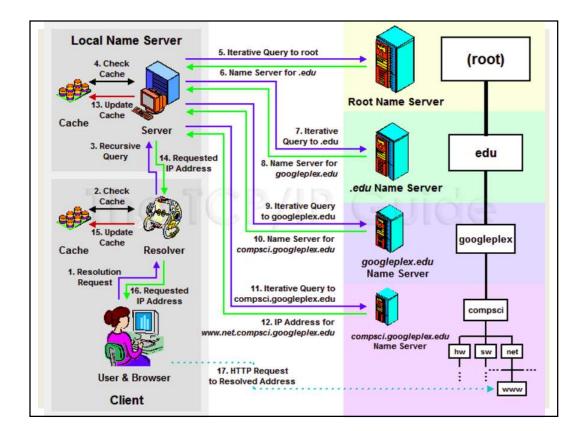
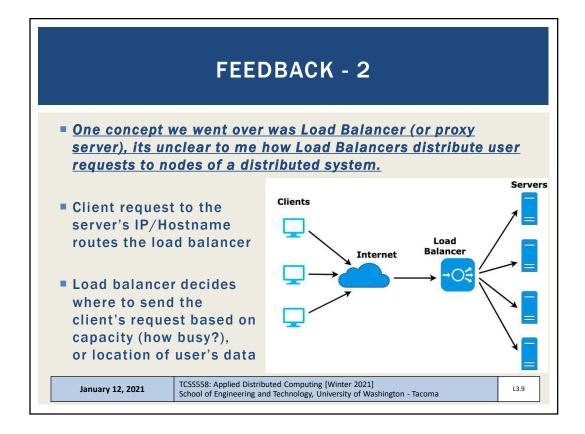
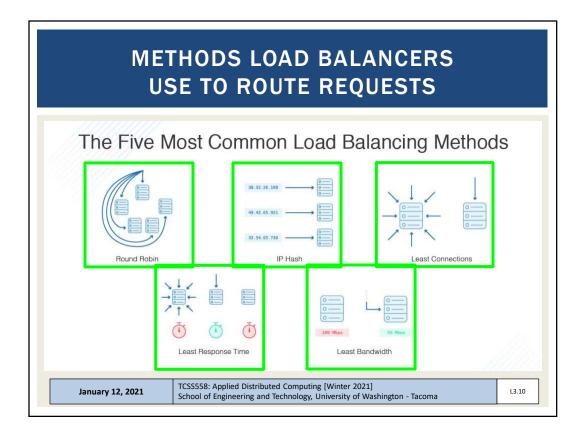


ONLINE DAILY FEEDBACK SURVEY Daily Feedback Quiz in Canvas - Available After Each Class Extra credit available for completing surveys ON TIME ■ Tuesday surveys: due by Wed @ 10p Thursday surveys: due Mon @ 10p TCSS 558 A > Assignments Winter 2021 Search for Assignment Home Announcements Upcoming Assignments Assignments Zoom TCSS 558 - Online Daily Feedback Survey - 1/5 Not available until Jan 5 at 1:30pm | Due Jan 6 at 10pm | -/1 pts TCSS558: Applied Distributed Computing [Winter 2021] January 12, 2021 L3.4 School of Engineering and Technology, University of Washington - Tacoma

TC	SS 558 - Online Daily Feedback Survey - 1/5		
	Jan 6 at 10pm Points 1 Questions 4 ilable Jan 5 at 1:30pm - Jan 6 at 11:59pm 1 day Time Limit None		
D	Question 1 0.5 pts		
	On a scale of 1 to 10, please classify your perspective on material covered in today's class:		
	1 2 3 4 5 6 7 8 9 10		
	Mostly Equal Mostly Review To Me New and Review New to Me		
	Question 2 0.5 pts		
	Please rate the pace of today's class:		
	1 2 3 4 5 6 7 8 9 10		
	Slow Just Right Fast		
January 12, 20	21 TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma	L3.	


