘

School o Technology, y Tacoma B

October 7, 2020 ‘

DISTRIBUTED SYSTEM GOALS

TO CONSIDER

= Consider how the architectural change may impact:
= Availability

® Accessibility

= Responsiveness

= Scalability

= QOpenness

m Distribution transparency

ESupporting resource sharing

= Other factors...

TCS5558: Applied Distributed Computing [Winter 2021]

School of Technology, University Tacoma 1620

January 21, 2021 ‘

OBJECTIVES - 1/21

= Questions from 1/19
= Assignment O: Cloud Computing Infrastructure Tutorial

= Class Activity: Architectural Styles
|= Chapter 2.2: Middleware Organization |

= Wrappers
= Interceptors

= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021] o2t
School of

Technology, y - Tacoma

Intorcepld call

CH 2.2: MIDDLEWARE
ORGANIZATION

TCSS558: Applied Distributed Computing [Winter 2021]

LTI A A School of Engineering and Technology, University of Washington -

MIDDLEWARE ORGANIZATION

OBJECTIVES - 1/21

= Relies on two important design patterns:
=Wrappers
=|nterceptors

= Both help achieve the goal of openness

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

Technology, y Tacoma

1623

Slides by Wes J. Lloyd

= Questions from 1/19
= Assignment O: Cloud Computing Infrastructure Tutorial

= Class Activity: Architectural Styles

= Chapter 2.2: Middleware Organization
= Interceptors

= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

TCS5558: Applied Distributed Computing [Winter 2021]

LAY 2R Schoolof echnoloayUniversityof S coma

624

L6.4

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

January 21, 2021

= Wrappers (also called adapters)

sufficient for all new applications to use
clients

(i.e. legacy software) at the component-level

preconditions to operate and host legacy code

configuration (i.e. make into black box)
= Contributes towards system OPENNESS

= Example: Amazon S3: S3 HTTP REST interface
= GET/PUT/DELETE/POST: requests handed off for fulfillment

MIDDLEWARE: WRAPPERS

= WHY?: Interfaces available from legacy software may not be
= WHAT: Special “frontend” components that provide interfaces for
= Interface wrappers transform client requests to “implementation”

= Can then provide modern service interfaces for legacy code/systems
= Components encapsulate (i.e. abstract) dependencies to meet all

= Interfaces parameterize legacy functions, abstract environment

January 21, 2021 TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma

MIDDLEWARE: WRAPPERS - 2

Wrapper
= [nter-application communication
clients —

= Applications may provide unique interface for
every client application ’
= Scalability suffers Application \
= N applications > O(N2) wrappers \U O
= ALTERNATE: Use a Broker
= Provide a common intermediary

= Broker knows how to communicate with Q :
<, o
je

every application
= Applications only know how to communicate Broker

with the broker O/

TCSS558: Applied Distributed Computing [Winter 2021]

Y 2R A R e e o R P T =

OBJECTIVES - 1/21

= Questions from 1/19

= Class Activity: Architectural Styles

= Chapter 2.2: Middleware Organization
= Wrappers

= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

= Assignment O: Cloud Computing Infrastructure Tutorial

MIDDLEWARE: INTERCEPTORS

= Interceptor
mSoftware construct, breaks flow of control, allows
other application code to be executed

= Interceptors send calls to other servers, or to ALL
servers that replicate an object while abstracting
the distribution and/or replication

= Used to enable remote procedure calls (RPC), remote
method invocation (RMI)

®Object A calls method belonging to object B
= Interceptors route calls to object B regardless of location

January 21, 2021 TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2021]

LY 2 ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

Glient application
call

B.doit(val
+/ W Application stub

| S

Request-evel interceptor - cal
[x
|) ’—{ invoke (B, &doif val)
(— o
¥ ‘ ‘ Object middieware ‘

\
Message-level interceptor If object is local I
s

J i send (B, “doit”, val] |

‘ Local OS ‘

¥ ToobjectB

MIDDLEWARE: INTERCEPTORS - 2

Request-level
interceptor
transforms:
B.doit(val)

into generic call:

invoke (B, &doit,val)

Message-level
interceptor in
middleware
sends message
through 0S
(TCP/IP socket)

to transfer data:
send (B, ”doit”,val)

Non-intercepted:

MIDDLEWARE INTERCEPTION - METHOD

= MIDDLEWARE: Provides local interface matching Object B to
Object A

= Object A calls Object B’s method provided by local interface

= A’s call is transformed into a “generic object invocation” by
request-level Interceptor

= “Generic object invocation” is transformed into a message by
message-level Interceptor and sent over Object A’s network to
Object B

= Interception automatically routes calls to all object replicas

January 21, 2021 ‘ TCS5558: Applied Distributed Computing [Winter 2021]

1629

School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2021]

Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma ‘ €30 ‘

January 21, 2021

Slides by Wes J. Lloyd

L6.5

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

January 21, 2021

MODIFIABLE MIDDLEWARE

= GOAL: It should be possible to modify middleware without loss
of availability
= Software components can be replaced at runtime

= Component-based design
= Modifiability through composition
= Systems may have static or dynamic configuration of components
= Dynamic configuration requires late binding
= Components can be changed at runtime

= Component based software supports modifiability at runtime
by enabling components to be swapped out.

= Does a microservices architecture (e.g. AWS Lambda) support
modlflabllity at runtime ?

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y Tacoma

WE WILL RETURN AT
2:36PM

OBJECTIVES - 1/21

= Questions from 1/19
= Assignment O: Cloud Computing Infrastructure Tutorial

= Class Activity: Architectural Styles

= Chapter 2.2: Middleware Organization
= Wrappers
= Interceptors

| = Chapter 2.3: System Archltectures |

= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

January 21, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineeri Technology, University i

1633
- Tacoma ‘

CH 2.3: SYSTEM
ARCHITECTURES

TCSS558: Applied Distributed Computing [Winter 2021]

penusvi2uzn2t School of Engineering and Technology, University of Washington -

SYSTEM ARCHITECTURES

= Architectural styles (or patterns)

= General, reusable solutions to commonly occurring
system design problems

= Expressed as a logical organization of components
and connectors

= Deciding on the system components, their
interactions, and placement is a “realization” of an

archltectural style

= System architectures represent designs used in
practice

January 21, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineeri iversity i Tacoma

Technology,

Slides by Wes J. Lloyd

OBJECTIVES - 1/21

= Questions from 1/19
= Assignment O: Cloud Computing Infrastructure Tutorial

= Class Activity: Architectural Styles

= Chapter 2.2: Middleware Organization
= Wrappers
= Interceptors

= Chapter 2.3: System Architectures

| = Centralized system architectures |

= Decentralized peer-to-peer architectures
= Hybrid architectures

January 21, 2021

School of Engineeri

TCS5558: Applied Distributed Computing [Winter 2021]
iversity i - Tacoma

1636

L6.6

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured

= Unstructured
= Hierarchically organized
= Hybrid architectures

TYPES OF SYSTEM ARCHITECTURES

TCS5558: Applied Distributed Computing [Winter 2021]

sy i P AT e v s s o T T T T

1637

January 21, 2021

CENTRALIZED:
SIMPLE CLIENT-SERVER ARCHITECTURE

Client Server

= Clients request services
= Servers provide services
= Request-reply behavior

Request

Wait Provide service
Reply

= Connectionless protocols (UDP)
= Assume stable network communication with no failures

= Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

= Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

= Clients can resend the request when no reply is received
= But what Is the server doing?

TCSS558: Applied Distributed Computing [Winter 2021]

Y 2R A R e e o R P T =

L6:38

= Connectlonless cont’d
= |s resending the client request a good idea?
= Examples:

= |dempotent - repeating requests is safe

= Connection-oriented (TCP)

= When communication is inherently reliable
= Leverage “reliable” TCP/IP connections

CLIENT-SERVER PROTOCOLS

Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money | have left”

= Client/server communication over wide-area networks (WANs)

TCS5558: Applied Distributed Computing [Winter 2021]

sy i P e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms

CLIENT-SERVER PROTOCOLS - 2

= Connectlon-orlented cont’d
= Set up and tear down of connections is relatively expensive
= Overhead can be amortized with longer lived connections

= Example: database connections often retained

= Ongoing debate:
= How do you differentiate between a client and server?
= Roles are blurred

= Blurred Roles Example: Distributed databases

= DB nodes both service client requests, *and* submit new
requests to other DB nodes for replication, synchronization, etc.

