TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
||

Distributed Systems

Architectures and
Middleware Organization

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

OBJECTIVES - 1/19

| = Questions from 1/14 |

® Assignment O: Cloud Computing Infrastructure Tutorial

® Chapter 2: Distributed System Architectures:

= Chapter 2.1 -

Architectural Styles

= Resource-centered architectures
Representational state transfer (REST)

= Event-based

Publish and subscribe (Rich Site Summary RSS feeds)

Class Activity: Architectural Styles
Chapter 2.2: Middleware Organization
Chapter 2.3: System Architectures

= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

January 19, 2021

TCSS558: Applied Distributed Computing [Winter 2021]

L5.2
School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

January 19, 2021

L5.1

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

ONLINE DAILY FEEDBACK SURVEY

® Daily Feedback Quiz in Canvas - Available After Each Class
® Extra credit available for completing surveys ON TIME

® Tuesday surveys: due by Wed @ 10p

® Thursday surveys: due Mon @ 10p

— TCSS 558 A > Assignments

Winter 2021

Home

Announcements

I * Upcoming Assignments

Zoom

Mot available until Jan 5 at 1:30pm | Due Jan 6 at 10pm

Chat

“ TCSS 558 - Online Daily Feedback Survey - 1/5
b

| -1 pts

TCSS558: Applied Distributed Computing [Winter 2021]

lananvpio 2021 School of Engineering and Technology, University of Washington - Tacoma

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan 6 at 10pm Points 1 Questions 4
Available Jan 5 at 1:30pm - Jan 6 at 11:59pm 1 day Time Limit None

[| Question1 0.5 pts

On a scale of 1 to 10, please classify your perspective on material covered in today’s

class:
1 7 3 4 5 6 T 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts

Please rate the pace of today's class:

1 2 3 4 5 6 7 8 9 1e

Slow Just Right Fast

TCSS558: Applied Distributed Computing [Winter 2021]

dEIIERY e 2017 School of Engineering and Technology, University of Washington - Tacoma

L5.4

Slides by Wes J. Lloyd

January 19, 2021

L5.2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (23 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.74 (J - previous 7.46)

® Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.57 (| - previous 5.67)

TCSS558: Applied Distributed Computing [Winter 2021]

lananvpio 2021 School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK FROM 1/14

® For pervasive, | am not clear about the differences between
Ubiquitous computing systems and Sensor networks.

® Pervasive Computing Systems consists of systems that have
hardware “everywhere”

= We covered three types:
= Ubiquitous Systems, Mobile Systems, Sensor Networks

® A major distinguishing factor with Ubiquitous Systems is that
they consist of many heterogeneous devices

= processors in day-to-day objects - think Home Automation
® Sensor networks

= Can have heterogeneous devices, but in general many sensor nodes
are uniform / similar in nature (homogeneous)

TCSS558: Applied Distributed Computing [Winter 2021]

L5.6
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

Slides by Wes J. Lloyd

January 19, 2021

L5.3

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

FEEDBACK - 2

" |I'm wondering how architectures (Layered and Object-based)
are actually built or coded? How are they formed in real life?

® |[n general, you would develop the system by following the
overall architectural style

= Layered:
= Layers divide functionality to provide a separate of concerns

= Lower-level layers provide functionality to higher layers
= Higher-level layers benefit from functionality offered by lower layers

= Higher-level layers in general do not worry about specific details
regarding the implementation of lower layers (i.e. abstraction)

= This architecture enables extensibility and reusability
® Object-based: ...

TCSS558: Applied Distributed Computing [Winter 2021]

lananvpio 2021 School of Engineering and Technology, University of Washington - Tacoma

APPLICATION LAYERING

® Distributed application example: Internet search engine

User-interface
User interface } jovel
\ HTML page
<eyword expression containing list
HTML
generator Processing

i A Ranked ist level
generator

of page titles

Ranking
Database queries algorithm
___________ « SN
Web page titles
with meta-information
Database Data level

with Web pages

TCSS558: Applied Distributed Computing [Winter 2021]

L5.8
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

Slides by Wes J. Lloyd

January 19, 2021

L5.4

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

OBJECT AND COMPONENT BASED

ARCHITECTURAL STYLES

Component-based desigh model

emphasizes reuse

R

—>

C Sele?, Design
OooD

4+—— Implementation

4—» |ntegration

Test | Test |

Component evaluation System Development
Component-Based Design Object-Based Design

TCSS558: Applied Distributed Computing [Winter 2021]

lananvpio 2021 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 1/19

Questions from 1/14

Assignment 0: Cloud Computing Infrastructure Tutorial |

Chapter 2: Distributed System Architectures:

= Chapter 2.1 - Architectural Styles

= Resource-centered architectures
Representational state transfer (REST)

= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)

Class Activity: Architectural Styles

Chapter 2.2: Middleware Organization

Chapter 2.3: System Architectures

= Centralized system architectures

= Decentralized peer-to-peer architectures

= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2021]

