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OBJECTIVES – 3/2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 
class (15 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.80  ( - previous 6.11)  

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.80  ( - previous 5.58)
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MATERIAL / PACE

 In assignment 2, when a client sends the "exit" command 
to a node, should only the node who gets the command 
will  be shut down, or should all the nodes be shut down? 

 To implement a distributed exit, the node receiving the 
exit command would need to relay the “exit” command to 
every known node. 

 A distributed exit command is not described in the 
assignment.

 Implementation is optional
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FEEDBACK FROM 2/25
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 Questions from 2/25

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

 Chapter 6: Coordination
 Chapter 6.1: Clock Synchronization

March 2, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington  - Tacoma

L15.7

OBJECTIVES – 3/2

 Include readme.txt or doc file with instructions in submission

 Must document membership tracking method 

>> please indicate which types to test <<

ID Description

F Static file membership tracking – file is not reread

FD Static file membership tracking DYNAMIC - file is 

periodically reread to refresh membership list

T TCP membership tracking – servers are configured to 

refer to central membership server

U UDP membership tracking - automatically discovers 

nodes with no configuration
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SHORT-HAND-CODES FOR MEMBERSHIP 
TRACKING APPROACHES

 Sunday March 14th

 Goal: Replicated Key Value Store

 Team signup to be posted on Canvas under ‘People’

 Build off of Assignment 1 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?
 Can implement multiple types of membership tracking 

for extra credit
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ASSIGNMENT 2

 Questions from 2/25

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

 Chapter 6: Coordination
 Chapter 6.1: Clock Synchronization
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OBJECTIVES – 3/2

Apache Act i veMQ

CH. 4.3: MESSAGE-
ORIENTED 

COMMUNICATION

L15.11

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination
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CHAPTER 4

These sections feature
many details,  
Our focus is on the
“big picture”
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 Message-queueing systems initially developed to enable 
legacy applications to interoperate

 Decouple inter-application communication to “open” 
messaging-middleware

 Many are proprietary solutions, so not very open
 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP), 2006
 Address openness/interoperability of proprietary solutions
 Open wire protocol for messaging with powerful routing 

capabilities
 Help abstract messaging and application interoperability by 

means of a generic open protocol
 Suffer from incompatibility among protocol versions
 pre-1.0, 1.0+
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AMQP PROTOCOL

 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with 
potentially many channels, stable, reused by many 
channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two 
channels

 Link: provide fine-grained flow-control of message 
transfer/status between applications and queue manager
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AMQP - 2

 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to 
recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)
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AMQP MESSAGING

 Some examples:
 RabbitMQ, Apache QPid
 Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka
 Dumb broker (message store), similar to a distributed log file
 Smart consumers – intelligence pushed off to the clients
 Stores stream of records in categories called topics
 Supports voluminous data, many consumers, with minimal O/H
 Kafka does not track which messages were read by each consumer
 Messages are removed after timeout
 Clients must track their own consumption (Kafka doesn’t help)
 Messages have key, value, timestamp
 Supports high volume pub/sub messaging and streams
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MESSAGE-ORIENTED-MIDDLEWARE 
EXAMPLES:

 Questions from 2/25

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

 Chapter 6: Coordination
 Chapter 6.1: Clock Synchronization
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OBJECTIVES – 3/2

Apache Act i veMQ

CH. 4.4: MULTICAST
COMMUNICATION

L15.18
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 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination
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CHAPTER 4

These sections feature
many details,  
Our focus is on the
“big picture”

 Sending data to multiple receivers
 Many failed proposals for network-level / transport-level 

protocols to support multicast communication
 Problem: How to set up communication paths for 

information dissemination?
 Solutions: require huge management effort, human 

intervention

 Focus shifted more recently to peer-to-peer networks
 Structured overlay networks can be setup easily and 

provide efficient communication paths
 Application-level multicasting techniques more successful 
 Gossip-based dissemination: unstructured p2p networks
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MULTICAST COMMUNICATION

 Overlay network
 Virtual network implemented on top of an actual physical network

 Underlying network
 The actual physical network that implements the overlay
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NETWORK STRUCTURE

 Application level multi-casting
 Nodes organize into an overlay network

 Network routers not involved in group membership

 Group membership is managed at the application level (A2)

 Downside:
 Application-level routing likely less efficient than network-level

 Necessary tradeoff until having better multicasting protocols at 
lower layers

 Overlay topologies
 TREE: top-down, unique paths between nodes

 MESH: nodes have multiple neighbors; multiple paths between nodes
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APPLICATION LEVEL 
TREE-BASED MULTICASTING

 Measure quality of application-level multicast tree

 Link stress: is defined per link, counts how often a packet 
crosses same link  ( ideally not more than 1 )

 Stretch: ratio in delay between two nodes in the overlay vs. 
the underlying networks 
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MULTICAST TREE METRICS

Numbers represent
network delay 
between nodes

 Stretch (Relative Delay Penalty RDP)

 CONSIDER routing from B to C

 What is  the Stretch?