FEEDBACK FROM 1/7


- I'm still a bit confused on some approaches to scaling such as DNS and WWW, how they could increase in scale in terms of distributed systems.
- DNS is covered in Chapter 3.4 on Servers
- The idea is that there is a hierarchy of servers that resolve the translation of a hostname to a numerical address and visa-versa


January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L3.7

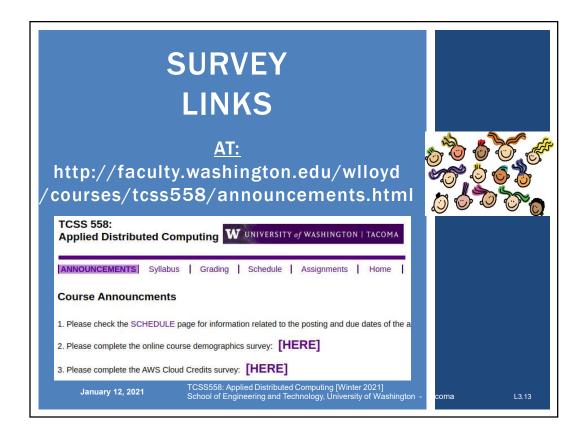
FEEDBACK - 3

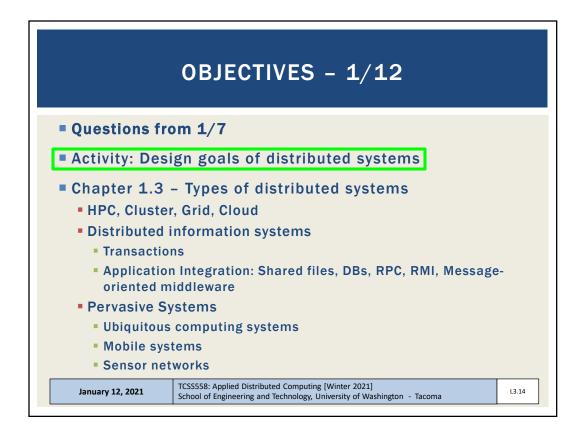
- I wonder if parallel computing is just one kind of distributed computing - that is a means to distribute requests to different machines or systems to enhance the computing efficiency
- >>> Distributed computing is just one type of parallel computing
- When accomplishing parallel computing with distributed computing, the question is: how fast is the interconnect?
- Map-Reduce: distribute tasks to nodes that operate over different data so they can run in parallel with no synchronization
 - This is called embarrassingly parallel
 - Not applicable for some tasks
 - There is no shared memory
 - Many tasks run in isolation at the same time
- Parallel computing also occurs with shared memory systems:
 - On the same computer
 - On a distributed system using special libraries to share memory and high speed inter-connects (e.g. networks)
 - On a super computers with interconnected memory

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L3.11


FEEDBACK - 4


- I think I still get confused about the openness part
- Design software components of the distributed so that they are easily reusable in other systems
- Software should be:
- Interoperable: work with other components
- Portable: capable of being extracted out of the application and reused
- Extensible: easy to add new features/capabilities over time

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

CLASS ACTIVITY 1

- We will form groups of ~2-3 and enter breakout rooms
- Each group will complete a Google Doc worksheet
- Add names to Google Doc as they appear in Canvas
- Once completed, one person submits a PDF of the Google Doc to Canvas
- Instructor will score all group members based on the uploaded PDF file
- To get started:
 - Log into your UW Google Account
 - Link to shared Google Drive
 - Follow link:

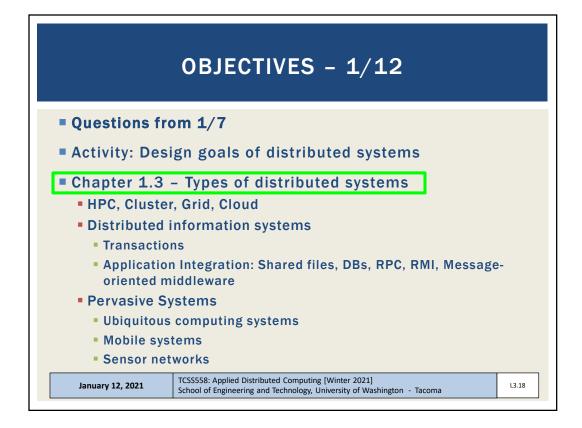
https://tinyurl.com/y5nmmro9

October 7, 2020

TCSS562: Software Engineering for Cloud Computing [Fall 2020] School of Engineering and Technology, University of Washington - Tacoma