LTIy 1) APl School of Engineering and Technology, University of Washington - Tacoma

L5.10

Slides by Wes J. Lloyd

January 19, 2021

L5.5

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

ASSIGNMENT O

Preparing for Assignment O:
= Establish AWS Account

Standard account - ** request cloud credits from instructor **
= Specify “AWS CREDIT REQUEST” as subject of email
= Include email address of AWS account

AWS Educate Starter account - some account limitations

= hitps://awseducate-starter-account-services.s3.amazonaws.com/
AWS_Educate_Starter_Account_Services_Supported.pdf

= Establish local Linux/Ubuntu environment

Task 1 - AWS account setup

Task 2 - Working w/ Docker, creating Dockerfile for Apache Tomcat
Task 3 - Creating a Dockerfile for haproxy

Task 4 - Working with Docker-Machine

Task 5 - For Submission: Testing Alternate Server Configurations

TCSS558: Applied Distributed Computing [Winter 2021]

lananvpio 2021 School of Engineering and Technology, University of Washington - Tacoma

L5.11

OBJECTIVES - 1/19

Questions from 1/14
Assignment 0: Cloud Computing Infrastructure Tutorial

Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles

= Resource-centered architectures
Representational state transfer (REST)

= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)

Class Activity: Architectural Styles
Chapter 2.2: Middleware Organization
Chapter 2.3: System Architectures

= Centralized system architectures

= Decentralized peer-to-peer architectures

= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2021]

LTIy 1) APl School of Engineering and Technology, University of Washington - Tacoma

L5.12

Slides by Wes J. Lloyd

January 19, 2021

L5.6

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

RESOURCE BASED ARCHITECTURES

= Motivation:
= Increasing number of services available online
= Each with specific protocol(s), methods of interfacing
= Connecting services w/ different TCP/IP protocols
- integration nightmare

Need for specialized client for each service that speaks the
application protocol “language”...

® Need standardization of interfaces

= Make services/components more pluggable

= Easier to adopt and
integrate

= Common
architecture

TCSS558: Applied Distributed Computing [Winter 2021]
lanuapyilop202t School of Engineering and Technology, University of Washington - Tacoma 513

REST SERVICES

= Representational State Transfer (REST)
® Built on HTTP

®= Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
Four operations: GET PUT POST DELETE

Messages to/from a service are fully described

After execution server forgets about client
Stateless execution

TCSS558: Applied Distributed Computing [Winter 2021]
LTIy 1) APl School of Engineering and Technology, University of Washington - Tacoma 1514

Slides by Wes J. Lloyd

January 19, 2021

L5.7

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

® An ASCIlIl-based request/reply protocol for transferring

information on the web
B HTTP request includes:
= request method (GET, POST, etc.)
= Uniform Resource Identifier (URI)
= HTTP protocol version understood by the client
= headers—extra info regarding transfer request

® HTTP response from server HTTP status codes:

= Protocol version & status code > 2xx — all is well
3)@(— resource fnoved

= Response headers

dxx — access problem

= Response body

Sxx — server error

TCSS558: Applied Distributed Computing [Winter 2021]
lanuapyilop202t School of Engineering and Technology, University of Washington - Tacoma

L5.15

REST-FUL OPERATIONS

Operation __________Descripon |

PUT Create a new resource (C)reate
GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate
DELETE Delete a resource (D)elete

®m Resources often implemented as objects in 00 languages
®m REST is weak for tracking state

® Generic REST interfaces enable ubiquitous “so many” clients

TCSS558: Applied Distributed Computing [Winter 2021]

LTIy 1) APl School of Engineering and Technology, University of Washington - Tacoma

L5.16

Slides by Wes J. Lloyd

January 19, 2021

L5.8

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

EXAMPLE: AMAZON S3

® Amazon S3 offers a REST-based interface

B Requires signing HTTP authorization header or passing

authentication parameters in the URL query string
& AWS SDKs and Explorers

= REST: GET/PUT/POST/DELETE O Set Up the AWS CLI

®m SOAP: 16 operations, moving toward O Usingthe AWS SDK for Java
deprecation 0 Using the AWS SDK for .NET

= Python boto ~50 operations O Using the AWS SDK for PHP
(SDK for Python) and Running PHP Examples

[Using the AWS SDK for Ruby -

®m SDKs for other languages o i

1 Using the AWS SDK for Python
(Boto)

TCSS558: Applied Distributed Computing [Winter 2021] 1517

lananvpio 2021 School of Engineering and Technology, University of Washington - Tacoma

m Defacto web services protocol

B Requests made to a URI - uniform resource identifier
B Supersedes SOAP - Simple Object Access Protocol

®m Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

® Responses most often in JSON, also HTML, ASCII text,
XML, no real limits as long as text-based