 Stretch (delay ratio) = Overlay -delay / Underlying-delay

 Overlay: BRbRaReEReRcRdDRdRc C 
= 73

 Underlying: BRbRdRcC = 47

 Stretch = 73 / 47 = 1 .55

 Captures additional t ime (stretch) to transfer msg on overlay net

 Tree cost: Overall  cost of the overlay network

 Ideally would l ike to minimize network costs

 Find a minimal spanning tree which minimizes total t ime for 
disseminating information to all nodes
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MULTICAST TREE METRICS - 2
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 Broadcasting: every node in overlay network receives message

 How many nodes are in the overlay network?

 How many nodes are in the underlying network?
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FLOOD-BASED MULTICASTING

 Broadcasting: every node in overlay network receives message

 Key design issue: minimize the use of intermediate nodes for 
which the message is not intended

 If only leaf nodes are to receive the multicast message, many 
intermediate nodes are involved in storing and forwarding the 
message not meant for them

 Solution: construct an overlay network for each multicast 
group
 Sending a message to the group, becomes the same as broadcasting 

to the multicast group (group of nodes that listen and receive traffic 
for a shared IP address)

 Flooding: each node simply forwards a message to each of its 
neighbors, except to the message originator
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FLOOD-BASED MULTICASTING

 When there is no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Random graphs are described by a probabil ity distribution

 Probability Pedge that two nodes are joined

 Overlay network wil l have: ½ * Pedge * N * (N-1) edges
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RANDOM GRAPHS

Random graphs allow us to assume
some structure (# of nodes, # of edges)
regarding the network by scaling the
Pedge probability 

Assumptions may help then to 
reason or rationalize about the
network…

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)
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 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)
½ * (.1) * (10000) * (9999)

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)
½ * (.1) * (10000) * (9999)
4,999,500 edges

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message
to Q is p=(1-pflood)n

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message
to Q is p=(1-pflood)n

if n=10, p=(1-.01)10=.904  (pretty likely)
if n=100, p=(1-.01)100=.366 (less likely)
if n=1000, p=(1-.01)298=.05 (unlikely)   

 For deterministic topologies (such as hypercube), design of 
efficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a 
deterministic topology

 Schlosser et al [2002] – offer simple and efficient 
broadcasting scheme that relies on keeping track of neighbors 
per dimension
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MESSAGE FLOODING
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 Hypercube Broadcast
 N(1001) starts the network broadcast 
 N(1001) neighbors {0001,1000,1011,1101}
 N(1001) Sends message to all neighbors
 >>Edge Labels (which bit  is  changed?, 1st, 2nd, 3 rd, 4 th…)
 Edge to 0001 – labeled 1 – change the 1st bit
 Edge to 1000 – labeled 4 – change the 4th bit
 Edge to 1011 – labeled 3 – change the 3rd bit
 Edge to 1101 – labeled 2 – change the 2nd bit

 RULE: nodes only forward along edges with a higher dimension
 Node 1101 receives message on edge labeled 2
 Broadcast msg is only forwarded on higher valued edges (>2)
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MESSAGE 
FLOODING - 2

 Hypercube: forward msg along edges with higher dimension
 Node(1101)–neighbors {0101,1100,1001,1111} 
 Node (1101) - incoming broadcast edge = 2
 Label Edges:
 Edge to 0101 – labeled 1 – change the 1st bit
 Edge to 1100 – labeled 4 – change the 4th bit *<FORWARD>*
 Edge to 1001 – labeled 2 – change the 2nd bit
 Edge to 1111 – labeled 3 – change the 3rd bit *<FORWARD>*
 N(1101) broadcast – forward only to N(1100) and N(1111)
 (1100) and (1111) are the higher dimension edges

 Broadcast requires just: N-1 messages, where nodes N=2n, 
n=dimensions of hypercube
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MESSAGE FLOODING - 3

 When structured peer-to-peer topologies are not available
 Gossip based approaches support multicast communication 

over unstructured peer-to-peer networks

 General approach is to 
leverage how gossip 
spreads across a group

 This is also called 
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node
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GOSSIP BASED DATA DISSEMINATION

 Epidemic algorithms: algorithms for large-scale distributed 
systems that spread information

 Goal: “infect” all nodes with new information as fast as 
possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data
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INFORMATION DISSEMINATION

Gossiping

Nodes are randomly selected

One node, randomly selects any other node in the 
network to propagate the network

Complete set of nodes is known to each member
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EPIDEMIC PROTOCOLS

 Anti-entropy: Propagation model where node P picks node Q at 
random and exchanges message updates

 Akin to random walk

 Types of message exchange:
 PUSH: P only pushes its own updates to Q
 PULL: P only pulls in new updates from Q
 T WO-WAY: P and Q send updates to each other 

(i.e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden 
susceptible nodes

 Pull: better because susceptible nodes can pull updates from 
infected nodes

 Push-pull is better still
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ANTI ENTROPY DISSEMINATION MODEL 
FOR GOSSIPING

P Q

P Q

P Q
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 Round: span of time during which every node takes initiative 
to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all 
nodes requires O(log(N)), where N=number of nodes

 Let pi denote probability that
node P has not received 
msg m after the ith round.