TCSS558: Applied Distributed Computing [Winter 2021]

LY 2 ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

ua |

Reliable Unesliatlo
Segment retransmiss e
£ No or
and flow control through s ol
LGl retransmission
Acknowledge segments | No acknowiedgement
TCSS558: Applied Distributed Computing [Winter 2021]
iy i P Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

Slides by Wes J. Lloyd

CONNECTIONLESS VS
CONNECTION ORIENTED

Connectlonless (UDP) Connectlon-orlented (TCP)
stateless stateful

Advantages

Disadvantages

TCS$558: Applied Distributed Computing [Winter 2021]

LAY 2R Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

L6.42

L6.7

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

January 21, 2021

CONNECTIONLESS VS

CONNECTION ORIENTED

temporarily unavailable
* Message sequences

Connectlon-orlented (TCP)

Connectlonless (UDP)
stateless stateful

Advantages ° Fastto communicate (no * Message delivery confirmation

connection overhead) + ldempotence not required
* Broadcast to an audience + Messages automatically resent
+ Network bandwidth savings - if client (or network) is

guaranteed
Disadvantages ° Cannot tell difference of + Connection setup is time-
request vs. response failure consuming
* Requires idempotence * More bandwidth is required
* Clients must be online and (protocol, retries, multinode-
ready to receive r communication)

TCS5558: Applied Distributed Computing [Winter 2021]

sy i P AT e v s s o T T T T

1643

MULTITIERED ARCHITECTURES

= Where should functionality be distributed?
= At the client?
= At the server?

Client machine

nleriac_eJ [Userinterface] [User interface | [User interface| [User interface

‘Useri

PPl

oo, | [

Database_

User interface Yo i i

Database | | Database | [Database [Database | T”>|/3a«abase‘

erver machine.

= Why should we consider component composition?

TCS5558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

January 21, 2021 1644 ‘

Bell’'s Number: 4 15
5 52
k: number of ways
n components can be 6 203
distributed across containers 7 877
8 4,140
9 21,14
7

n ...

_/

M: Tomcat ApplicationServer
D: Postgresql DB

F: nginx file server

L: Logging server (high O/H)

Resource utilization profile changes
from component composition

M-bound RUSLE2 - Soil Erosion Model Webservice
* Box size shows absolute deviation (+/-) from mean
* Shows relative magnitude of performance variance

Two application varlants tested

* M-bound: Standard service, M is compute bound
* D-bound: Modified service, D is compute bound

Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%

Network bytes sent: 143.7% 143.9%

CPUtime diskreads diskwrites networkreads networkwrites

Resource footprint

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

15

Min to max performance

Sl

M-bound: 14%
D-bound: 25.7%

A Performance Change:

I

Service Configurations

scl sc2 sc3 scd sc5 sc6 sc7 scB sc9 scl0scllscl2sc13scldscls

MULTITIERED ARCHITECTURES - 2

= M D F L architecture

= M - is the application server

= M - is also a client to the database (D),
fileserver (F), and logging server (L)

Server as a client

Client Application Databast
server server
Request
operation
Request
data
Wait for Wait for
reply data
Return
data
Return

repl

TCS$558: Applied Distributed Computing [Winter 2021]

LAY 2R Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

us |

Slides by Wes J. Lloyd

L6.8

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

MULTITIERED RESOURCE SCALING

= Vertical distribution
= The distribution of “M D F L”
= Application is scaled by placing “tiers” on separate servers
= M - The application server
= D - The database server
= Vertical distribution impacts “network footprint” of application
= Service isolation: each component is isolated on its own HW

= Horizontal distribution
® Scaling an individual tier

= Add multiple machines and distribute load

= Load balancing

TCSS558: Applied Distributed Computing [Winter 2021]

SnuSVZDRZI2E School of Engineering and Technology, University of Washington - Tacoma

January 21, 2021

MULTITIERED RESOURCE SCALING - 2

= Horlzontal distribution cont’d
=Sharding: portions of a database map” to a specific server
= Distributed hash table
= Or replica servers

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma 1650

January 21, 2021

OBJECTIVES - 1/21

= Questions from 1/19
= Assignment O: Cloud Computing Infrastructure Tutorial

= Class Activity: Architectural Styles

= Chapter 2.2: Middleware Organization
= Wrappers
= Interceptors

= Chapter 2.3: System Architectures
= Centralized system architectures

= Decentralized peer-to-peer architectures |

= Hybrid architectures

TCS5558: Applied Distributed Computing [Winter 2021]

sy i P e oolol Enpinar s endTechnoloayilnve sty e e hineronikTacoma

TYPES OF SYSTEM ARCHITECTURES

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2021]

LY 2 ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

652

DECENTRALIZED PEER-TO-PEER
ARCHITECTURES

= Client/server:
= Nodes have specific roles

= Peer-to-peer:
= Nodes are seen as all equal...