L3.15

OBJECTIVES - 1/12


- Questions from 1/7
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

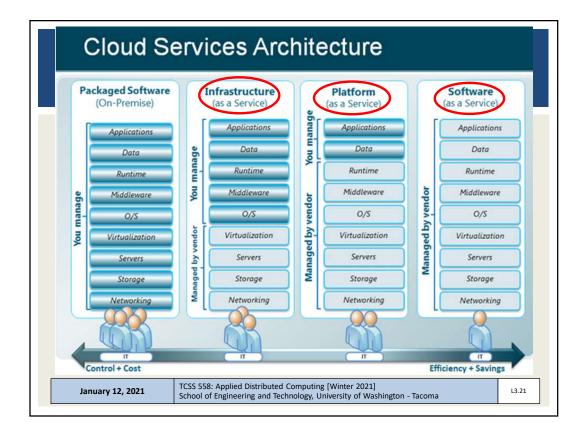
- Questions from 1/7
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

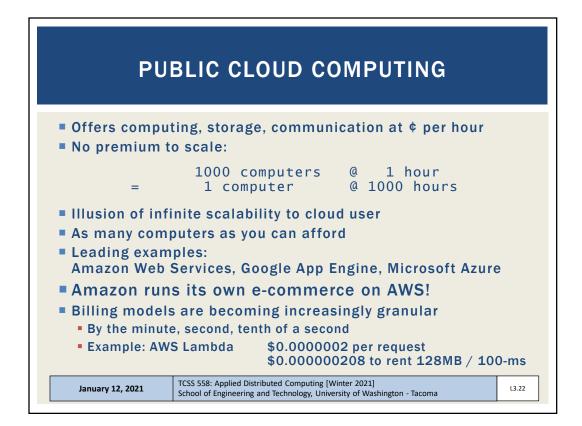
January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.19

TECHNOLOGY INNOVATIONS LEADING TO CLOUD COMPUTING


- Super computers
 - Huge multiprocessor system which shares RAM
 - Technically "not distributed"
 - Hardware all in one location
- High performance distributed computing
 - Cluster computing
 - Grid computing
 - Cloud computing
 - Virtualization
 - Others



January 12, 2021

TCSS 558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L3.20

PUBLIC CLOUD COMPUTING - 2

m4.large ec2 virtual machine:

2 vCPU cores, 8 GB RAM, Intel Xeon E5-2666 v3 10¢ an hour, 24 hrs/day, 30 days/month → \$72.00/month on-demand EC2 instance

AWS Lambda Function-as-a-Service (FaaS) w/o free tier: 2 vCPU cores, 3GB RAM, Intel Xeon E5-2666 v3 (maybe?) as 2,592,000 x 1-sec service calls 24 hrs/day, 30 days/month:

\$130.14 (8GB = \$347.04)

January 12, 2021

TCSS 558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

PAAS SERVICES IMPLEMENTATION

- PaaS services often built atop of laaS
 - Amazon RDS, Heroku, Amazon Elasticache
- Scalability
 - •VM resources can support fluctuations in demand
- Dependability.
 - PaaS services built on highly available laaS resources

January 12, 2021

TCSS 558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L3.24

- Questions from 1/7
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.25

DISTRIBUTED INFORMATION SYSTEMS

- Enterprise-wide integrated applications
 - Organizations confronted with too many applications
 - Interoperability among applications was difficult
 - Led to many middleware-based solutions
- Key concepts
 - Component based architectures database components, processing components
 - <u>Distributed transaction</u> Client wraps requests together, sends as single aggregated request
 - Atomic: <u>all</u> or <u>none</u> of the individual requests should be executed
- Different systems define different <u>action</u> primitives
 - Components of the atomic transaction
 - Examples: send, receive, forward, READ, WRITE, etc.

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L3.26

DISTRIBUTED INFORMATION SYSTEMS - 2

Transaction primitives

Primitive	Description		
BEGIN_TRANSACTION	Mark the start of a transaction		
END_TRANSACTION	Terminate the transaction and try to commit		
ABORT_TRANSACTION	Kill the transaction and restore the old values		
READ	Read data from a file, a table, or otherwise		
WRITE	Write data to a file, a table, or otherwise		

- Transactions are all-or-nothing
 - All operations are executed
 - None are executed

January 12, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 1/12

- Questions from 1/7
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

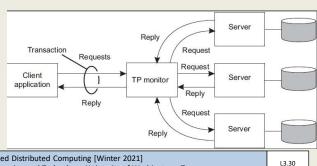
January 12, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

TRANSACTIONS: ACID PROPERTIES

- Atomic: The transaction occurs indivisibly
- Consistent: Transaction does not create variant states across nodes during slow updates (e.g. system variants)
 - Replicas remain constant until all updated
 - Two phase commit: data pushed first, then the commit
- Isolated: Transactions do not interfere with each other
- Durable: Once a transaction commits, change are permanent
- Nested transaction: transaction constructed with many sub-transactions
- Follows a logical division of work
- Must support "rollback" of sub-transactions

