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OBJECTIVES - 3/9

| = Questions from 3/4 |

B Assighment 2: Replicated Key Value Store
®m Chapter 6: Coordination
= Chapter 6.2: Logical Clocks

Vector Clocks

® [ntroduce Activities:
= Activity 4 - Total Ordered Multicasting
= Activity 5 - Causality and Vector Clocks
®m Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion
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TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

ONLINE DAILY FEEDBACK SURVEY

® Daily Feedback Quiz in Canvas - Available After Each Class
® Extra credit available for completing surveys ON TIME

® Tuesday surveys: due by ~ Wed @ 10p

® Thursday surveys: due ~ Mon @ 10p

— TCSS 558 A > Assignments

Winter 2021

Home

Announcements

I * Upcoming Assignments

208 % TCSS 558 - Online Daily Feedback Survey - 1/5
Chat “ Mot available until Jan 5 at 1:30pm | Due Jan 6 at 10pm | -/1 pts
TCSS558: Applied Distributed Computing [Winter 2021]
MarchE20 2T School of Engineering and Technology, University of Washington - Tacoma t73
TCSS 558 - Online Daily Feedback Survey - 1/5
Due Jan 6 at 10pm Points 1 Questions 4
Available Jan 5 at 1:30pm - Jan 6 at 11:59pm 1 day Time Limit None
[| Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 5 ] 7 8 9 ie
Mostly Equal Mostly
Review To Me New and Review New to Me
[ | Question 2 0.5 pts
Please rate the pace of today's class:
1 2 3 4 5 ] 7 8 9 1e
Slow Just Right Fast
March 9, 2021 TCSS558: Applied Distributed Computing [Winter 2021] W

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

March 9, 2021

L17.2
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UW-Tacoma

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (19 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.21 (| - previous 6.87)

® Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.68 ({ - previous 5.73)

TCSS558: Applied Distributed Computing [Winter 2021]

MarchE20 2T School of Engineering and Technology, University of Washington - Tacoma

L17.5

FEEDBACK FROM 3/4

® Can you visualize how docker swarm works in assignment 2?

® Use of Docker Swarm is optional for assignment 2

® Docker Swarm combined with an overlay network allows
docker containers created across multiple docker hosts using
“docker-machine” to be assigned IP addresses on a common
interconnected network.

® Containers created across the swarm using the overlay can
communicate using TCP

= UDP multicast does not work however

® For assignment 2, you can deploy your multi-node KV store on
ec2 across multiple VMs using a swarm + overlay

= This exercise is optional for assignment #2

TCSS558: Applied Distributed Computing [Winter 2021]

March 9, 2021 School of Engineering and Technology, University of Washington - Tacoma
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[Winter 2021] School of Engineering and Technology,

UW-Tacoma

DOCKER SWARM + OVERLAY NETWORK

= Configuration Steps:

1. Launch docker swarm manager node
2. Start swarm manually

3. Copy the token provided. It will be used to add each docker-
machine to the swarm.

S e Bl

Launch docker-machines as worker nodes in the swarm
Create the overlay network
Launch individual containers using the overlay network

Switch context as needed to the proper docker-machine to

place (load-balance) containers

= eval $(docker-machine env aw-swarmID),
where “aw-swarmID” is a docker-machine node name

See:

http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a2/DockerSwarmOverlay-howto.txt

March 9, 2021
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= | am not clear about total ordered multicasting. Could you

FEEDBACK - 2

please explain in more detail.

= We will show an example in class today...