= How should nodes be organized for communication?

TCS5558: Applied Distributed Computing [Winter 2021]

iy i P Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

STRUCTURED PEER-TO-PEER

= Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)
= Organization assists in data lookups

= Data indexed using “semantic-free” indexing
= Key / value storage systems

= Key used to look-up data

= Nodes store data associated with a subset of keys

TCS$558: Applied Distributed Computing [Winter 2021]

LAY 2R Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

L6s4

Slides by Wes J. Lloyd

L6.9

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

January 21, 2021

DISTRIBUTED HASH TABLE (DHT)

= Distributed hash table (DHT) (ch. 5)
= Hash function

key(data item) = hash(data item’s value)
= Hash function “generates” a unique key based on the data
= No two data elements will have the same key (hash)
= System supports data lookup via key

= Any node can receive and resolve the request
= Lookup function determines which node stores the key

existing node = lookup (key)

= Node forwards request to node with the data

TCS5558: Applied Distributed Computing [Winter 2021]

sy i P AT e v s s o T T T T

FIXED HYPERCUBE EXAMPLE

= Example where topology helps route data lookup request

= Statically sized 4-D hypercube, every node has 4 connectors
= 2 x 3-D cubes, 8 vertices, 12 edges

= Node IDs represented as 4-bit code (0000 to 1111)

= Hash data items to 4-bit key (1 of 16 slots)

= Distance (number of hops) determined by identifying number
of varying bits between neighboring nodes and destination

TCSS558: Applied Distributed Computing [Winter 2021]

Y 2R A R e e o R P T =

FIXED HYPERCUBE EXAMPLE - 2

= Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

= Node 1110 is not a neighbor to 0111

= Which connector leads to the shortest path?

TCS5558: Applied Distributed Computing [Winter 2021]

sy i P e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms

WHICH CONNECTOR LEADS TO THE
SHORTEST PATH?

= Example: node 0111 (7) retrieves data from node 1110 (14)
= Node 1110 is not a neighbor to 0111

0111] Neighbors:
1111 (1 bit different than 1110) 0011 (3 bits different- bad path)
0110 (1 bit different than 1110) 0101 (3 bits different- bad path)

= Does it matter which node is selected for the first hop?

TCSS558: Applied Distributed Computing [Winter 2021]

LY 2 ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

DYNAMIC TOPOLOGY

= Fixed hypercube requires static topology
= Nodes cannot join or leave

= Relies on symmetry of number of nodes

= Can force the DHT to a certain size

= Chord system - DHT (again in ch.5)
= Dynamic topology
= Nodes organized in ring
= Every node has unique ID
= Each node connected with other nodes (shortcuts)
= Shortest path between any pair of nodes is ~ order O(log N)
= N is the total number of nodes

TCS5558: Applied Distributed Computing [Winter 2021]

iy i P Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

CHORD SYSTEM

Data items have m-bit key

Data item is stored at closest “successor” node with ID 2 key k
Each node maintains finger table of successor nodes

Client sends key/value
lookup to any node
Node forwards client
request to node with
m-bit ID closest to, but
not greater than key k
= Nodes must continually
refresh finger tables by
communicating with
adjacent nodes to
incorporate node
joins/departures

lode responsible fo
eys (5.67.8.9)

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ 1660 ‘

Slides by Wes J. Lloyd

L6.10

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

UNSTRUCTURED PEER-TO-PEER

= No topology: How do nodes fInd out about each other?
= Each node maintains adhoc list of neighbors
= Facilitates nodes frequently joining, leaving, adhoc systems

= Neighbor: node reachable from another via a network path

= Neighbor lists constantly refreshed

= Nodes query each other, remove unresponsive neighbors
= Forms a “random graph”
= Predetermining network routes not possible

= How would you calculate the route algorithmically?