E curl - generic command-line REST client:
https://curl.haxx.se/

TCSS558: Applied Distributed Computing [Winter 2021] 15.18
School of Engineering and Technology, University of Washington - Tacoma :

January 19, 2021

Slides by Wes J. Lloyd

January 19, 2021

L5.9

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave .com/soapworx/examples/DayOfWeek .wsdl"
xmlns: tns="http://www.roguewave.com/soapworx/examples/DayOfWeek .wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput'">
<part name="date" type="xsd:date"/>
</message>
<message name="DayOfWeekResponse'>
<part name="dayOfWeek" type="xsd:string"/>
</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
tns:DayO k />

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetDayOfWeek'">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

</output>
</operation>
</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date
</documentation>

<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek" />

</port>
</service>
</definitions>
L5.19
// REST/JSON
// Request climate data for Washington
{
"parameter": [
{
"name": "latitude",
"value" :47.2529
b,
{
"name": "longitude",
"value'":-122.4443
}
1
}
L5.20

Slides by Wes J. Lloyd

January 19, 2021

L5.10

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 1/19

Questions from 1/14

m Assighment 0: Cloud Computing Infrastructure Tutorial

Chapter 2: Distributed System Architectures:
= Chapter 2.1 -

Architectural Styles

= Resource-centered architectures
Representational state transfer (REST)

= Event-based

Publish and subscribe (Rich Site Summary RSS feeds)

Class Activity: Architectural Styles
Chapter 2.2: Middleware Organization
Chapter 2.3: System Architectures

= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

January 19, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.21

PUBLISH-SUBSCRIBE ARCHITECTURES

® Enables separation between processing and coordination
= Types of coordination:

Temporally coupled | Temporally decoupled
(at the same time) (at different times)

Referentially coupled
(dependent on name)

Referentially
decoupled

(name not required)

published to shared to a shared data
bus, w/o addressing space

Direct Mailbox
Explicit synchronous Asynchronous by
service call name (address)
Event-based Shared data space
Event notices Processes write tuples

Publish and subscribe architectures

January 19, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.22

Slides by Wes J. Lloyd

January 19, 2021

L5.11

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

= Event-based coordination Component Component
= Processes do not know Subscribe | {4 Notification
o v 2 delivery
about each other explicitly < e
0 Publish
uplis
E Processes:
. . i Component
= Publish: a notification

describing an event
=Subscribe: to receive
notification of specific kinds of events
= Assumes subscriber is presently up (temporally coupled)
® Subscribers must actively MONITOR event bus

TCSS558: Applied Distributed Computing [Winter 2021]

15.23
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

PUBLISH SUBSCRIBE ARCHITECTURES - 3

= Shared data space
B Full decoupling (name and time)
® Processes publish “tuples” to shared dataspace (publish)

B Processes provide search pattern to find tuples
(subscribe)

Component Component
® When tuples are added, A
subscribers are notified of pubnshl SL,bscribei Data
matches 7 delivery
I r,,f,]

®m Key characteristic: y ¥
Processes have no explicit
reference to each other

Shared (persistent) data space

TCSS558: Applied Distributed Computing [Winter 2021]

L5.24
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

Slides by Wes J. Lloyd

January 19, 2021

L5.12

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

PUBLISH SUBSCRIBE ARCHITECTURES - 4

® Subscriber describes events interested in
B Complex descriptions are intensive to evaluate and fulfil
= Middleware will:
® Publish matching notification and data to subscribers
= Common if middleware lacks storage
®= Publish only matching notification
= Common if middleware provides storage facility
= Client must explicitly fetch data on their own

® Publish and subscribe systems are generally scalable

® What would reduce the scalability of a publish-and-
subscribe system?

TCSS558: Applied Distributed Computing [Winter 2021]

15.25
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

OBJECTIVES - 1/19

® Questions from 1/14
® Assignment O: Cloud Computing Infrastructure Tutorial

® Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
Representational state transfer (REST)

= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
| = Class Activity: Architectural Styles |
= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures
= Centralized system architectures

= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2021]

L5.26
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

Slides by Wes J. Lloyd

January 19, 2021

L5.13

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

IN-CLASS ACTIVITY:
ARCHITECTURAL
STYLES

o
) Eﬁ#ﬁl’!xm: W . &

CLASS ACTIVITY 2

® We will form groups of ~2-3 and enter breakout rooms
= Each group will complete a Google Doc worksheet
= Add names to Google Doc as they appear in Canvas

® Once completed, one person submits a PDF of the Google
Doc to Canvas

® [nstructor will score all group members based on the
uploaded PDF file

= To get started:
= Log into your *** UW Google Account ***
= Link to shared Google Drive

= Follow link:

https://tinyurl.com/y43bflzs

October 7, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

Slides by Wes J. Lloyd

January 19, 2021

L5.14

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

DISTRIBUTED SYSTEM GOALS

TO CONSIDER

= Consider how the architectural change may impact:

® Availability

m Accessibility

® Responsiveness

m Scalability

®Openness

m Distribution transparency
ESupporting resource sharing
= QOther factors...