March 9, 2021
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[Winter 2021] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 3/9

® Questions from 3/4

| = Assignment 2: Replicated Key Value Store |
®m Chapter 6: Coordination
= Chapter 6.2: Logical Clocks
Vector Clocks
B [ntroduce Activities:
= Activity 4 - Total Ordered Multicasting
= Activity 5 - Causality and Vector Clocks
®m Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion

TCSS558: Applied Distributed Computing [Winter 2021]

MarchE20 2T School of Engineering and Technology, University of Washington - Tacoma

L17.9

SHORT-HAND-CODES FOR MEMBERSHIP

TRACKING APPROACHES

® [nclude readme.txt or doc file with instructions in submission
® Must document membership tracking method

>> please indicate which types to test <<

ID Description

F Static file membership tracking - file is not reread

FD Static file membership tracking DYNAMIC - file is
periodically reread to refresh membership list

T TCP membership tracking - servers are configured to
refer to central membership server
u UDP membership tracking - automatically discovers

nodes with no configuration

TCSS558: Applied Distributed Computing [Winter 2021]

March 9, 2021 School of Engineering and Technology, University of Washington - Tacoma

L17.10
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TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

ASSIGNMENT 2

|- Sunday March 14th

= Goal: ﬁeplicated Key Value Store

® Team signup to be posted on Canvas under ‘People’
® Build off of Assignment 1 GenericNode

® Focus on TCP client/server w/ replication

® How to track membership for data replication?

= Can implement multiple types of membership tracking
for extra credit

TCSS558: Applied Distributed Computing [Winter 2021]

MarchE20 2T School of Engineering and Technology, University of Washington - Tacoma

L17.11

OBJECTIVES - 3/9

® Questions from 3/4

B Assighment 2: Replicated Key Value Store
®m Chapter 6: Coordination

|__=Chapter 6.2: Logical Clocks |
Vector Clocks

® [ntroduce Activities:
= Activity 4 - Total Ordered Multicasting
= Activity 5 - Causality and Vector Clocks
®m Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion
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TCSS 558: Applied Distributed Computing March 9, 2021
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

CHAPTER 6 - COORDINATION

® 6.1 Clock Synchronization

= Physical clocks

= Clock synchronization algorithms
® 6.2 Logical clocks

= Lamport clocks

= Vector clocks

® 6.3 Mutual exclusion

® 6.4 Election algorithms

® 6.6 Distributed event matching (light)
® 6.7 Gossip-based coordination (light)

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma t17.13

March 9, 2021
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TOTAL-ORDERED MULTICASTING

® Consider concurrent updates to a replicated database
= Communication latency between DB1 and DB2 is 250ms

% Updatet ___Update 2_ ,i

Replicated database

Update 1is Update 2 is
performed before performed before
update 2 update 1

= |nitial Account balance: $1,000

= Update #1: Deposit $100

= Update #2: Add 1% Interest

= Total Ordered Multicasting needed

TCSS558: Applied Distributed Computing [Winter 2021]

117.15
School of Engineering and Technology, University of Washington - Tacoma

March 9, 2021

TOTAL-ORDERED MULTICASTING

EXAMPLE

= Two messages (m,, m,) must be distributed,
to two processes (p4, P»)

= We assume messages have correct lamport clock timestamps
= m,(10, p,, add $100)
" m,(12, p,, add 1% interest)

®m Each process maintains a queue of messages

® Arriving messages are placed into queues ordered by the
Lamport clock timestamp

® |n each queue, each message must be acknowledged by every
process in the system before operations can be applied to the
local database

TCSS558: Applied Distributed Computing [Winter 2021]
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[Winter 2021] School of Engineering and Technology,

UW-Tacoma

TOTAL-ORDERED MULTICASTING

EXAMPLE

= Two messages (m,, m,) must be distributed,
to two processes (p4, P»)

® We assume messages have correct lamport clock timestamps
" m,(10, p,, add $100)

Key point:

Multicast messages are also received by the sender (itself)

Lamport clock timestamp

= |[n each queue, each message must be acknowledged by every
process in the system before operations can be applied to the
local database

TCSS558: Applied Distributed Computing [Winter 2021] 1717

MarchE20 2T School of Engineering and Technology, University of Washington - Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE
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UW-Tacoma

TOTAL-ORDERED MULTICASTING EXAMPLE
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What is the final account balance?