= Routes must be discovered

TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ Leet

January 21, 2021

January 21, 2021

SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

" Flooding
® [Node u] sends request for data item to all neighbors
® [Node v]
= Searches locally, responds to u (or forwarder) if having data
= Forwards request to ALL neighbors
= Ignores repeated requests
= Features
= High network traffic
= Fast search results by saturating the network with requests
= Variable # of hops
= Max number of hops or time-to-live (TTL) often specified

= Requests can “retry” by gradually increasing TTL/max hops until
data is found

TCSS558: Applied Distributed Computing [Winter 2021]

A R e e o R P T = ‘ o8 ‘

January 21, 2021

SEARCHING FOR DATA - 2

=" Random walks
® [Node u] asks a randomly chosen neighbor [node v]
= |f [node v] does not have data, forwards request to a
random neighbor
= Features
= Low network traffic
= Akin to sequential search
= Longer search time
® [node u] can start “n” random walks simultaneously to
reduce search time
= As few as n=16..64 random walks sufficient to reduce search
time (LV et al. 2002)
= Timeout required - need to coordinate stopping network-wide
walk when data is found...

TCS5558: Applied Distributed Computing [Winter 2021]

sy i P e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms

SEARCHING FOR DATA - 3

= Pollcy-based search methods

= Incorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of
queries

= Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

= Favor neighbors having highest number of neighbors
= Can help minimize hops

TCSS558: Applied Distributed Computing [Winter 2021]

LY 2 ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

[e]

HIERARCHICAL

PEER-TO-PEER NETWORKS

= Problem:
Adhoc system search performance does not scale well as
system grows
= Allow nodes to assume ROLES to improve search
= Content delivery networks (CDNs) (video streaming)
= Store (cache) data at nodes local to the requester (client)
= Broker node - tracks resource usage and node availability
Track where data is needed
Track which nodes have capacity (disk/CPU resources) to host data
= Node roles

= Super peer -Broker node, routes client requests to storage
nodes

= Weak peer - Store data

TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ Lees

January 21, 2021

HIERARCHICAL

PEER-TO-PEER NETWORKS - 2

= Super peers
= Head node of local centralized network
= Interconnected via overlay network with other super peers
= May have replicas for fault tolerance

= Weak peers
= Rely on super peers to find data

= Leader-election problem:
= Who can become a
super peer?
= What requirements
must be met to become
a super peer?

TCS$558: Applied Distributed Computing [Winter 2021]

LAY 2R Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

Slides by Wes J. Lloyd

L6.11

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 1/21

= Questions from 1/19
= Assignment O: Cloud Computing Infrastructure Tutorial

= Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
= Wrappers
= Interceptors
= Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
| = Hybrld archltectures

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineeri chnology, University i - Tacoma

‘ January 21, 2021 ‘ 1667 ‘

January 21, 2021

TYPES OF SYSTEM ARCHITECTURES

= Centralized system architectures
= Client-server
= Multitiered

= Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

| = Hybrid architectures |

TCS5558: Applied Distributed Computing [Winter 2021]
School of Engineeri Technology, University i Tacoma

‘ January 21, 2021 ‘ ‘ 16.68 ‘

}_‘ Client Content provider !—\\ ju]
HYBRID 2 ;
ARCHITECTURES

Enterprise network

= Combine centralized server concepts with decentralized
peer-to-peer models

= Edge-server systems:
= Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

= Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

= Example:

= AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

= https://www.infoq.com/news/2017/07/aws-lambda-at-edge

January 21, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

’ 669
chnology, y Tacoma ‘ ‘

[Chent Content provider

HYBRID

ARCHITECTURES - 2

= Fog computing:

= Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

= End-user devices become part of the overall system

= Middleware extended to incorporate managing edge
devices as participants in the distributed system

= Cloud - in the sky
= compute/resource capacity is huge, but far away...
= Fog > (devices) on the ground

= compute/resource capacity is constrained and local...

TCS5558: Applied Distributed Computing [Winter 2021]
School of Engineeri Technology, University of Washi Tacoma

January 21, 2021

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE

= BitTorrent Example:
File sharing system - users must contribute as a file host to
be eligible to download file resources

= Original implementation features hybrid architecture

= Leverages idle client network capacity in the background

= User joins the system by interacting with a central server

= Client accesses global directory from a tracker server at well
known address to access torrent file

= Torrent file tracks nodes having chunks of requested file

= Client begins downloading file chunks and immediately then
participates to reserve downloaded content or network
bandwldth Is reduced!!

= Chunks can be downloaded in parallel from distributed nodes

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineeri chnology, University i Tacoma

January 21, 2021

Slides by Wes J. Lloyd

QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington -

January 21, 2021

L6.12

