TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,
UW-Tacoma

March 9, 2021

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
| |

Chapter 6 - Coordination - llI

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

OBJECTIVES - 3/9

| = Questions from 3/4 |

= Assignment 2: Replicated Key Value Store
= Chapter 6: Coordination

= Chapter 6.2: Logical Clocks

Vector Clocks

= Introduce Activities:

= Activity 4 - Total Ordered Multicasting

= Activity 5 - Causality and Vector Clocks
= Chapter 6: Coordination

= Chapter 6.3: Distributed Mutual Exclusion

Marchs, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ w2

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 10p

® Thursday surveys: due ~ Mon @ 10p

= TCSS558A > Assignments

Winter 2021
Home
Announcements

* Upcoming Assignments

Zoom o TCSS 558~ Online Daily Feedback Survey - 1/5
Chat “¥ Notavailable until Jan 5 at 1:30pm | Due Jan 6 3t 10pm | -/1pts

March 9, 2021 TCSS558: App}ied D.is(ribuled Computing [.Win(‘er 2021]) uz3
school of chnology, y Tacoma

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan 6 at 10pm Points 1 Questions 4
Available Jan 5 at 1:30pm - Jan 6 at 11:59pm 1 day Time Limit None

[Question1 05pts

©Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

2 2 3 4 5 6 i 8 9 10

wosta e wostly

Pavion To e e ama Baview Now to e

O Question2 05pts

Please rate the pace of today's class

1 2 3 4 s & 7 8 9 10

Stow Just gt Fast

TCSS558: Applied Distributed Computing [Winter 2021]
Raxchi 2l School of Engineering and Technology, University of Washington - Tacoma L174

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (19 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.21 ({ - previous 6.87)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.68 ({ - previous 5.73)

March 9, 2021 TCSS558: App}ied D.is(ribuled Computing [.Win(‘er 2021])
school of chnology, y Tacoma

Slides by Wes J. Lloyd

FEEDBACK FROM 3/4

= Can you visuallze how docker swarm works In assignment 2?

= Use of Docker Swarm is optional for assignhment 2

= Docker Swarm combined with an overlay network allows
docker containers created across multiple docker hosts using
“docker-machine” to be assigned IP addresses on a common
interconnected network.

= Containers created across the swarm using the overlay can
communicate using TCP

= UDP multicast does not work however

= For assignment 2, you can deploy your multi-node KV store on
ec2 across multiple VMs using a swarm + overlay

= This exercise is optional for assignment #2

March9, 2021 TCSS558: App.lied I?islribu(ed Computing [.Wim:er 2021]) 1176
School of Technology, University of Tacoma

L17.1

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

March 9, 2021

DOCKER SWARM + OVERLAY NETWORK

= Configuration Steps:

1. Launch docker swarm manager node

2. Start swarm manually

3. Copy the token provided. It will be used to add each docker-

machine to the swarm.

Launch docker-machines as worker nodes in the swarm

. Create the overlay network

. Launch individual containers using the overlay network

. Switch context as needed to the proper docker-machine to
place (load-balance) containers

= eval $(docker-machine env aw-swarmID),
where “aw-swarmID” is a docker-machine node name

See:
hitp://facult d h xt

TCS5558: Applied Distributed Computing [Winter 2021]

LRI, 20 AT e v s s o T T T T ‘ w7 ‘

FEEDBACK - 2

= | am not clear about total ordered multicasting. Could you
please explain in more detail.

= We will show an example in class today...

TCSS558: Applied Distributed Computing [Winter 2021]

WELENE, 7 A R e e o R P T = ‘ ure ‘

OBJECTIVES - 3/9

= Questions from 3/4

| = Assignment 2: Replicated Key Value Store |
= Chapter 6: Coordination
= Chapter 6.2: Logical Clocks
Vector Clocks
= Introduce Activities:
= Activity 4 - Total Ordered Multicasting
= Activity 5 - Causality and Vector Clocks
= Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion

March, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y - Tacoma

SHORT-HAND-CODES FOR MEMBERSHIP

TRACKING APPROACHES

® Include readme.txt or doc file with instructions in submission
= Must document membership tracking method