TCSS558: Applied Distributed Computing [Winter 2021]

lananvpio 2021 School of Engineering and Technology, University of Washington - Tacoma

L5.29

Intercepted call

Client application

CH 2.2: MIDDLEWARE

ORGANIZATION

TCSS558: Applied Distributed Computing [Winter 2021]

BTV) 20 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

January 19, 2021

L5.15

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 1/19

Questions from 1/14

m Assighment 0: Cloud Computing Infrastructure Tutorial

Chapter 2: Distributed System Architectures:
= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
Representational state transfer (REST)
= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
m Class Activity: Architectural Styles
I = Chapter 2.2: Middleware Organization I
® Chapter 2.3: System Architectures
= Centralized system architectures
= Decentralized peer-to-peer architectures
= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2021]

lananvpio 2021 School of Engineering and Technology, University of Washington - Tacoma

15.31

MIDDLEWARE ORGANIZATION

= Relies on two important designh patterns:
=Wrappers
=|nterceptors

= Both help achieve the goal of openness

TCSS558: Applied Distributed Computing [Winter 2021]

LTIy 1) APl School of Engineering and Technology, University of Washington - Tacoma

L5.32

Slides by Wes J. Lloyd

January 19, 2021

L5.16

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

= Wrappers (also called adapters)

sufficient for all new applications to use
clients

(i.e. legacy software) at the component-level

preconditions to operate and host legacy code

configuration (i.e. make into black box)
® Contributes towards system OPENNESS
= Example: Amazon S3: S3 HTTP REST interface

MIDDLEWARE: WRAPPERS

= WHY?: Interfaces available from legacy software may not be
= WHAT: Special “frontend” components that provide interfaces for

= Interface wrappers transform client requests to “implementation”

= Interfaces parameterize legacy functions, abstract environment

® GET/PUT/DELETE/POST: requests handed off for fulfillment

= Can then provide modern service interfaces for legacy code/systems
= Components encapsulate (i.e. abstract) dependencies to meet all

TCSS558: Applied Distributed Computing [Winter 2021]

January 19, 2021

School of Engineering and Technology, University of Washington - Tacoma

15.33

® |[nter-application communication

= Applications may provide unique interface for
every client application

® Scalability suffers
= N applications > O(N2) wrappers

= ALTERNATE: Use a Broker
= Provide a common intermediary
= Broker knows how to communicate with
every application

= Applications only know how to communicate
with the broker

MIDDLEWARE: WRAPPERS - 2

Wrapper

TCSS558: Applied Distributed Computing [Winter 2021]

January 19, 2021

School of Engineering and Technology, University of Washington - Tacoma

L5.34

Slides by Wes J. Lloyd

January 19, 2021

L5.17

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

MIDDLEWARE: INTERCEPTORS

= |Interceptor

m Software construct, breaks flow of control, allows

other application code to be executed

® |Interceptors send calls to other servers, or to ALL
servers that replicate an object while abstracting

the distribution and/or replication

= Used to enable remote procedure calls (RPC), remote

method invocation (RMI)

= Object A calls method belonging to object B

= [nterceptors route calls to object B regardless of location

January 19, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.35

MIDDLEWARE: INTERCEPTORS - 2

Client application

t |—{ B.doit (val) }—|
Application stub y
v |

N 0 o
Request-level interceptor i_ Nonintercepted cal

I | A
| Y L

L% .J invoke (B, &doit, wval)
. . T
v | Object middieware E

L

\ !
Message-level interceptor —llf ohject is local I
-

Y

|—| send (B, "doit”, wal)

]

Local OS

¥ ToobjectB

Request-level
interceptor
transforms:
B.doit(val)

into generic call:

invoke (B, &doit,val)

Message-level

interceptor in
middleware

sends message

through 0S

(TCP/IP socket)

to transfer data:
send (B, ”doit” ,val)

Non-intercepted:

January 19, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington -

Tacoma

L5.36

Slides by Wes J. Lloyd

January 19, 2021

L5.18

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

MIDDLEWARE INTERCEPTION - METHOD

= MIDDLEWARE: Provides local interface matching Object B to
Object A

® Object A calls Object B's method provided by local interface

®m A’'s call is transformed into a “generic object invocation” by
request-level interceptor

m “Generic object invocation” is transformed into a message by
message-level interceptor and sent over Object A's network to
Object B

® |nterception automatically routes calls to all object replicas

TCSS558: Applied Distributed Computing [Winter 2021]

lananvpio 2021 School of Engineering and Technology, University of Washington - Tacoma

MODIFIABLE MIDDLEWARE

® |t should be possible to modify middleware without loss of
availability

m Software components can be replaced at runtime

® Component-based design
= Modifiability through composition
= Systems may have static or dynamic configuration of components
= Dynamic configuration requires late binding
= Components can be changed at runtime

® Component based software supports modifiability at runtime
by enabling components to be swapped out.