TOTAL-ORDERED MULTICASTING - 2

® Each message timestamped with local logical clock of sender
= Multicast messages are also received by the sender (itself)
® Assumptions:

= Messages from same sender received in order they were sent

= No messages are lost

= When messages arrive they are placed in local queue ordered
by timestamp

= Receiver multicasts acknowledgement of message receipt to
other processes
= Time stamp of message receipt is lower the acknowledgement

= This process replicates queues across sites

® Messages delivered to application (database) only when
message at the head of the queue has been acknowledged by
every process in the system

TCSS558: Applied Distributed Computing [Winter 2021]

q A 3 A . L17.20
School of Engineering and Technology, University of Washington - Tacoma
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TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

TOTAL-ORDERED MULTICASTING - 3

®m Can be used to implement replicated state machines (RSMs)
® Concept is to replicate event queues at each node

® (1) Using logical clocks and (2) exchanging acknowledgement
messages, allows for events to be “totally” ordered in
replicated event queues

® Events can be applied “in order” to each (distributed)
replicated state machine (RSM)

CEEEEEE o

og Log Log
[xe-3]y2[xe1 [x=8ly2[x-t] ] [xe-3]ye2[xe-1]z6]

Pass
to other machines

TCSS558: Applied Distributed Computing [Winter 2021]

117.21
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OBJECTIVES - 3/9

® Questions from 3/4

B Assighment 2: Replicated Key Value Store
®m Chapter 6: Coordination
= Chapter 6.2: Logical Clocks

Vector Clocks |

® [ntroduce Activities:
= Activity 4 - Total Ordered Multicasting
= Activity 5 - Causality and Vector Clocks
®m Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion

TCSS558: Applied Distributed Computing [Winter 2021]
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UW-Tacoma

VECTOR CLOCKS

® Lamport clocks don’t help to determine causal ordering of

messages

® Vector clocks capture causal histories and can be used as an

alternative

= But what is causality? ...

March 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

117.23

WHAT IS CAUSALITY?

ow

A
Proc 1 _.

D
Proc 2 .

® Having a causal relationship between two events (A and E)
indicates that event E results from the occurrence of event A.

® When one event results from another, there is a causal
relationship between the two events.

® This is also referred to as cause and effect.

March 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.24

Slides by Wes J. Lloyd

March 9, 2021

L17.12



TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

CAUSALITY - 2

= Disclaimer:

® Without knowing actual information contained in messages, it
is not possible to state with certainty that there is a causal
relationship or perhaps a conflict

= Lamport/Vector clocks can help us suggest possible causality
® But we never know for sure...

TCSS558: Applied Distributed Computing [Winter 2021]

117.25
School of Engineering and Technology, University of Washington - Tacoma

March 9, 2021

CAUSALITY - 3

® Consider the messages:

P, =3 P,
[0 ] 0 0

6 m, 8 10
E?:\“:@: m, 20
8 il [
24 32 m, [40
30 a0 50
36 48 60
42 B4 [70
48 69 80
ol 77 90
76| [85] 100

®m P2 receives m1, and subsequently sends m3

= Causality: Sending m3 may depend on what’s contained in m1
® P2 receives m2, receiving m2 is not related to receiving m1

® |s sending m3 causally dependent on receiving m2?

TCSS558: Applied Distributed Computing [Winter 2021]

L17.26
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[Winter 2021] School of Engineering and Technology,

UW-Tacoma

VECTOR CLOCKS

® Vector clocks help keep track of causal history

= |f two local events happened at process P, then the
causal history H(p2) of event p2 is {p1,p2}

® P sends messages to Q (event p3)

® Q previously performed event q1

® Q records arrival of message as q2

® Causal histories merged at Q H(q2)= {p1,p2,p3,91,92}

® Fortunately, can simply store history of last event,
as a vector clock 2 H(gq2) = (3,2)

®m Each entry corresponds to the last event at the process

TCSS558: Applied Distributed Computing [Winter 2021]