Subtransaction Hotel database Two different (independent) databases


Nested transaction

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

TRANSACTION PROCESSING MONITOR

- Allow an application to access multiple DBs via a transactional programming model
- TP monitor: coordinates commitment of sub-transactions using a distributed commit protocol (Ch. 8)
- Save application complexity from having to coordinate

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma

- Questions from 1/7
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

ENTERPRISE APPLICATION INTEGRATION

- Support application components direct communication with each other, not via databases
- Communication mechanisms:
- Remote procedure call (RPC)
 - Local procedure call packaged as a message and sent to server
 - Supports distribution of function call processing
- Remote method invocation (RMI)
 - Operates on objects instead of functions
- RPC and RMI led to tight coupling
- Client and server endpoints must be up and running
- Interfaces coupled to specific languages and not interoperable
- This led to evolution of: Message-oriented middleware (MOM)

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L3.32

MESSAGE-ORIENTED MIDDLEWARE

- Publish and subscribe systems:
 - Rabbit MQ, Apache Kafka, AWS SQS/SNS
- Reduces tight coupling of RPC/RMI
- Applications indicate interest for specific type(s)
 of messages by sending requests to logical
 contact points
- Communication middleware delivers messages to subscribing applications

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L3.33

CHALLENGES WITH VARIOUS APPLICATION INTEGRATION METHODS

- Integration via shared data files and transfers
 - Shared data files (e.g. XML)
 - Leads to file management challenges (concurrent updates, etc.)
- Shared database
 - Centralized DB, transactions to coordinate changes among users
 - Common data schema required can be challenging to derive
 - For many reads and updates, shared DB becomes bottleneck (limited scalability)
- Remote procedure call app A executes on and against app B data. App A lacks direct access to app B data.
- Messaging middleware ensures nodes temporarily offline later on, can receive messages

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

- Questions from 1/7
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L3.35

PERVASIVE SYSTEMS

- Existing everywhere, widely adopted...
- Combine current network technologies, wireless computing, voice recognition, internet capabilities and AI to create an environment where connectivity of devices is embedded, unobtrusive, and always available
- Many sensors infer various aspects of a user's behavior
 - Myriad of actuators to collect information, provide feedback
- **TYPES OF PERVASIVE SYSTEMS:**
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L3.36

- Questions from 1/7
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

PERVASIVE SYSTEM TYPE: UBIQUITOUS COMPUTING SYSTEMS

- Pervasive and continuously present
- Goal: embed processors everywhere (day-to-day objects) enabling them to communicate information
- Requirements for a ubiquitous computing system:
 - <u>Distribution</u> devices are networked, distributed, and accessible transparently
 - Interaction unobtrusive (low-key) between users and devices
 - Context awareness optimizes interaction
 - Autonomy devices operate autonomously, self-managed
 - Intelligence system can handle wide range of dynamic actions and interactions

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L3.38

UBIQUITOUS COMPUTING SYSTEM EXAMPLES

- Apple Watch
- Amazon Echo Speaker
- Amazon EchoDot (single speaker design)
- Fitbit
- **Electronic Toll Systems**
- **■**Smart Traffic Lights
- Self Driving Cars
- Home Automation

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L3.39

UBIQUITOUS COMPUTING SYSTEM EXAMPLE

- Domestic ubiquitous computing environment example:
- Interconnect lighting and environmental controls with personal biometric monitors woven into clothing so that illumination and heating conditions in a room might be modulated, continuously and imperceptibly
- IoT technology helps enable ubiquitous computing

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L3.40

- Questions from 1/7
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

PERVASIVE SYSTEM TYPE: MOBILE SYSTEMS

- Emphasis on mobile devices, e.g. smartphones, tablet computers
- New devices: remote controls, pagers, active badges, car equipment, various GPS-enabled devices,
- Devices move: where is the device?
- Changing location: leverage mobile adhoc network (MANET)
- MANET is an ad hoc network that can change locations and configure itself on the fly. MANETs are mobile, they use wireless connections to connect to various networks.
- VANET (Vehicular Ad Hoc Network), is a type of MANET that allows vehicles to communicate with roadside equipment.