= Does a microservices architecture (e.g. AWS Lambda) support
modifiability at runtime ?

TCSS558: Applied Distributed Computing [Winter 2021]

L5.38
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

Slides by Wes J. Lloyd

January 19, 2021

L5.19

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

Client application
Intercepted call

[Bdoitvay) _}

Application stub

Request-evel interceptor

v

f E invoke (B, &doit, val)
Object middleware

v i

Message-level interceptor

call

Y
) e

To object B

CH 2.3: SYSTEM
ARCHITECTURES

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington -

January 19, 2021

OBJECTIVES - 1/19

Questions from 1/14

Assignment 0: Cloud Computing Infrastructure Tutorial

Chapter 2: Distributed System Architectures:

= Chapter 2.1 - Architectural Styles
= Resource-centered architectures
= Representational state transfer (REST)
= Event-based
= Publish and subscribe (Rich Site Summary RSS feeds)
Class Activity: Architectural Styles
= Chapter 2.2: Middleware Organization
| = Chapter 2.3: System Architectures |
= Centralized system architectures
= Decentralized peer-to-peer architectures

= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021 L5.40

Slides by Wes J. Lloyd

January 19, 2021

L5.20

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

SYSTEM ARCHITECTURES

= Architectural styles (or patterns)

= General, reusable solutions to commonly occurring

system desigh problems

= Expressed as a logical organization of components

and connectors

= Deciding

interactions, and placement is a “realization” of an

on the system components, their

architectural style

® System architectures represent designs used in

practice

January 19, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.41

OBJECTIVES - 1/19

Questions from 1/14

® Assignment O: Cloud Computing Infrastructure Tutorial

Chapter 2: Distributed System Architectures:

= Chapter 2.1 - Architectural Styles

= Resource-centered architectures
Representational state transfer (REST)

= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)

Class Activity: Architectural Styles

= Chapter 2.2: Middleware Organization
= Chapter 2.3: System Architectures

* Centralized system architectures |

= Decentralized peer-to-peer architectures
= Hybrid architectures

January 19, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.42

Slides by Wes J. Lloyd

January 19, 2021

L5.21

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

TYPES OF SYSTEM ARCHITECTURES

® Centralized system architectures
= Client-server
= Multitiered

® Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

®= Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2021]

15.43
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

CENTRALIZED:

SIMPLE CLIENT-SERVER ARCHITECTURE

Client Server

m Clients request services | ey |

m Servers provide services ;
= Request-reply behavior ait | Provitia sandes

® Connectionless protocols (UDP)
B Assume stable network communication with no failures

m Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

= Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

® Clients can resend the request when no reply is received
= But what is the server doing?

TCSS558: Applied Distributed Computing [Winter 2021]

L5.44
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

Slides by Wes J. Lloyd

January 19, 2021

L5.22

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

CLIENT-SERVER PROTOCOLS

= Connectionless cont’d
® |s resending the client request a good idea?

= Examples:
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money | have left”

= |[dempotent - repeating requests is safe

= Connection-oriented (TCP)

® Client/server communication over wide-area networks (WANS)
® When communication is inherently reliable

m Leverage “reliable” TCP/IP connections

TCSS558: Applied Distributed Computing [Winter 2021]

L5.45
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

CLIENT-SERVER PROTOCOLS - 2

= Connection-oriented cont’'d
m Set up and tear down of connections is relatively expensive
® Overhead can be amortized with longer lived connections

= Example: database connections often retained

® Ongoing debate:
® How do you differentiate between a client and server?
® Roles are blurred

= Blurred Roles Example: Distributed databases
® DB nodes both service client requests, *and* submit new

requests to other DB nodes for replication, synchronization, etc.

TCSS558: Applied Distributed Computing [Winter 2021]

L5.46
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

Slides by Wes J. Lloyd

January 19, 2021

L5.23

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

TCP/UDP

TCP . upp

Reliable Unreliable.
Connection-oriented Connectionless
‘No wi ndowing or
Segment sequencing No sequencing

Acknowledge segments

January 19, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.47

Advantages

Disadvantages

CONNECTIONLESS VS
CONNECTION ORIENTED

Connectionless (UDP) Connection-oriented (TCP)

stateless stateful

January 19, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.48

Slides by Wes J. Lloyd

January 19, 2021

L5.24

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

Connectionless (UDP)

stateless

Advantages °

Fast to communicate (no
connection overhead)

* Broadcast to an audience

* Network bandwidth savings

Cannot tell difference of
request vs. response failure
* Requires idempotence

* Clients must be online and
ready to receive messages

Disadvantages °

CONNECTIONLESS VS
CONNECTION ORIENTED

Connection-oriented (TCP)

stateful

* Message delivery confirmation
* ldempotence not required
* Messages automatically resent

- if client (or network) is
temporarily unavailable

* Message sequences

guaranteed

* Connection setup is time-

consuming

* More bandwidth is required

(protocol, retries, multinode-
communication)

January 19, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma

L5.49

MULTITIERED ARCHITECTURES

® Where should functionality be distributed?
= At the client?
= At the server?