>> please Indicate which types to test <<

ID Description

F Static file membership tracking - file is not reread

FD Static file membership tracking DYNAMIC - file is
periodically reread to refresh membership list

T TCP membership tracking - servers are configured to
refer to central membership server
u UDP membership tracking - automatically discovers

nodes with no configuration

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma 7o

March 9, 2021

ASSIGNMENT 2

|= Sunday March 14t
= Goal: Replicated Key Value Store

= Team signup to be posted on Canvas under ‘People’
= Build off of Assignment 1 GenericNode

= Focus on TCP client/server w/ replication

= How to track membership for data replication?
= Can implement multiple types of membership tracking
for extra credit

OBJECTIVES - 3/9

= Questions from 3/4

= Assignment 2: Replicated Key Value Store
= Chapter 6: Coordination
| =Chapter 6.2: Loglcal Clocks |
Vector Clocks

= Introduce Activities:

= Activity 4 - Total Ordered Multicasting

= Activity 5 - Causality and Vector Clocks
= Chapter 6: Coordination

= Chapter 6.3: Distributed Mutual Exclusion

eSS

March, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y Tacoma

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma w2

March 9, 2021

Slides by Wes J. Lloyd

L17.2

TCSS 558: Applied Distributed Computing March 9, 2021
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

(100) (200 ©10 @10 (619612 (12
Po —O Q—=p o oq—o

CHAPTER 6 - COORDINATION

= 6.1 Clock Synchronization

= Physical clocks

= Clock synchronization algorithms
= 6.2 Logical clocks

= Lamport clocks CH- 6.2: LOGICAL
= Vector clocks CLOC KS

= 6.3 Mutual exclusion

= 6.4 Election algorithms

= 6.6 Distributed event matching (light)
= 6.7 Gossip-based coordination (light)

March 9, 2021 1713

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineeri chnology, University i Tacoma

TOTAL-ORDERED MULTICASTING

TOTAL-ORDERED MULTICASTING

EXAMPLE
= Consider concurrent updates to a replicated database = Two messages (my, m,) must be distributed,
= Communication latency between DB1 and DB2 is 250ms to two processes (py, P,)
= We assume messages have correct lamport clock timestamps
% e 2 = m,(10, p,, add $100)

" my(12, py, add 1% interest)

Replicated database = Each process maintains a queue of messages

Update 1is Update 2is

Pef'fl’"‘;"de;;;'ﬂfe Pe"zmzf:f'me = Arriving messages are placed into queues ordered by the
Lamport clock timestamp

= Initlal Account balance: $1,000
= Update #1: Deposit $100 = |n each queue, each message must be acknowledged by every
= Update #2: Add 1% Interest process in the system before operations can be applied to the
= Total Ordered Multicasting needed local database

March 9, 2021 TCSS558: Applied Distributed Computing [Winter 2021] 715 March 9, 2021 TCSS558: Applied Distributed Computing [Winter 2021] 716

Hizikh School of Engineeri chnology, University i Tacoma larch 9, School of Engineeri iversity i Tacoma

_TOTAL-ORDERED MULTICASTING EXAMPLE

L-ORDERED MULTICASTING

,, ADD
Toval Ordered mulhicashng my (19,71, e

EXAMPLE Logieal clock

wilh Achoowledgement s

[TWe peesms Wi (RS s
— g LY
= Two messages (m,, m,) must be distributed, Q,’mﬁ S
to two processes (p4, p5) es
AT e mRAT
= We assume messages have correct lamport clock timestamps e
= m,(10, p,, add $100) @/ = >

SEiay

Key pol
Multicast messages are also received by the sender (itself)

EMU PRICESS
WE A LocAL

queve o-
P2 Queve
T £ Acchon

Lamport clock timestamp

= |n each queue, each message must be acknowledged by every
process in the system before operations can be applied to the
local database

March 9, 2021 1717

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineeri chnology, University i Tacoma

Slides by Wes J. Lloyd L17.3

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

_TOTAL-ORDERED MULTICASTING EXAMPLE

2 and N\
ToTal Ordered mulhicashr Pl iamo)
with Achna

Logieal clech

EcH PROCESS
@TWE A LOCAL
e > 0
P2 Queve
; b2 AGAGD
2 Agcaan

What is the final account balance?