117.27
School of Engineering and Technology, University of Washington - Tacoma

March 9, 2021

VECTOR CLOCKS - 2

(1,0) (2,0) (3,0)
P, —o—®

m,
(0,1) (3,2)
P, 9
® Each process maintains a vector clock which
= Captures humber of events at the local process (e.g. logical clock)
= Captures humber of events at all other processes
® Causality is captured by:
= For each event at Pi, the vector clock (VC,) is incremented
* The msg is timestamped with VC;; and sending the msg is recorded
as a new event at P;
= P, adjusts its VCj choosing the max of: the message timestamp -or-
the local vector clock (VC))

TCSS558: Applied Distributed Computing [Winter 2021]

L17.28
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[Winter 2021] School of Engineering and Technology,

UW-Tacoma

® These events “

VECTOR CLOCKS - 3

may be causally dependent”

® |n other words: they may have been necessary for the
message(s) to be sent...

® Pj knows the # of events at Pi based on the timestamps of the
received message

= Pj learns how many events have occurred at other processes
based on timestamps in the vector

March 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
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= Local clock is underlined CAUSALITY
= (11,00 (2.1,0) 3,1,0) (4,1,0)
1 = = .
i /
m, m, m,
P, (43.0)
(0.1.0) (420
m-l
P
2.1.1) (4.3.2)
m, my, my,<m, m,>m, Conclusion
(2,1,0) (4,3,0) Yes No m2 may causally precede m4
TCSS558: Applied Distributed C ting [Winter 2021]
March 9, 2021 School of Er’?gi:]eeerirllsg r;nl:i ‘T’echz?lsgy,mgniv;;i:; of Washington - Tacoma 11730

Slides by Wes J. Lloyd

March 9, 2021

L17.15



TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

VECTOR CLOCKS EXAMPLE - 2

md
P,
(231) (432)
m, m, m,<m, my,>m, Conclusion
(4,4,0) (2,3,0) No No m2 and m4 may conflict

®m P3 can’t determine if m4 may be causally dependent on m2
" |s m4 causally dependent on m3 ?

TCSS558: Applied Distributed Computing [Winter 2021]

117.31
School of Engineering and Technology, University of Washington - Tacoma

March 9, 2021

VECTOR CLOCKS EXAMPLE - 3

(1,0,0)
Pi —o ®
m, o -
P, (0,1,1)
my
P L
(0’0’1 )

® Provide a vector clock label for unlabeled events

TCSS558: Applied Distributed Computing [Winter 2021]
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UW-Tacoma

VECTOR CLOCKS EXAMPLE - 4

m3 m4

P, (0,1,1)

my

(0,0,1)

= TRUE/FALSE:

® The sending of message mg is causally dependent on the
sending of message m,.

® The sending of message m, is causally dependent on the
sending of message m,.

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

March 9, 2021
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VECTOR CLOCKS EXAMPLE - 5

(1,0,0)
Pi —o ®
m, o -
P, (0,1,1)
my
P L
(0’0’1 )

= TRUE/FALSE:

= P, (1,0,0) and P; (0,0,1) may be concurrent events.
= P, (0,1,1) and P5; (0,0,1) may be concurrent events.
= P, (1,0,0) and P, (0,1,1) may be concurrent events.

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

March 9, 2021
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WE WILL RETURN AT
3:01 PM

OBJECTIVES - 3/9

® Questions from 3/4

= Assignment 2: Replicated Key Value Store
®m Chapter 6: Coordination

= Chapter 6.2: Logical Clocks
Vector Clocks

E |[ntroduce Activities:

= Activity 4 - Total Ordered Multicasting |

= Activity 5 - Causality and Vector Clocks
® Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion

TCSS558: Applied Distributed Computing [Winter 2021]

March 9, 2021 School of Engineering and Technology, University of Washington - Tacoma
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OBJECTIVES - 3/9

® Questions from 3/4

®m Assignment 2: Replicated Key Value Store
® Chapter 6: Coordination

= Chapter 6.2: Logical Clocks
Vector Clocks

B [ntroduce Activities:
= Activity 4 - Total Ordered Multicasting

= Activity 5 - Causality and Vector CIocm

® Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion

TCSS558: Applied Distributed Computing [Winter 2021]