Client machine

‘ User interface |

| User inter‘l‘ace‘

‘ User interface |

‘ User interface ‘ | User interface|

-

L, ‘ Application _ | Application ‘ ‘ Application |

7__7_7-$"“’-*—— ﬁﬁﬁﬁﬁ 7_$""‘* - i’ ! Database __

\qsds;r’i’nterface "/'"7_7 ““““ 7__3_7 ““““ -_—_-‘:“ L

| Application ‘ | Application | ‘__A[;plication ‘ ‘_,_/"_h

| Database | [Database | | Dataase | | Database | | Database ‘
Server machine

= Why should we consider component composition?

January 19, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.50

Slides by Wes J. Lloyd

January 19, 2021

L5.25

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

SC3 SC4
M D L M D FL M D F L
F
Bell’s Number: 4 15
5 52
k: number of ways
n components can be 6 203
distributed across containers 7 877
8 4,140
9 21,14
7

: Tomcat ApplicationServer
Postgresql DB
nginx file server

rmos=s

Logging server (high O/H)

no... /

/” Resource utilization profile changes N\

from component composition

M-bound RUSLE2 - Soil Erosion Model Webservice
* Box size shows absolute deviation (+/-) from mean
* Shows relative magnitude of performance variance

Two application variants tested
* M-bound: Standard service, M is compute bound
* D-bound: Modified service, D is compute bound

Resource footprint

Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

i . .
0% T T T T

CPU time disk reads disk writes networkreads network writes

Slides by Wes J. Lloyd

January 19, 2021

L5.26

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

Slc

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

4 A Performance Change

Min to max performance

F:

_

M-bound: 14%
D-bound: 25.7%

2

IR

-15

Y

Service Configurations

| | I | I | | I | I | | I | |
scl sc2 sc3 sc4 sc5 schb sc7 sc8 sc9 sclOscllscl?scl3scl4scld

53

MULTITIERED ARCHITECTURES - 2

"= MDFL architecture
=M - is the application server
= M - is also a client to the database (D),

fileserver

(F), and logging server (L)

CIlent Client Application Database|
server server
Request |
operation
‘L Request
M . data
Waitfori Wait for i
reply ! data |
: -
} Return
=5 |
Return |
reply '

Server as a client

January 19, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.54

Slides by Wes J. Lloyd

January 19, 2021

L5.27

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

MULTITIERED RESOURCE SCALING

= Vertical distribution
® The distribution of “M D F L”

®m Application is scaled by placing “tiers” on separate servers
= M - The application server
= D - The database server

® Vertical distribution impacts “network footprint” of application
® Service isolation: each component is isolated on its own HW

= Horizontal distribution ﬁﬁﬁﬁ
® Scaling an individual tier

® Add multiple machines and distribute load

= | oad balancing

TCSS558: Applied Distributed Computing [Winter 2021]

15.55
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

MULTITIERED RESOURCE SCALING - 2

= Horizontal distribution cont’d
= Sharding: portions of a database map” to a specific server
= Distributed hash table
= Or replica servers

TCSS558: Applied Distributed Computing [Winter 2021]

L5.56
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

Slides by Wes J. Lloyd

January 19, 2021

L5.28

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 1/19

Questions from 1/14

m Assighment 0: Cloud Computing Infrastructure Tutorial

Chapter 2: Distributed System Architectures:
= Chapter 2.1 -

Architectural Styles

= Resource-centered architectures
Representational state transfer (REST)

= Event-based

Publish and subscribe (Rich Site Summary RSS feeds)

Class Activity: Architectural Styles
Chapter 2.2: Middleware Organization
Chapter 2.3: System Architectures

= Centralized system architectures

= Decentralized peer-to-peer architectures |

= Hybrid architectures

January 19, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.57

TYPES OF SYSTEM ARCHITECTURES

® Centralized system architectures
= Client-server

= Multitiered

®m Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

®m Hybrid architectures

January 19, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.58

Slides by Wes J. Lloyd

January 19, 2021

L5.29

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

DECENTRALIZED PEER-TO-PEER

ARCHITECTURES

® Client/server:
= Nodes have specific roles

® Peer-to-peer:
= Nodes are seen as all equal...

= How should nodes be organized for communication?