March 9, 2021

TOTAL-ORDERED MULTICASTING - 2

= Each message timestamped with local logical clock of sender
= Multicast messages are also received by the sender (itself)
= Assumptions:
= Messages from same sender received in order they were sent
= No messages are lost
= When messages arrive they are placed in local queue ordered
by timestamp
= Receiver multicasts acknowledgement of message receipt to
other processes
= Time stamp of message receipt is lower the acknowledgement

= This process replicates queues across sites

= Messages delivered to application (database) only when
message at the head of the queue has been acknowledged by
every process in the system

TCSS558: Applied Distributed Computing [Winter 2021]

farchDi2028 School of Engineering and Technology, University of Washington - Tacoma

uzr.20

TOTAL-ORDERED MULTICASTING - 3

= Can be used to implement replicated state machines (RSMs)

= Concept is to replicate event queues at each node

= (1) Using logical clocks and (2) hanging ack ledg t
messages, allows for events to be “totally” ordered in
replicated event queues

= Events can be applied “In order” to each (distributed)
replicated state machine (RSM)

HHPPH(—{H Clients

Pass
10 other machines

March 9, 2021 TCSS558: App}ied D.is(ribuled Computing [.Win(‘er 2021])
school of Technology, y

w72
Tacoma

OBJECTIVES - 3/9

= Questions from 3/4
= Assignment 2: Replicated Key Value Store
= Chapter 6: Coordination

= Chapter 6.2: Logical Clocks

Vector Clocks |

= Introduce Activities:
= Activity 4 - Total Ordered Multicasting
= Activity 5 - Causality and Vector Clocks
= Chapter 6: Coordination
= Chapter 6.3: Distributed Mutual Exclusion

TCSS558: Applied Distributed Computing [Winter 2021]

archi2028 School of Engineering and Technology, University of Washington - Tacoma

ur22

VECTOR CLOCKS

= Lamport clocks don’t help to determine causal ordering of
messages

= Vector clocks capture causal histories and can be used as an
alternative

= But what is causality? ...

March, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y Tacoma

w723

WHAT IS CAUSALITY?

Proc 1

M4

Proc2 s

= Having a causal relationship between two events (A and E)
indicates that event E results from the occurrence of event A.

= When one event results from another, there is a causal
relationship between the two events.

= This is also referred to as cause and effect.

TCSS558: Applied Distributed Computing [Winter 2021]

WELENE, 7 Sehoollof echnoloayUniversityof Tacoma

uzr.24

Slides by Wes J. Lloyd

L17.4

TCSS 558: Applied Distributed Computing March 9, 2021
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

CAUSALITY - 2 CAUSALITY - 3

= Disclalmer: = Consider the messag

= Without knowing actual information contained in messages, it
is not possible to state with certainty that there is a causal
relationship or perhaps a conflict

= Lamport/Vector clocks can help us suggest possible causality
= But we never know for sure...

= P2 receives m1, and subsequently sends m3

= Causality: Sending m3 may depend on what’s contained in m1
= P2 receives m2, receiving m2 is not related to receiving m1

= |s sending m3 causally dependent on recelving m2?

TC55558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2021]

March 9, 2021 School of Engineering and Technology, University of Washington - Tacoma

w725

March 9, 2021

VECTOR CLOCKS VECTOR CLOCKS - 2

= Vector clocks help keep track of causal history p, (10 (20) (30)

= |f two local events happened at process P, then the
causal history H(p2) of event p2 is {p1,p2}

P,

= P sends messages to Q (event p3) = Each process maintains a vector clock which

= Q previously performed event q1 = Captures number of events at the local process (e.g. logical clock)
= Q records arrival of message as q2 = Captures number of events at all other processes

= Causal histories merged at Q H(q2)= {p1,p2,p3,q1,q92} = Causality is captured by:

= For each event at Pi, the vector clock (VC)) is incremented
= Fortunately, can simply store history of last event, = The msg is timestamped with VC;; and sending the msg is recorded
as a vector clock 2 H(q2) = (3,2) as aneweventat P,

= P; adjusts its VC; choosing the max of: the message timestamp -or-
the local vector clock (VC))

TCS5558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

= Each entry corresponds to the last event at the process

TC55558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

March 9, 2021 u727

March 9, 2021

VECTOR CLOCKS - 3 VECTOR CLOCKS EXAMPLE

= Pj knows the # of events at Pi based on the timestamps of the = Local clock is underlined CAUSALITY

received message P (1,1.0) (2.1.0) [3.1,0) (41,0)
4 = = o=

= Pj learns how many events have occurred at other processes
based on timestamps in the vector

= These events “may be causally dependent” P.

= |In other words: they may have been necessary for the

message(s) to be sent... m,
Py
214 432
my m, my<m, my>m, Ci
(2,1,0) (4,3,0) Yes No m2 may causally precede m4

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2021]
WL ELENE, 20 L7z WELENE, 7 Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma 1730

Slides by Wes J. Lloyd L17.5

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,
UW-Tacoma

March 9, 2021

VECTOR CLOCKS EXAMPLE - 2

p,_ (110 @10) @10 @10

3

1 _
m/ m, m,
P, (2%0)

(231) (43.2)
my my my<m, my>m, Conclusl
(4,1,0) (2,3,0) No No m2 and m4 may conflict

= P3 can’t determine if m4 may be causally dependent on m2
" |s m4 causally dependent on m3 ?

March 9, 2021 TCSS558: App.lied D.is(ribuled Computing [.Win(.ev 2021])
school of chnology, y Tacoma

w73

VECTOR CLOCKS EXAMPLE - 3

1,0,0)
P, ()
\ m; my
P, 01,14
o
P, 3 23

(0',011)

= Provide a vector clock label for unlabeled events

TCsS558: Applied Distributed Computing [Winter 2021]
WELENE, 7 e BT e o Ty f T

u7.3

VECTOR CLOCKS EXAMPLE - 4

(1,0,0)

P,

my

o |

(‘;0,1)

= TRUE/FALSE:

= The sending of message m; is causally dependent on the
sending of message m,.

= The sending of message m, is causally dependent on the
sending of message m,.

March 9, 2021 TCSS558: App‘lied D.is(ribuled Computing [.Win(‘ev 2021])
school of chnology, y Tacoma

1733

VECTOR CLOCKS EXAMPLE - 5

1,0,0)
P, ()
\ m; my
P, 01,14
o
P, d 3 23
(0,0,1)

= TRUE/FALSE:

= P, (1,0,0) and P; (0,0,1) may be concurrent events.
=P, (0,1,1) and P; (0,0,1) may be concurrent events.
= P, (1,0,0) and P, (0,1,1) may be concurrent events.

Marchs, 2021 TCss558: Applied Distributed Computing [Winter 2021]
School of Technology, University of Tacoma

u7.34

WE WILL RETURN AT
3:01 PM

OBJECTIVES - 3/9

= Questions from 3/4

= Assignment 2: Replicated Key Value Store
= Chapter 6: Coordination

= Chapter 6.2: Logical Clocks

Vector Clocks
= |[ntroduce Activities:
|__= Activity 4 - Total Ordered Multicasting |

= Activity 5 - Causality and Vector Clocks
= Chapter 6: Coordination

= Chapter 6.3: Distributed Mutual Exclusion

Marchs, 2021 TCsS558: Applied Distributed Computing [Winter 2021]
School of Technology, University of - Tacoma

u7.3s

Slides by Wes J. Lloyd

L17.6

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 3/9

= Questions from 3/4

= Assignment 2: Replicated Key Value Store
= Chapter 6: Coordination

= Chapter 6.2: Logical Clocks

Vector Clocks

= Introduce Activities:

= Activity 4 - Total Ordered Multicasting

| = Actlvity 5 - Causallty and Vector Clocks |

= Chapter 6: Coordination

= Chapter 6.3: Distributed Mutual Exclusion

March 9, 2021

March, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

Technology, y - Tacoma

1737

OBJECTIVES - 3/9

= Questions from 3/4

= Assignment 2: Replicated Key Value Store
= Chapter 6: Coordination

= Chapter 6.2: Logical Clocks
Vector Clocks

= Introduce Activities:
= Activity 4 - Total Ordered Multicasting
= Actlvity 5 - Causallty and Vector Clocks
= Chapter 6: Coordination

= Chapter 6.3: DIstributed Mutual Excluslon |

TCS5558: Applied Distributed Computing [Winter 2021]

WELENE, 7 Sehoalor T TRy e

u7.3s

CH. 6.3: DISTRIBUTED
MUTUAL
EXCLUSION

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS

= Coordinating access among distributed processes to a
shared resource requires DIstrlbuted Mutual Exclusion

= Algorithms in 6.3
= Token-ring algorithm

= Permission-based algorithms:

= Centralized algorithm
= Distributed algorithm (Ricart and Agrawala)

= Decentralized voting algorithm (Lin et al.)

TCS5558: Applied Distributed Computing [Winter 2021]

WELENE, 7 Schoolof EchnoloayiUniversiyer Tecoma

wo |

TOKEN-BASED ALGORITHMS

= Nodes often organized in ring

= Avoids deadlock: easy to avoid

= Mutual exclusion by passing a “token” between nodes

= Only one token, holder has access to shared resource

= Avoids starvation: everyone gets a chance to obtaln lock

March, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

Technology, y Tacoma

ur.a1

TOKEN-RING ALGORITHM

= Construct overlay network
= Establish logical ring among nodes

B Token
S
De—«—«®
= Single token circulated around the nodes of the network

= Node having token can access shared resource

= |f no node accesses resource, token is constantly circulated
around ring

TCS5558: Applied Distributed Computing [Winter 2021]

WELENE, 7 Schoolof echnoloayUniversityof Tacoma

uz.a2

Slides by Wes J. Lloyd

L17.7

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

March 9, 2021

TOKEN-RING CHALLENGES

1. If token is lost, token must be regenerated
= Problem: may accidentally circulate multiple tokens

2. Hard to determine if token is lost

= What is the difference between token being lost and a
node holding the token (lock) for a long time?

3. When node crashes, circular network route is broken

= Dead nodes can be detected by adding a receipt message
for when the token passes from node-to-node

=When no receipt is received, node assumed dead
= Dead process can be “jumped” in the ring

TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma L4

March 9, 2021

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS - 3

= Permission-based algorithms

= Processes must require permission from other processes
before first acquiring access to the resource
= CONTRAST: Token-ring did not ask nodes for permission

= Centrallzed algorithm

= Elect a single leader node to coordinate access to shared
resource(s)

= Manage mutual exclusion on a distributed system similar
to how it mutual exclusion is managed for a single system
= Nodes must all interact with leader to obtain “the lock”

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma Lr.a ‘

March 9, 2021

CENTRALIZED MUTUAL EXCLUSION

Permission granted from coordinator \/ No response from coordinator

Request | |OK Reguost Release
@ No reply

P, executes P, blocks P, finishes; P, executes
= When resource not available, coordinator can block the
requesting process, or respond with a reject message
= P2 must poll the coordinator if it responds with reject
otherwise can wait if simply blocked
= Requests granted permission fairly using FIFO queue

OK

Queueis
/ empty

= Just three messages: (request, grant (OK), release)

TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma s

March 9, 2021

CENTRALIZED MUTUAL EXCLUSION - 2

= |ssues
= Coordinator is a single point of failure

= Processes can’t distinguish dead coordinator from “blocking”
when resource is unavailable

= No difference between CRASH and Block (for a long time)
= Large systems, coordinator becomes performance bottleneck
= Scalability: Performance does not scale

= Beneflts
= Simplicity:
Easy to implement compared to distributed alternatives

TCSS558: Applied Distributed Computing [Winter 2021]

archi2028 School of Engineering and Technology, University of Washington - Tacoma

we |

DISTRIBUTED ALGORITHM

= Ricart and Agrawala [1981], use total ordering of all events
= Leverages Lamport logical clocks