MarchE20 2T School of Engineering and Technology, University of Washington - Tacoma

L17.37

OBJECTIVES - 3/9

® Questions from 3/4

B Assighment 2: Replicated Key Value Store
®m Chapter 6: Coordination

= Chapter 6.2: Logical Clocks
Vector Clocks

® [ntroduce Activities:
= Activity 4 - Total Ordered Multicasting
= Activity 5 - Causality and Vector Clocks
®m Chapter 6: Coordination

= Chapter 6.3: Distributed Mutual Exclusion |

TCSS558: Applied Distributed Computing [Winter 2021]

March 9, 2021 School of Engineering and Technology, University of Washington - Tacoma

L17.38
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Distributed
Mutual Exclusion
Algorithms

| Token-based || Hybrid | |Permission-hnsed|

CH. 6.3: DISTRIBUTED
MUTUAL
EXCLUSION

DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS

® Coordinating access among distributed processes to a
shared resource requires Distributed Mutual Exclusion

m Algorithms in 6.3

® Token-ring algorithm

® Permission-based algorithms:
® Centralized algorithm

® Distributed algorithm (Ricart and Agrawala)

® Decentralized voting algorithm (Lin et al.)

TCSS558: Applied Distributed Computing [Winter 2021]

March 9, 2021 School of Engineering and Technology, University of Washington - Tacoma

L17.40
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UW-Tacoma

TOKEN-BASED ALGORITHMS

® Mutual exclusion by passing a “token” between nodes
= Nodes often organized in ring
®= Only one token, holder has access to shared resource

= Avoids starvation: everyone gets a chance to obtain lock

® Avoids deadlock: easy to avoid

TCSS558: Applied Distributed Computing [Winter 2021]

117.41
School of Engineering and Technology, University of Washington - Tacoma

March 9, 2021

TOKEN-RING ALGORITHM

® Construct overlay network
® Establish logical ring among nodes

W Token
(O—(D)—2—®)
De—)—(«—¥

® Single token circulated around the nodes of the network

® Node having token can access shared resource

® |If no node accesses resource, token is constantly circulated
around ring

TCSS558: Applied Distributed Computing [Winter 2021]

L17.42
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TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

TOKEN-RING CHALLENGES

1. If token is lost, token must be regenerated
= Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

= What is the difference between token being lost and a
node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

= Dead nodes can be detected by adding a receipt message
for when the token passes from node-to-node

= When no receipt is received, node assumed dead
= Dead process can be “jumped” in the ring

TCSS558: Applied Distributed Computing [Winter 2021]

117.43
School of Engineering and Technology, University of Washington - Tacoma

March 9, 2021

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS - 3

®Permission-based algorithms

B Processes must require permission from other processes
before first acquiring access to the resource

= CONTRAST: Token-ring did not ask nodes for permission

® Centralized algorithm

m Elect a single leader node to coordinate access to shared
resource(s)

B Manage mutual exclusion on a distributed system similar
to how it mutual exclusion is managed for a single system

B Nodes must all interact with leader to obtain “the lock”

TCSS558: Applied Distributed Computing [Winter 2021]
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UW-Tacoma

CENTRALIZED MUTUAL EXCLUSION

Permission granted from coordinator

K

\/ No response from coordinator

Reqguest | |O RRguesl
7 No reply
’_‘ Queue is @
) / empty
Coordinator
P, executes P, blocks

Release

P, finishes; P, executes

® When resource not available, coordinator can block the
requesting process, or respond with a reject message

® P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked

B Requests granted permission fairly using FIFO queue
® Just three messages: (request, grant (OK), release)

March 9, 2021
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CENTRALIZED MUTUAL EXCLUSION - 2

E |[ssues

® Coordinator is a single point of failure

® Processes can’t distinguish dead coordinator from “blocking”
when resource is unavailable