 For pull,  push, and push-pull 
based approaches:
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ANTI ENTROPY EFFECTIVENESS

10,000 nodes 

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another 
node

 Node P may loose interest in spreading the rumor with 
probability = pstop, let’s say 20% . . .  (or 0.20)
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RUMOR SPREADING

 pstop,  is the probabil ity node will  stop spreading once contacting a 
node that already has the message

 Does not guarantee all nodes will be updated

 The fraction of nodes s, that remain susceptible grows relative 
to the probability that node P 
stops propagating when finding 
a node already having the 
message

 Fraction of nodes not updated 
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping      
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RUMOR SPREADING - 2

 Gossiping is good for spreading data

 But how can data be removed from the system? 

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from 
reinitializing from gossip from other nodes

 Death certificates time-out after expected time required 
for data element to clear out of entire system

 A few nodes maintain death certificates forever
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REMOVING DATA

 For example:

 Node P keeps death certificates forever

 Item X is removed from the system

 Node P receives an update request for Item X, but also holds 
the death certificate for Item X

 Node P will recirculate the death certificate across the 
network for Item X
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DEATH CERTIFICATE EXAMPLE

WE WILL RETURN AT 
2:46 PM
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 Questions from 2/25

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

 Chapter 6: Coordination
 Chapter 6.1: Clock Synchronization
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OBJECTIVES – 3/2

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (l ight)

 6.7 Gossip-based coordination (l ight)
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CHAPTER 6 - COORDINATION

 How can processes synchronize and coordinate data?

 Process synchronization
 Coordinate cooperation to grant individual processes temporary 

access to shared resources (e.g. a file)

 Data synchronization
 Ensure two sets of data are the same (data replication)

 Coordination
 Goal is to manage interactions and dependencies between activities 

in the distributed system

 Encapsulates synchronization
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CHAPTER 6 - COORDINATION

 Synchronization challenges begin with t ime:

 How can we synchronize computers, so they all agree on 
the time?

 How do we measure and coordinate when things happen?

 Fortunately, for synchronization in distributed systems, it 
is often sufficient to only agree on a relative ordering of 
events

 E.g. not actual time
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COORDINATION - 2

 Groups of processes often appoint a coordinator

 Election algorithms can help elect a leader

 Synchronizing access to a shared resource is achieved 
with distributed mutual exclusion algorithms

 Also in chapter 6:
Matching subscriptions to publications in publish-

subscribe systems
 Gossip-based coordination problems:
 Aggregation
 Peer sampling
 Overlay construction
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COORDINATION - 3

 Questions from 2/25

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

 Chapter 6: Coordination
 Chapter 6.1: Clock Synchronization
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OBJECTIVES – 3/2
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CH. 6.1: CLOCK
SYNCHRONIZATION

L15.55

 Example:

 “make” is used to compile source files into binary object and 
executable files

 As an optimization, make only compiles files when the “last 
modified time” of source files is more recent than object and 
executables

 Consider if files are on a shared disk of a distributed system 
where there is no agreement on time

 Consider if the program has 1,000 source files
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CLOCK SYNCHRONIZATION

 Updates from different machines, may have clocks set to 
different times

 Make becomes confused with which files to recompile
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TIME SYNCHRONIZATION PROBLEM 
FOR DISTRIBUTED SYSTEMS
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PHYSICAL CLOCKS

 Computer t imers: precisely machined
quartz crystals

 When under tension, they oscillate at 
a well defined frequency

 In analog electronics/communications
crystals once used to set the frequency
of two-way radio transceivers for 

 Today, crystals are associated with 
a counter and holding register on a digital computer.