= Package up resource request message (AKA Lock Request)
= Send to all nodes
= Include:

= Name of resource

= Process number

= Current (logical) time

= Assume messages are sent reliably
= No messages are lost

TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma L

March 9, 2021

DISTRIBUTED ALGORITHM - 2

= When each node receives a request message they will:
1. Say OK (If the node doesn’t need the resource)
2. Make no reply, queue request (node is using the resource)
3. If node Is also walting to access the resource: perform a
timestamp comparison -
1. Send OK if requester has lower logical clock value
2. Make no reply if requester has higher logical clock value
= Nodes sit back and wait for all nodes to grant permission

= Requirement: every node must know the entire membership
list of the distributed system

TCS$558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma e

March 9, 2021

Slides by Wes J. Lloyd

L17.8

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

March 9, 2021

DISTRIBUTED ALGORITHM - 3

= Node O and Node 2 simultaneously request access to resource
= Node O’s time stamp is lower (8) than Node 2 (12)

= Node 1 and Node 2 grant Node O access

= Node 1 is not interested in the resource, it OKs both requests

Accesses
resource

= O D=

OK resource

(b) (O]
= |In case of conflict, lowest timestamp wins!
= Node 2 rejects its own request (1@) in favor of node 0 (8)

L17.49

Marchs, 2021 ‘ TC55558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma

CHALLENGES WITH

DISTRIBUTED ALGORITHM

= Problem: Algorithm has N points of failure !
= Where N = Number of Nodes in the system

= No Reply Problem: When node is accessing the resource,
it does not respond
= Lack of response can be confused with fallure

= Possible Solution: When node receives request for
resource it is accessing, always send a reply either
granting or denying permission (ACK)

= Enables requester to determine when nodes have died

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma 750

March 9, 2021

CHALLENGES WITH

DISTRIBUTED ALGORITHM - 2

= Problem: Multicast communication required -or- each node
must maintain full group membership
= Track nodes entering, leaving, crashing...

= Problem: Every process is involved in reaching an agreement
to grant access to a shared resource
= This approach may not scale on resource-constrained systems
= Solution: Can relax total agreement requirement and proceed
when a simple majority of nodes grant permission
= Presumably any one node locking the resource prevents agreement
= If one node gets majority of acknowledges no other can
= Requires every node to know size of system (# of nodes)

= Distributed algorithm for mutual exclusion works best for:
= Small groups of processes
= When memberships rarely change

TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma st

March 9, 2021

DECENTRALIZED ALGORITHM

= Lin et al. [2004], decentralized voting algorithm
= Resource is replicated N times
= Each replica has its own coordinator ...(N coordinators)

= Accessing resource requires majority vote:
total votes (m) > N/2 coordinators

= Assumption #1: When coordinator does not give
permission to access a resource (because it is busy) it will
inform the requester

TCS5558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

March 9, 2021 1752

DECENTRALIZED ALGORITHM - 2

= Assumptlon #2: When a coordinator crashes, it recovers
quickly, but will have forgotten votes before the crash.

= Approach assumes coordinators reset arbitrarily at any time

= Risk: on crash, coordinator forgets it previously granted
permission to the shared resource, and on recovery it errantly
grants permission again

= The Hope: if coordinator crashes, upon recovery, the node
granted access to the resource has already finished before the
restored coordinator grants access again . . .

DECENTRALIZED ALGORITHM - 3

= With 99.167% coordinator availability (30 sec downtime/hour)
chance of violating correctness is so low it can be neglected in
comparison to other types of failure

= Leverages fact that a new node must obtain a majority vote to
access resource, which requires time

N | m p Violation N | m P Violation
8 | 5 | 3sec/hour | <101 8 | 5 | 30 secthour | < 1010
8 | 6 | 3secthhour | <10~ 8 | 6 | 30sec/hour | <10~ 11
16 | 9 [3secthour [< 107% 16 | 9 | 30 secthour | <1018
16 | 12 | 3sec/hour | < 10736 16 | 12 | 30 sec/hour | <10~2
32 [17 | 3 sec/hour | <102 32| 17 | 30 sec/hour | < 10~
32 | 24 | 8 sec/hour | <1073 32 | 24 | 30 sec/hour | < 10~%

N = number of resource replicas, m = required “majority” vote
p=seconds per hour coordinator is offline

TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma w73

March 9, 2021

TCS$558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma s

March 9, 2021

Slides by Wes J. Lloyd

L17.9

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

DECENTRALIZED ALGORITHM - 4

= Back-off Polllng Approach for permission-denled:

= |f permission to access a resource is denied via majority vote,
process can poll to gain access again with a random delay
(known as back-off)

= Node waits for a random amount, retries...