= No difference between CRASH and Block (for a long time)
® Large systems, coordinator becomes performance bottleneck
= Scalability: Performance does not scale

= Benefits
= Simplicity:

Easy to implement compared to distributed alternatives

March 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L17.46

Slides by Wes J. Lloyd

March 9, 2021

L17.23
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DISTRIBUTED ALGORITHM

® Ricart and Agrawala [1981], use total ordering of all events
= Leverages Lamport logical clocks

® Package up resource request message (AKA Lock Request)
® Send to all nodes
® |nclude:

= Name of resource

= Process number

= Current (logical) time

® Assume messages are sent reliably
= No messages are lost

TCSS558: Applied Distributed Computing [Winter 2021]

MarchE20 2T School of Engineering and Technology, University of Washington - Tacoma

L17.47

DISTRIBUTED ALGORITHM - 2

= When each node receives a request message they will:
1. Say OK (if the node doesn’t need the resource)
2. Make no reply, queue request (node is using the resource)

3. If node is also waiting to access the resource: perform a
timestamp comparison -

1. Send OK if requester has lower logical clock value
2. Make no reply if requester has higher logical clock value
= Nodes sit back and wait for all nodes to grant permission

® Requirement: every node must know the entire membership
list of the distributed system
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DISTRIBUTED ALGORITHM - 3

® Node O and Node 2 simultaneously request access to resource

® Node O’s time stamp is lower (8) than Node 2 (12)
® Node 1 and Node 2 grant Node O access
® Node 1 is not interested in the resource, it OKs both requests

Accesses
resource

N .
o o @ Accesses

oK resource

{b) ()
" |n case of conflict, lowest timestamp wins!
= Node 2 rejects its own request (1@) in favor of node O (8)
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CHALLENGES WITH

DISTRIBUTED ALGORITHM

= Problem: Algorithm has N points of failure !
® Where N = Number of Nodes in the system

= No Reply Problem: When node is accessing the resource,
it does not respond

= Lack of response can be confused with failure

= Possible Solution: When node receives request for
resource it is accessing, always send a reply either
granting or denying permission (ACK)

= Enables requester to determine when nodes have died

TCSS558: Applied Distributed Computing [Winter 2021]

L17.50
School of Engineering and Technology, University of Washington - Tacoma

March 9, 2021

Slides by Wes J. Lloyd

March 9, 2021

L17.25



TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

CHALLENGES WITH

DISTRIBUTED ALGORITHM - 2

= Problem: Multicast communication required -or- each node
must maintain full group membership
= Track nodes entering, leaving, crashing...

= Problem: Every process is involved in reaching an agreement
to grant access to a shared resource

= This approach may not scale on resource-constrained systems
® Solution: Can relax total agreement requirement and proceed
when a simple majority of hodes grant permission
= Presumably any one node locking the resource prevents agreement
= |[f one node gets majority of acknowledges no other can
= Requires every node to know size of system (# of nodes)

® Distributed algorithm for mutual exclusion works best for:
= Small groups of processes
= When memberships rarely change
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DECENTRALIZED ALGORITHM

® Lin et al. [2004], decentralized voting algorithm
®m Resource is replicated N times
®m Each replica has its own coordinator ...(N coordinators)

B Accessing resource requires majority vote:
total votes (m) > N/2 coordinators

= Assumption #1: When coordinator does not give
permission to access a resource (because it is busy) it will
inform the requester
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DECENTRALIZED ALGORITHM - 2

= Assumption #2: When a coordinator crashes, it recovers
quickly, but will have forgotten votes before the crash.