TCSS558: Applied Distributed Computing [Winter 2021]

lananvpio 2021 School of Engineering and Technology, University of Washington - Tacoma

L5.59

STRUCTURED PEER-TO-PEER

= Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)
= Organization assists in data lookups

®m Data indexed using “semantic-free” indexing
= Key / value storage systems

= Key used to look-up data

B Nodes store data associated with a subset of keys

TCSS558: Applied Distributed Computing [Winter 2021]

LTIy 1) APl School of Engineering and Technology, University of Washington - Tacoma

L5.60

Slides by Wes J. Lloyd

January 19, 2021

L5.30

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

DISTRIBUTED HASH TABLE (DHT)

® Distributed hash table (DHT) (ch. 5)
® Hash function

key (data item) = hash(data item’s value)

® Hash function “generates” a unique key based on the data
® No two data elements will have the same key (hash)

®m System supports data lookup via key

= Any node can receive and resolve the request

® Lookup function determines which node stores the key

existing node = lookup (key)

® Node forwards request to node with the data

TCSS558: Applied Distributed Computing [Winter 2021]

15.61
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

FIXED HYPERCUBE EXAMPLE

= Example where topology helps route data lookup request

m Statically sized 4-D hypercube, every node has 4 connectors
m 2 x 3-D cubes, 8 vertices, 12 edges

® Node IDs represented as 4-bit code (0000 to 1111)

® Hash data items to 4-bit key (1 of 16 slots)

® Distance (hnumber of hops) determined by identifying number
of varying bits between neighboring nodes and destination

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021 15.62

Slides by Wes J. Lloyd

January 19, 2021

L5.31

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

FIXED HYPERCUBE EXAMPLE - 2

= Example: fixed hypercube

node 0111 (7) retrieves data from node 1110 (14)

® Node 1110 is not a neighbor to 0111

® Which connector leads to the shortest path?

January 19, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.63

WHICH CONNECTOR LEADS TO THE

= Example: node 0111 (7) retrieves data from node 1110 (14)

SHORTEST PATH?

® Node 1110 is not a neighbor to 0111

[0111] Neighbors:
1111 (1 bit different than 1110) 0011 (3 bits different- bad path)

0110 (1 bit different than 1110) 0101 (3 bits different- bad path)

® Does it matter which node is selected for the first hop?

January 19, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.64

Slides by Wes J. Lloyd

January 19, 2021

L5.32

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

DYNAMIC TOPOLOGY

® Fixed hypercube requires static topology
= Nodes cannot join or leave

® Relies on symmetry of number of nodes

® Can force the DHT to a certain size

® Chord system - DHT (again in ch.5)
= Dynamic topology
= Nodes organized in ring
= Every node has unique ID
= Each node connected with other nodes (shortcuts)

= Shortest path between any pair of nodes is ~ order O(log N)

= N is the total number of nodes

TCSS558: Applied Distributed Computing [Winter 2021]

lananvpio 2021 School of Engineering and Technology, University of Washington - Tacoma

L5.65

CHORD SYSTEM

B Data items have m-bit key

B Data item is stored at closest “successor” node with ID 2 key k

® Each node maintains finger table of successor nodes

® Client sends key/value
lookup to any node

= Node forwards client
request to node with
m-bit ID closest to, but | =
not greater than key k node 2

= Nodes must continually
refresh finger tables by
communicating with
adjacent nodes to
incorporate node
joins/departures

Node responsible for|
keys {5,6.7.8,9}

TCSS558: Applied Distributed Computing [Winter 2021]

LTIy 1) APl School of Engineering and Technology, University of Washington - Tacoma

L5.66

Slides by Wes J. Lloyd

January 19, 2021

L5.33

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

UNSTRUCTURED PEER-TO-PEER

= No topology: How do nodes find out about each other?
®m Each node maintains adhoc list of neighbors
® Facilitates nodes frequently joining, leaving, adhoc systems

= Neighbor: node reachable from another via a network path

®m Neighbor lists constantly refreshed

= Nodes query each other, remove unresponsive neighbors
® Forms a “random graph”
= Predetermining network routes not possible

= How would you calculate the route algorithmically?

® Routes must be discovered

TCSS558: Applied Distributed Computing [Winter 2021]

lananvpio 2021 School of Engineering and Technology, University of Washington - Tacoma

L5.67

SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

= Flooding
® [Node u] sends request for data item to all neighbors
B [Node v]
= Searches locally, responds to u (or forwarder) if having data
= Forwards request to ALL neighbors
= |gnores repeated requests
= Features
= High network traffic
= Fast search results by saturating the network with requests
= Variable # of hops
= Max number of hops or time-to-live (TTL) often specified

= Requests can “retry” by gradually increasing TTL/max hops until
data is found

TCSS558: Applied Distributed Computing [Winter 2021]

LTIy 1) APl School of Engineering and Technology, University of Washington - Tacoma

L5.68

Slides by Wes J. Lloyd

January 19, 2021

L5.34

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

SEARCHING FOR DATA - 2

= Random walks
B [Node u] asks a randomly chosen neighbor [node v]

® |f [node v] does not have data, forwards request to a
random neighbor

® Features

= Low network traffic

= AKin to sequential search

= Longer search time

* [node u] can start “n” random walks simultaneously to
reduce search time

= As few as n=16..64 random walks sufficient to reduce search
time (LV et al. 2002)

= Timeout required - need to coordinate stopping network-wide
walk when data is found...

