

ONLINE DAILY FEEDBACK SURVEY				
 Daily Feedback Quiz in Canvas – Available After Each Class Extra credit available for completing surveys ON TIME Tuesday surveys: due by Wed @ 10p Thursday surveys: due Mon @ 10p 				
	TCSS 558 A > A Winter 2021 Home	Search for Assignment		
	Assignments Zoom Chat	▼ Upcoming Assignments TCSS 558 - Online Daily Feedback Survey - 1/5 Not available until Jan 5 at 1:30pm Due Jan 6 at 10pm -/1 pts		
January 14, 2021 TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma				

MATERIAL / PACE

- Please classify your perspective on material covered in today's class (23 respondents):
- 1-mostly review, 5-equal new/review, 10-mostly new
- **Average 7.46** (↑ previous 6.92)
- Please rate the pace of today's class:
- 1-slow, 5-just right, 10-fast
- Average 5.67 (↑ previous 5.46)

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L4.5

FEEDBACK FROM 1/12

- My questions is whether message-oriented middleware only supports text based messages, but RPC could send any binary data?
- This is dependent on the API provided by the messaging system (e.g. Rabbit MQ, Apache Kafka, Amazon SQS)
- Many will support sending files which is binary data

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.6

FEEDBACK - 2

- I see the term "middleware" being used repeatedly in Chapter 1 of the book. Can you please help me understand what It means in the context of distributed computing?
- Middleware typically refers to a software layer or service that provides an interface to enable clients to interact with the components (nodes) of a distributed system
- Middleware exposes an application programming interface (API) that a client application will leverage
- The middleware implement inter-node communication, replication, synchronization, locking and be involved in providing distribution transparency

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.7

FEEDBACK - 3

- With sensor networks including a large number of IoT devices, are cities today being considered as smart cities or is the idea of smart cities still a while away in the future?
 - I consider things such as everyday objects in street life like sensors on streetlamps, cameras, temperature sensors, and other devices that collect data out in the public.
- A variety of projects have been implemented around the world
- Adoption levels vary widely in the US, Europe, Asia, etc.
- This article provides a review:
- Mehmood, Yasir, Farhan Ahmad, Ibrar Yaqoob, Asma Adnane, Muhammad Imran, and Sghaier Guizani. "Internet-of-things-based smart cities: Recent advances and challenges." IEEE Communications Magazine 55, no. 9 (2017): 16-24.

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L4.8

ASSIGNMENT 0

- Preparing for Assignment 0:
 - Establish AWS Account
 - Standard account ** request cloud credits from instructor **
 - Specify "AWS CREDIT REQUEST" as subject of email
 - Include email address of AWS account
 - AWS Educate Starter account some account limitations
 - https://awseducate-starter-account-services.s3.amazonaws.com/ AWS_Educate_Starter_Account_Services_Supported.pdf
 - Establish local Linux/Ubuntu environment
- Task 1 AWS account setup
- Task 2 Working w/ Docker, creating Dockerfile for Apache Tomcat
- Task 3 Creating a Dockerfile for haproxy
- Task 4 Working with Docker-Machine
- Task 5 For Submission: Testing Alternate Server Configurations

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

OBJECTIVES - 1/14

- Questions from 1/12
- Assignment 0: Cloud Computing Infrastructure Tutorial
- Chapter 1.3 Types of distributed systems
 - Pervasive Systems: Sensor networks
- Chapter 2: Distributed System Architectures:
 - Chapter 2.1 Architectural Styles
 - Layered
 - Object-based
 - Service oriented architecture (SOA)
 - Resource-centered architectures
 - Representational state transfer (REST)
 - Event-based
 - Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington $\,$ - Tacoma

L4.12

PERVASIVE SYSTEM TYPE: SENSOR NETWORKS

- Tens, to hundreds, to thousands of small nodes
- Simple: small memory/compute/communication capacity
- Wireless, battery powered (or battery-less)
- Limited: restricted communication, constrained power
- Equipped with sensing devices
- Some can act as actuators (control systems)
 - Example: enable sprinklers upon fire detection
- Sensor nodes organized in neighborhoods
- Scope of communication:
 - Node neighborhood system-wide

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

PERVASIVE SYSTEM TYPE: SENSOR NETWORKS - 2

- Collaborate to process sensor data in app-specific manner
- Provide mix of data collection and processing
- Nodes may implement a distributed database
- Database organization: centralized to decentralized
- In network processing: forward query to all sensor nodes along a tree to aggregate results and propagate to root
- Is aggregation simply data collection?
- Are all nodes homogeneous?
- Are all network links homogeneous?
- How do we setup a tree when nodes have heterogeneous power and network connection quality?