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

13.42

L3.21 Slides by Wes J. Lloyd

- Questions from 1/7
- Activity: Design goals of distributed systems
- Chapter 1.3 Types of distributed systems
 - HPC, Cluster, Grid, Cloud
 - Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Messageoriented middleware
 - Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

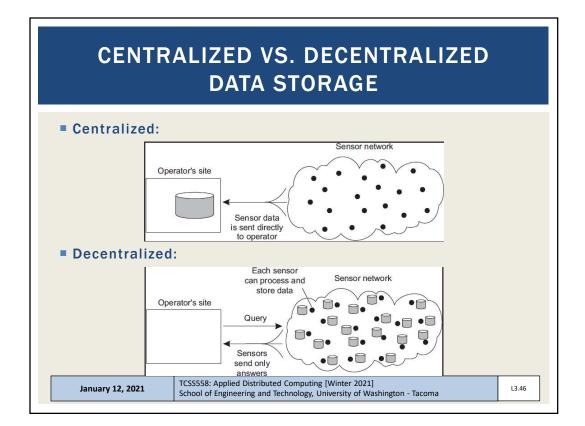
PERVASIVE SYSTEM TYPE: SENSOR NETWORKS

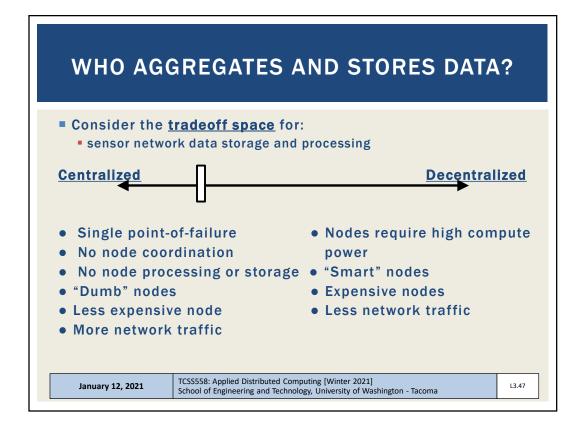
- Tens, to hundreds, to thousands of small nodes
- Simple: small memory/compute/communication capacity
- Wireless, battery powered (or battery-less)
- Limited: restricted communication, constrained power
- Equipped with sensing devices
- Some can act as actuators (control systems)
 - Example: enable sprinklers upon fire detection
- Sensor nodes organized in neighborhoods
- Scope of communication:
 - Node neighborhood system-wide

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L3.44


PERVASIVE SYSTEM TYPE: SENSOR NETWORKS - 2


- Collaborate to process sensor data in app-specific manner
- Provide mix of data collection and processing
- Nodes may implement a distributed database
- Database organization: centralized to decentralized
- In network processing: forward query to all sensor nodes along a tree to aggregate results and propagate to root
- Is aggregation simply data collection?
- Are all nodes homogeneous?
- Are all network links homogeneous?
- How do we setup a tree when nodes have heterogeneous power and network connection quality?

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

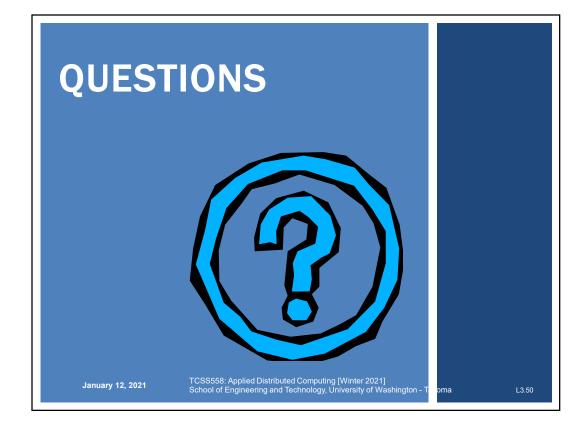
SENSOR NETWORKS - 3

- What are some unique requirements for sensor networks middleware?
 - Sensor networks may consist of different types of nodes with different functions
 - Nodes may often be in suspended state to save power
 - Duty cycles (1 to 30%), strict energy budgets
 - Synchronize communication with duty cycles
 - How do we manage membership when devices are offline?

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L3.48


TYPES OF DISTRIBUTED SYSTEMS

- HPC, Cluster, Grid, Cloud
- Distributed information systems
 - Transactions
 - Application Integration: Shared files, DBs, RPC, RMI, Message-oriented middleware
- Pervasive Systems
 - Ubiquitous computing systems
 - Mobile systems
 - Sensor networks

January 12, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L3.49