= |f too many nodes compete to gain access to a resource,
majority vote can lead to low resource utilization

= No one can achleve majorlity vote to obtaln access to the
shared resource

= Mimics elections where with too many candidates, where no
one candidate can get >50% of the total vote

= Problem Solution detailed in [Lin et al. 2014]

March 9, 2021

TCS5558: Applied Distributed Computing [Winter 2021]

LRI, 20 AT e v s s o T T T T

755

3 When poll is active, respond at PollEv.com/wesleylloyd641
&1 Text WESLEYLLOYD641 to 22333 once to join

Which algorithm offers the best scalability to

YW support distributed mutual exclusion in a large

distributed system?

Token-ring algorithm
Centralized algorithm
Distributed algorithm
Decentralized voting algorithm

None of the above

L When poll is active, respond at PollEv.com/wesleylloyd641
& Text WESLEYLLOYD641 to 22333 once to join

Which algorithm(s) involve blocking (no reply)

W when aresource is not available? (check all

that apply)

Token-ring algorithm
Centralized Algorithm
Distributed algorithm
Decentralized voting algorithm

None of the above

3 When poll is active, respond at PollEv.com/wesleylloyd641
&1 Text WESLEYLLOYD641 to 22333 once to join

Which algorithm(s) involve arriving at a

consensus (majority opinion) to determine
whether a node should be granted access to a
resource? (check all that apply)

Token-ring algorithm
Centralized algorithm
Distributed algorithm
Decentralized voting algorithm

None of the above

L When poll is active, respond at PollEv.com/wesleylloyd641
& Text WESLEYLLOYD641 to 22333 once to join

Which algorithm(s) have N points of failure,

W where N = Number of Nodes in the system?
(check all that apply)

Token-ring algorithm
Centralized algorithm
Distributed algorithm
Decentralized voting algorithm

None of the above

Slides by Wes J. Lloyd

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW

= Which algorithm offers the best scalability to support
distributed mutual exclusion in a large distributed
system?

= (A) Token-ring algorithm

= (B) Centralized algorithm

= (C) Distributed algorithm

= (D) Decentralized voting algorithm

TCS$558: Applied Distributed Computing [Winter 2021]

(R EE School of Engineering and Technology, University of Washington - Tacoma

weo |

L17.10

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 2

= Which algorithm(s) involve blocking (no reply) when a
resource is not available?

= (A) Token-ring algorithm
= (B) Centralized algorithm
= (C) Distributed algorithm

= (D) Decentralized voting algorithm

March 9, 2021

March, 2021 TCSS558: Applied Distributed Computing [Winter 2021] e
School of

Technology, y Tacoma

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 3

= Which algorithm(s) involve arriving at a consensus

(majority opinion) to determine whether a node should be

granted access to a resource?

= (A) Token-ring algorithm
= (B) Centralized algorithm
= (C) Distributed algorithm

= (D) Decentralized voting algorithm

TCS5558: Applied Distributed Computing [Winter 2021]

March9, 2021 Sehoalor Technology, Tacoma

ure

DISTRIBUTED MUTUAL EXCLUSION

ALGORITHMS REVIEW - 4

= Which algorithm(s) have N points of failure,
where N = Number of Nodes in the system?

= (A) Token-ring algorithm
= (B) Centralized algorithm
= (C) Distributed algorithm

= (D) Decentralized voting algorithm

March 9, 2021 1763

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineeri Technology, University i Tacoma

Slides by Wes J. Lloyd

QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington -

March 9, 2021

L17.11