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.14

SENSOR NETWORKS - 3

- What are some unique requirements for sensor networks middleware?
 - Sensor networks may consist of different types of nodes with different functions
 - Nodes may often be in suspended state to save power
 - Duty cycles (1 to 30%), strict energy budgets
 - Synchronize communication with duty cycles
 - How do we manage membership when devices are offline?

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L4.17

TYPES OF DISTRIBUTED SYSTEMS

- HPC, Cluster, Grid, Cloud
- Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Message-oriented middleware
- Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.18

January 14, 2021

Identify the type of distributed system: Seismic monitoring network - warning system for earthquakes

HPC, Cluster, Grid, Cloud

Distributed information system

Pervasive system: ubiquitous computing system

Pervasive system: mobile system

Pervasive system: sensor network

EXAMPLES OF DISTRIBUTED SYSTEMS

- Classify the following types of distributed systems:
- Web search engine
- Assisted living home monitoring system for elderly
- Ecommerce websites: e.g. eBay, Amazon
- Wikipedia: online encyclopedia
- Amazon Elastic Compute Cloud (EC2)
- Massively multiplayer online games (MMOG)
- Seismic monitoring network: warning system for earthquakes
- Worldwide Large Hadron Collider (LHC) Computing Grid
- Hospital health informatics and records system
- Canvas: web based learning environment
- Modern automobile with self-driving features

January 14, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L4.11

L4.22

DISTRIBUTED SYSTEM ARCHITECTURES

- Provides logical organization of a distributed system into software <u>components</u>
- Logical: How system is perceived, modeled
 - The OO/component abstractions
 - The "idealists" view of the system
- Physical how it really exists
 - The "realist" view of the system
- Middleware
 - Helps separate application from platforms
 - Helps organize and assemble distributed components
 - Helps components communicate
 - Enables system to be extended
 - Supports replication within the distributed system
 - Provides "realization" of the architecture

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.25

CENTRALIZED VS. DECENTRALIZED DISTRIBUTED SYSTEM ARCHITECTURE

Tradeoff space: degree of distribution of the system

- Single point-of-failure
- No nodes: vertical scaling
- Always consistent
- Less available (fewer 9s)
- Immediate updates
- No data partitions

- Multiple failure points
- Nodes: horizontal scaling
- Eventually consistent
- More available (more 9s)
- Rolling updates
- Data partitioned or replicated

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.26

ARCHITECTURAL BUILDING BLOCKS

- COMPONENT: modular unit with well-defined, required, and provided interfaces that is replaceable within its environment
- Components can be replaced while system is running
- Interfaces must remain the same
- Preserving interfaces enables interoperability
- CONNECTOR: enables flow of <u>control</u> and <u>data</u> between components
- Distributed system architectures are conceived using components and connectors

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L4.27

WE WILL RETURN AT 2:42PM

OBJECTIVES - 1/14

- Questions from 1/12
- Assignment 0: Cloud Computing Infrastructure Tutorial
- Chapter 1.3 Types of distributed systems
 - Pervasive Systems: Sensor networks
- Chapter 2: Distributed System Architectures:
 - Chapter 2.1 Architectural Styles
 - Layered
 - Object-based
 - Service oriented architecture (SOA)
 - Resource-centered architectures
 - Representational state transfer (REST)
 - Event-based
 - Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.29

L4.30

L4.15

ARCHITECTURAL STYLES

- Layered
- Object-based
 - Service oriented architecture (SOA)
- Resource-centered architectures
 - Representational state transfer (REST)
- Event-based
 - Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2021

