

Due Avai	Jan 6 at 10pm Po able Jan 5 at 1:30pm -	Jan 6 at 11:59	pm 1 day	4 Т	ime Limit	None	
D	Question 1						0.5 pts
	On a scale of 1 to 10, p class:	please classify y	our pers	pective o	on materia	al covere	d in today's
	1 2 3 Mostly Review To Ne	4 5 Equal New and Re	6 view	7	8	9 N	10 Mostly NW to Ne
D	Question 2						0.5 pts
	Please rate the pace of	today's class:					
	1 2 3	4 5	6	7	8	9	10

OBJECTIVES - 3/2	s	HORT-H	AND-CODES FOR MEMBERSH RACKING APPROACHES	IP
Jestions from 2/25 Signment 2: Replicated Key Value Store Japter 4: Communication Chapter 4.3: Message Oriented Communication Chapter 4.4: Multicast Communication Tapter 6: Coordination Chapter 6.1: Clock Synchronization	= In = M F FD T U	clude readn ust docume >> y Descript Static fil static fil periodica TCP men refer to 0 UDP mer nodes wi	ne.txt or doc file with instructions in submiss nt membership tracking method blease Indicate which types to test << Ion e membership tracking – file is not reread e membership tracking DYNAMIC - file is ally reread to refresh membership list abership tracking – servers are configured to central membership server mbership tracking - automatically discovers th no configuration	sion
TCSSSS8: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma		March 2, 2021	TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma	L15.8

TCSS 558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, UW-Tacoma

TCSS 558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, UW-Tacoma

L15.56

NTP - 3
Cannot set clocks backwards (recall "make" file example)
clock to align with actual time
Change rate of clock interrupt routine
Slow progress of time until synchronized
NTP accuracy is within 1-50ms
In Ubuntu Linux, to quickly synchronize time: \$apt install ntp ntpdate
Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst server bigben.cac.washington.edu iburst
Shutdown service (sudo service ntp stop)
Run ntpdate: (sudo ntpdate time.u.washington.edu)
Startup service (sudo service ntp start)
March 2, 2021 TCSSS58: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma L15.66

L15.69

March 2, 2021

REFERENCE BROADCAST SYNCHRONIZATION (RBS)

- Node broadcasts reference message m
- Each node p records time Tp,m when m is received
- Tp,m is read from node p's clock
- Two nodes p and q can exchange delivery times to estimate mutual relative offset
- Then calculate relative average offset for the network:

 $Offset[p,q] = \frac{\sum_{k=1}^{M} (T_{p,k} - T_{q,k})}{M}$

- Where M is the total number of reference messages sent
- Nodes can simply store offsets instead of frequently synchronizing clocks to save energy

March 2, 2021 TC55558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Was

L15.70