 Each oscillation decrements a counter by one
 When counter gets to zero, an interrupt fires
 Can program timer to generate interrupt, let’s say 60 

times a second, or another frequency to track time

1960s ERA radio crystal 

 Digital clock on computer sets base time

 Crystal clock tracks forward progress of time
 Translation of wave “ticks” to clock pulses

 CMOS battery on motherboard maintains clock on power loss

 Clock skew: physical clock crystals are not exactly the same

 Some run at slightly different rates

 Time differences accumulate as clocks
drift forward or backward slightly

 In an automobile, where there is no
clock synchronization, clock skew may
become noticeable over months, years
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COMPUTER CLOCKS

 Universal Coordinated Time (UTC)
Worldwide standard for time keeping
 Equivalent to Greenwich Mean Time (United Kingdom)
 40 shortwave radio stations around the world broadcast a 

short pulse at the start of each second (WWV)
World wide “atomic” clocks powered by constant 

transitions of the non-radioactive caesium-133 atom 
 9,162,631,770 transitions per second

 Computers track time using UTC as a base
 Avoid thinking in local time, which can lead to 

coordination issues
 Operating systems may translate to show local time
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UNIVERSAL COORDINATED TIME
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How do we synchronize computer clocks with 
real-world clocks?

How do we synchronize computer clocks with 
each other?
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COMPUTING: CLOCK CHALLENGES

 UTC services: use radio and satellite signals to provide time 
accuracy to 50ns

 Time servers: Server computers with UTC receivers that 
provide accurate time

 Precision () : how close together a set of clocks may be

 Accuracy: how correct to actual time clocks may be

 Internal synchronization: Sync local computer clocks

 External synchronization: Sync to UTC clocks

 Clock dri ft: clocks on different machines gradually become 
out of sync due to crystal imperfections, temperature 
differences, etc.

 Clock dri ft rate: typical is 31.5s per year

 Maximum clock dri ft rate ():  clock specifications include one
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CLOCK SYNCHRONIZATION

 If two clocks drift from UTC in opposite directions, 
after time t after synchronization, they may be 2 apart.

  - clock drift rate,  - clock precision (max 50ns)

 Clocks must be resynchronized every /2 seconds

 Network time protocol

 Provide coordination of 
time for servers

 Leverage distributed network 
of time servers
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CLOCK SYNCHRONIZATION - 2

 Servers organized 
into stratums

 Stratum-1 servers
have UTC receivers
and are sync’d 
with atomic clocks

 Servers connect
with closest NTP 
server for time 
synchronization

 Servers assume 
role as NTP server
at stratum+1
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NETWORK TIME PROTOCOL

Atomic
clocks

 Must estimate network delays when synchronizing with remote UTC 
receiver clocks / t ime servers

Time server B

Client A

1. A sends message to B, with t imestamp T1
2. B records t ime of receipt T2 (from local clock)
3. B returns response with send time T3, and receipt t ime T2 
4. A records arrival of T4
 Assuming propagation delay of ABA is the same
 Estimate propagation delay:
 Add delay to t ime
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NTP - 2

 Cannot set clocks backwards (recall “make” file example)
 Instead, temporarily slow the progress of time to allow fast 

clock to align with actual time
 Change rate of clock interrupt routine
 Slow progress of time until synchronized
 NTP accuracy is within 1-50ms

 In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

 Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst
server bigben.cac.washington.edu iburst

 Shutdown service (sudo service ntp stop)
 Run ntpdate: (sudo ntpdate time.u.washington.edu)
 Startup service (sudo service ntp start)
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NTP - 3
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 Berkeley time daemon server actively polls network to 
determine average time across servers

 Suitable when no machine has a UTC receiver

 Time daemon instructs servers how much to adjust clocks 
to achieve precision

 Accuracy can not be guaranteed

 Berkeley is an internal clock synchronization algorithm
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BERKELEY ALGORITHM

 Sensor networks bring unique challenges for clock synchronization
 Address resource constraints: limited power, multihop routing slow

 Reference broadcast synchronization (RBS)

 Provides precision of t ime, not accuracy as in Berkeley

 No UTC clock available

 RBS sender broadcasts a reference message to allow receivers to 
adjust clocks

 No multi -hop routing

 Time to propagate a signal to nodes is roughly constant

 Message propagation time does not consider t ime spent waiting in 
NIC for message to send
 Wireless network resource contention may force wait before message 

even can be sent
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CLOCK SYNCHRONIZATION
IN WIRELESS NETWORKS

 Node broadcasts reference message m

 Each node p records time Tp,m when m is received

 Tp,m is read from node p’s clock

 Two nodes p and q can exchange delivery times to estimate 
mutual relative offset

 Then calculate relative average offset for the network:

 Where M is the total number of reference messages sent

 Nodes can simply store offsets instead of frequently 
synchronizing clocks to save energy
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REFERENCE BROADCAST 
SYNCHRONIZATION (RBS)

 Cloud skew: over time clocks drift apart

 Averages become less precise

 Elson et al. propose using standard linear regression to 
predict offsets, rather than calculating them

 IDEA: Use node’s history of message times in a simple linear 
regression to continuously refine a formula with coefficients 
to predict time offsets:
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REFERENCE BROADCAST 
SYNCHRONIZATION (RBS) - 2

QUESTIONS
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