Slides by Wes J. Lloyd

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 1/14

- Questions from 1/12
- Assignment 0: Cloud Computing Infrastructure Tutorial
- Chapter 1.3 Types of distributed systems
 - Pervasive Systems: Sensor networks
- Chapter 2: Distributed System Architectures:
 - Chapter 2.1 Architectural Styles
 - Layered
 - Object-based
 - Service oriented architecture (SOA)
 - Resource-centered architectures
 - Representational state transfer (REST)
 - Event-based
 - Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.31

DISTRIBUTED SYSTEM GOALS TO CONSIDER

- Consider how architectural style may impact:
- Availability
- Accessibility
- Responsiveness
- Scalability
- Openness
- Distribution transparency
- Supporting resource sharing
- Other factors...

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L4.32

LAYERED ARCHITECTURES

- Components organized in layers
- Component at layer L_j downcalls to lower-level components at layer L_i (where i < j)</p>
- Calls go down
- Exceptional cases may produce upcalls

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L4.33

LAYERED ARCHITECTURES - 3

- Consider an architecture with 5 layers
- Does a client interacting with "Layer 5" of the distributed system need to be concerned with details regarding the implementation of lower layers (layers 1, 2, 3, 4)?

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.35

COMMUNICATION-PROTOCOL STACKS

- Example: pure-layered organization
- Each layer offers an interface specifying functions of the layer
- Communication protocol: rules used for nodes to communicate
- Layer provides a service
- Interface makes service available
- Protocol implements communication for a layer
- New services can be built atop of existing layers to reuse lower level implementation(s)
- Abstractions make it easier to reuse existing layers which already implement communication basics

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L4.36

APPLICATION LAYERING

- Three logical layers of distributed applications
 - The data level
 - Application interface level
 - The processing level

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L4.43

APPLICATION LAYERING

- Three logical layers of distributed applications
 - The data level

(M)

Application interface level

(V)

The processing level

(C)

- Model view controller architecture distributed systems
 - Model database handles data persistence
 - View user interface also includes APIs
 - Controller middleware / business logic

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma

L4.44

OBJECTIVES - 1/14

- Questions from 1/12
- Assignment 0: Cloud Computing Infrastructure Tutorial
- Chapter 1.3 Types of distributed systems
 - Pervasive Systems: Sensor networks
- Chapter 2: Distributed System Architectures:
 - Chapter 2.1 Architectural Styles
 - Layered
 - Object-based
 - Service oriented architecture (SOA)
 - Resource-centered architectures
 - Representational state transfer (REST)
 - Event-based
 - Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.45

OBJECT-BASED ARCHITECTURES

- Enables loose and flexible component organization
- Objects == components
- Enable distributed node interaction via function calls over the network
- Began with C Remote Procedure Calls (RPC)
 - Straightforward: package up function inputs, send over network, transfer results back
 - Language independent
 - In contrast to web services, RPC calls originally were more intimate in nature
 - Procedures more "coupled", not as independent
 - The goal was not to decouple and widgetize everything

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L4.46

DISTRIBUTED OBJECTS - 2

- A counterintuitive feature is that state is not distributed
- Each "remote object" maintains its own state
- Remote objects may not be replicated
- Objects may be "mobile" and move around from node to node
 - Common for data objects
- For distributed (remote) objects consider
 - Pass by value
 - Pass by reference (does this make sense?)

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.49

SERVICE ORIENTED ARCHITECTURE

- Services provide always-on encapsulated functions over the internet/web
- Leverage redundant cloud computing infrastructure
- Services may:
 - Aggregate multiple languages, libraries, operating systems
 - Include (wrap) legacy code
- Many software components may be involved in the implementation
 - Application server(s), relational database(s), key-value stores, in memory-cache, queue/messaging services

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L4.50

SERVICE ORIENTED ARCHITECTURE - 2

- Are more easily developed independently and shared vs. systems with distributed object architectures
- Less coupling
- An error while invoking a distributed object may crash the system
- An error calling a service (e.g. mismatching the interface) generally does not result in a system crash