TCSS558: Applied Distributed Computing [Winter 2021]

15.69
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

SEARCHING FOR DATA - 3

® Policy-based search methods

® [ncorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of
queries

B Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

® Favor neighbors having highest number of neighbors
= Can help minimize hops

TCSS558: Applied Distributed Computing [Winter 2021]

L5.70
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

Slides by Wes J. Lloyd

January 19, 2021

L5.35

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

HIERARCHICAL

PEER-TO-PEER NETWORKS

= Problem:
Adhoc system search performance does not scale well as
system grows

® Allow nodes to assume ROLES to improve search
® Content delivery networks (CDNs) (video streaming)
= Store (cache) data at nodes local to the requester (client)

= Broker node - tracks resource usage and node availability
Track where data is needed
Track which nodes have capacity (disk/CPU resources) to host data
= Node roles
= Super peer -Broker node, routes client requests to storage
nodes

= Weak peer - Store data

TCSS558: Applied Distributed Computing [Winter 2021]

15.71
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

HIERARCHICAL

PEER-TO-PEER NETWORKS - 2

® Super peers
= Head node of local centralized network
= Interconnected via overlay network with other super peers
= May have replicas for fault tolerance

= Weak peers
= Rely on super peers to find data

® Leader-election problem:
= Who can become a N 9.

super peer? "‘
= What requirements : ‘OfsuPerpeerS J

must be met to become
TCSS558: Applied Distributed Computing [Winter 2021]

a super peer?
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

Slides by Wes J. Lloyd

January 19, 2021

L5.36

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 1/19

Questions from 1/14

m Assighment 0: Cloud Computing Infrastructure Tutorial

Chapter 2: Distributed System Architectures:

= Chapter 2.1 - Architectural Styles

= Resource-centered architectures
Representational state transfer (REST)

= Event-based
Publish and subscribe (Rich Site Summary RSS feeds)
Class Activity: Architectural Styles
Chapter 2.2: Middleware Organization
Chapter 2.3: System Architectures
= Centralized system architectures

= Decentralized peer-to-peer architectures

= Hybrid architectures |

TCSS558: Applied Distributed Computing [Winter 2021]

lananvpio 2021 School of Engineering and Technology, University of Washington - Tacoma

L5.73

TYPES OF SYSTEM ARCHITECTURES

® Centralized system architectures
= Client-server
= Multitiered
®m Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized

®m Hybrid architectures

TCSS558: Applied Distributed Computing [Winter 2021]

LTIy 1) APl School of Engineering and Technology, University of Washington - Tacoma

L5.74

Slides by Wes J. Lloyd

January 19, 2021

L5.37

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

HYBRID

ARCHITECTURES

® Combine centralized server concepts with decentralized
peer-to-peer models

= Edge-server systems:

® Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

m Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

= Example:

= AWS Lambda@Edge: Enables Node.js Lambda Functions to
execute “at the edge” harnessing existing CloudFront Content
Delivery Network (CDN) servers

= https://www.infoq.com/news/2017/07/aws-lambda-at-edge

TCSS558: Applied Distributed Computing [Winter 2021]

15.75
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

HYBRID . = e
ARCHITECTURES - 2

® Fog computing:

= Extend the scope of managed resources beyond the
cloud to leverage compute and storage capacity of
end-user devices

® End-user devices become part of the overall system

= Middleware extended to incorporate managing edge
devices as participants in the distributed system

® Cloud - in the sky
= compute/resource capacity is huge, but far away...
® Fog - (devices) on the ground

= compute/resource capacity is constrained and local...

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L5.76

January 19, 2021

Slides by Wes J. Lloyd

January 19, 2021

L5.38

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

COLLABORATIVE DISTRIBUTED

SYSTEM EXAMPLE

= BitTorrent Example:
File sharing system - users must contribute as a file host to
be eligible to download file resources

= Original implementation features hybrid architecture
m | everages idle client network capacity in the background
m User joins the system by interacting with a central server

m Client accesses global directory from a tracker server at well
known address to access torrent file

= Torrent file tracks nodes having chunks of requested file

m Client begins downloading file chunks and immediately then
participates to reserve downloaded content or network
bandwidth is reduced!!

® Chunks can be downloaded in parallel from distributed nodes

TCSS558: Applied Distributed Computing [Winter 2021]

15.77
School of Engineering and Technology, University of Washington - Tacoma

January 19, 2021

QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington -

January 19, 2021

Slides by Wes J. Lloyd

January 19, 2021

L5.39