= Approach assumes coordinators reset arbitrarily at any time

® Risk: on crash, coordinator forgets it previously granted
permission to the shared resource, and on recovery it errantly
grants permission again

® The Hope: if coordinator crashes, upon recovery, the node
granted access to the resource has already finished before the
restored coordinator grants access again . . .
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DECENTRALIZED ALGORITHM - 3

® With 99.167% coordinator availability (30 sec downtime/hour)
chance of violating correctness is so low it can be neglected in
comparison to other types of failure

m Leverages fact that a new node must obtain a majority vote to
access resource, which requires time

N | m P Violation N m P Violation
8 | 5 | 3sec/hour | <10~ 8 | 5 | 30secthour | < 10710
8 | 6 | 3sec/hour | < 10718 8 | 6 |30sec/hour | <107 11
16 | 9 | 3sec/hour | < 10~% 16 | 9 | 30sec/hour | < 10718
16 | 12 | 3 sec/hour | < 10736 16 | 12 | 30 sec/hour | < 10724
32 | 17 | 3 sec/hour | < 10722 32 | 17 | 30 sec/hour | < 1079
32 | 24 | 3sec/hour | < 10773 32 | 24 | 30 sec/hour | < 1049

N = number of resource replicas, m = required “majority” vote
p=seconds per hour coordinator is offline
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DECENTRALIZED ALGORITHM - 4

= Back-off Polling Approach for permission-denied:

® |f permission to access a resource is denied via majority vote,
process can poll to gain access again with a random delay
(known as back-off)

® Node waits for a random amount, retries...

® |If too many nodes compete to gain access to a resource,
majority vote can lead to low resource utilization

= No one can achieve majority vote to obtain access to the
shared resource

= Mimics elections where with too many candidates, where no
one candidate can get >50% of the total vote

= Problem Solution detailed in [Lin et al. 2014]

TCSS558: Applied Distributed Computing [Winter 2021]

117.55
School of Engineering and Technology, University of Washington - Tacoma

March 9, 2021

“u -

LJ When poll is active, respond at PollEv.com/wesleylloyd641
=l Text WESLEYLLOYDG641 to 22333 once to join

Which algorithm offers the best scalability to

YW support distributed mutual exclusion in a large
distributed system?

Token-ring algorithm
Centralized algorithm
Distributed algorithm
Decentralized voting algorithm

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
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LJ When poll is active, respond at PollEv.com/wesleylloyd641
=1 Text WESLEYLLOYD641 to 22333 once to join

Which algorithm(s) involve blocking (no reply)

W when aresource is not available? (check all
that apply)

Token-ring algorithm
Centralized Algorithm
Distributed algorithm
Decentralized voting algorithm

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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“n

LJ When poll is active, respond at PollEv.com/wesleylloyd641
=l Text WESLEYLLOYDG641 to 22333 once to join

Which algorithm(s) involve arriving at a
consensus (majority opinion) to determine

W

whether a node should be granted accessto a
resource? (check all that apply)

Token-ring algorithm
Centralized algorithm
Distributed algorithm
Decentralized voting algorithm

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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LJ When poll is active, respond at PollEv.com/wesleylloyd641
=1 Text WESLEYLLOYD641 to 22333 once to join

Which algorithm(s) have N points of failure,

W where N = Number of Nodes in the system?
(check all that apply)

Token-ring algorithm
Centralized algorithm
Distributed algorithm
Decentralized voting algorithm

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

y

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW

® Which algorithm offers the best scalability to support
distributed mutual exclusion in a large distributed
system?

® (A) Token-ring algorithm
® (B) Centralized algorithm
m (C) Distributed algorithm

® (D) Decentralized voting algorithm
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 2

® Which algorithm(s) involve blocking (no reply) when a
resource is not available?

® (A) Token-ring algorithm
® (B) Centralized algorithm
® (C) Distributed algorithm

® (D) Decentralized voting algorithm
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 3

® Which algorithm(s) involve arriving at a consensus

(majority opinion) to determine whether a node should be

granted access to a resource?

® (A) Token-ring algorithm
® (B) Centralized algorithm
m (C) Distributed algorithm

® (D) Decentralized voting algorithm
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DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 4

® Which algorithm(s) have N points of failure,
where N = Number of Nodes in the system?

® (A) Token-ring algorithm

® (B) Centralized algorithm

® (C) Distributed algorithm

® (D) Decentralized voting algorithm
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