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L4.51

L4.52

OBJECTIVES - 1/14

- Questions from 1/12
- Assignment 0: Cloud Computing Infrastructure Tutorial
- Chapter 1.3 Types of distributed systems
 - Pervasive Systems: Sensor networks
- Chapter 2: Distributed System Architectures:
 - Chapter 2.1 Architectural Styles
 - Layered
 - Object-based
 - Service oriented architecture (SOA)
 - Resource-centered architectures
 - Representational state transfer (REST)
 - - Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma

L4.26 Slides by Wes J. Lloyd

RESOURCE BASED ARCHITECTURES

- Motivation:
 - Increasing number of services available online
 - Each with specific protocol(s), methods of interfacing
 - Connecting services w/ different TCP/IP protocols
 - → integration nightmare
 - Need for specialized client for each service that speaks the application protocol "language"...
- Need standardization of interfaces
 - Make services/components more pluggable
 - Easier to adopt and integrate
 - Common architecture

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L4.53

REST SERVICES

- Representational State Transfer (REST)
- Built on HTTP
- Four key characteristics:
 - 1. Resources identified through single naming scheme
 - 2. Services offer the same interface
 - Four operations: GET PUT POST DELETE
 - 3. Messages to/from a service are fully described
 - 4. After execution server forgets about client
 - Stateless execution

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L4.54

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

- An ASCII-based request/reply protocol for transferring information on the web
- HTTP request includes:
 - request method (GET, POST, etc.)
 - Uniform Resource Identifier (URI)
 - HTTP protocol version understood by the client
 - headers—extra info regarding transfer request
- HTTP response from server
 - Protocol version & status code →
 - Response headers
 - Response body

HTTP status codes:

2xx - all is well

3xx — resource moved

4xx — access problem

5xx — server error

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L4.55

REST-FUL OPERATIONS

Operation	Description	
PUT	Create a new resource	(C)reate
GET	Retrieve state of a resource in some format	(R)ead
POST	Modify a resource by transferring a new state	(U)pdate
DELETE	Delete a resource	(D)elete

- Resources often implemented as objects in 00 languages
- REST is weak for tracking state
- Generic REST interfaces enable ubiquitous "so many" clients

January 14, 2021 TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

REST - 2

- Defacto web services protocol
- Requests made to a URI uniform resource identifier
- Supersedes SOAP Simple Object Access Protocol
- Access and manipulate web resources with a predefined set of stateless operations (known as web services)
- Responses most often in JSON, also HTML, ASCII text, XML, no real limits as long as text-based
- curl generic command-line REST client: https://curl.haxx.se/

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L4.58

OBJECTIVES - 1/14

- Questions from 1/12
- Assignment 0: Cloud Computing Infrastructure Tutorial
- Chapter 1.3 Types of distributed systems
 - Pervasive Systems: Sensor networks
- Chapter 2: Distributed System Architectures:
 - Chapter 2.1 Architectural Styles
 - Layered
 - Object-based
 - Service oriented architecture (SOA)
 - Resource-centered architectures
 - Representational state transfer (REST)
 - Event-based
 - Publish and subscribe (Rich Site Summary RSS feeds)

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L4.61

PUBLISH-SUBSCRIBE ARCHITECTURES

- Enables separation between processing and coordination
- Types of coordination:

January 14, 2021

	Temporally coupled (at the same time)	Temporally decoupled (at different times)	
Referentially coupled (dependent on name)	<u>Direct</u> Explicit synchronous service call	Mailbox Asynchronous by name (address)	
Referentially decoupled (name not required)	Event-based Event notices published to shared bus, w/o addressing	Shared data space Processes write tuples to a shared data space	
Publish and subscribe architectures			

TCSS558: Applied Distributed Computing [Winter 2021]

Slides by Wes J. Lloyd L4.31

School of Engineering and Technology, University of Washington - Tacoma

PUBLISH SUBSCRIBE ARCHITECTURES - 4

- Subscriber describes events interested in
- Complex descriptions are intensive to evaluate and fulfil
- Middleware will:
- Publish matching notification and data to subscribers
 - Common if middleware lacks storage
- Publish only matching notification
 - Common if middleware provides storage facility
 - Client must explicitly fetch data on their own
- Publish and subscribe systems are generally scalable
- What would reduce the scalability of a publish-andsubscribe system?

January 14, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L5.65

