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OBJECTIVES – 3/2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 
class (15 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.80  ( - previous 6.11)  

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.80  ( - previous 5.58)
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MATERIAL / PACE

 In assignment 2, when a client sends the "exit" command 
to a node, should only the node who gets the command 
will  be shut down, or should all the nodes be shut down? 

 To implement a distributed exit, the node receiving the 
exit command would need to relay the “exit” command to 
every known node. 

 A distributed exit command is not described in the 
assignment.

 Implementation is optional
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FEEDBACK FROM 2/25
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 Questions from 2/25

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

 Chapter 6: Coordination
 Chapter 6.1: Clock Synchronization
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OBJECTIVES – 3/2

 Include readme.txt or doc file with instructions in submission

 Must document membership tracking method 

>> please indicate which types to test <<

ID Description

F Static file membership tracking – file is not reread

FD Static file membership tracking DYNAMIC - file is 

periodically reread to refresh membership list

T TCP membership tracking – servers are configured to 

refer to central membership server

U UDP membership tracking - automatically discovers 

nodes with no configuration

March 2, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.8

SHORT-HAND-CODES FOR MEMBERSHIP 
TRACKING APPROACHES

 Sunday March 14th

 Goal: Replicated Key Value Store

 Team signup to be posted on Canvas under ‘People’

 Build off of Assignment 1 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?
 Can implement multiple types of membership tracking 

for extra credit
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ASSIGNMENT 2

 Questions from 2/25

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

 Chapter 6: Coordination
 Chapter 6.1: Clock Synchronization
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OBJECTIVES – 3/2

Apache Act i veMQ

CH. 4.3: MESSAGE-
ORIENTED 

COMMUNICATION

L15.11

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination
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CHAPTER 4

These sections feature
many details,  
Our focus is on the
“big picture”
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 Message-queueing systems initially developed to enable 
legacy applications to interoperate

 Decouple inter-application communication to “open” 
messaging-middleware

 Many are proprietary solutions, so not very open
 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP), 2006
 Address openness/interoperability of proprietary solutions
 Open wire protocol for messaging with powerful routing 

capabilities
 Help abstract messaging and application interoperability by 

means of a generic open protocol
 Suffer from incompatibility among protocol versions
 pre-1.0, 1.0+
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AMQP PROTOCOL

 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with 
potentially many channels, stable, reused by many 
channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two 
channels

 Link: provide fine-grained flow-control of message 
transfer/status between applications and queue manager
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AMQP - 2

 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to 
recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)
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AMQP MESSAGING

 Some examples:
 RabbitMQ, Apache QPid
 Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka
 Dumb broker (message store), similar to a distributed log file
 Smart consumers – intelligence pushed off to the clients
 Stores stream of records in categories called topics
 Supports voluminous data, many consumers, with minimal O/H
 Kafka does not track which messages were read by each consumer
 Messages are removed after timeout
 Clients must track their own consumption (Kafka doesn’t help)
 Messages have key, value, timestamp
 Supports high volume pub/sub messaging and streams

March 2, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

MESSAGE-ORIENTED-MIDDLEWARE 
EXAMPLES:

 Questions from 2/25

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

 Chapter 6: Coordination
 Chapter 6.1: Clock Synchronization
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OBJECTIVES – 3/2

Apache Act i veMQ

CH. 4.4: MULTICAST
COMMUNICATION

L15.18
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 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination
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CHAPTER 4

These sections feature
many details,  
Our focus is on the
“big picture”

 Sending data to multiple receivers
 Many failed proposals for network-level / transport-level 

protocols to support multicast communication
 Problem: How to set up communication paths for 

information dissemination?
 Solutions: require huge management effort, human 

intervention

 Focus shifted more recently to peer-to-peer networks
 Structured overlay networks can be setup easily and 

provide efficient communication paths
 Application-level multicasting techniques more successful 
 Gossip-based dissemination: unstructured p2p networks
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MULTICAST COMMUNICATION

 Overlay network
 Virtual network implemented on top of an actual physical network

 Underlying network
 The actual physical network that implements the overlay
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NETWORK STRUCTURE

 Application level multi-casting
 Nodes organize into an overlay network

 Network routers not involved in group membership

 Group membership is managed at the application level (A2)

 Downside:
 Application-level routing likely less efficient than network-level

 Necessary tradeoff until having better multicasting protocols at 
lower layers

 Overlay topologies
 TREE: top-down, unique paths between nodes

 MESH: nodes have multiple neighbors; multiple paths between nodes
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APPLICATION LEVEL 
TREE-BASED MULTICASTING

 Measure quality of application-level multicast tree

 Link stress: is defined per link, counts how often a packet 
crosses same link  ( ideally not more than 1 )

 Stretch: ratio in delay between two nodes in the overlay vs. 
the underlying networks 
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MULTICAST TREE METRICS

Numbers represent
network delay 
between nodes

 Stretch (Relative Delay Penalty RDP)

 CONSIDER routing from B to C

 What is  the Stretch?

 Stretch (delay ratio) = Overlay -delay / Underlying-delay

 Overlay: BRbRaReEReRcRdDRdRc C 
= 73

 Underlying: BRbRdRcC = 47

 Stretch = 73 / 47 = 1 .55

 Captures additional t ime (stretch) to transfer msg on overlay net

 Tree cost: Overall  cost of the overlay network

 Ideally would l ike to minimize network costs

 Find a minimal spanning tree which minimizes total t ime for 
disseminating information to all nodes
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MULTICAST TREE METRICS - 2
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 Broadcasting: every node in overlay network receives message

 How many nodes are in the overlay network?

 How many nodes are in the underlying network?
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FLOOD-BASED MULTICASTING

 Broadcasting: every node in overlay network receives message

 Key design issue: minimize the use of intermediate nodes for 
which the message is not intended

 If only leaf nodes are to receive the multicast message, many 
intermediate nodes are involved in storing and forwarding the 
message not meant for them

 Solution: construct an overlay network for each multicast 
group
 Sending a message to the group, becomes the same as broadcasting 

to the multicast group (group of nodes that listen and receive traffic 
for a shared IP address)

 Flooding: each node simply forwards a message to each of its 
neighbors, except to the message originator
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FLOOD-BASED MULTICASTING

 When there is no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Random graphs are described by a probabil ity distribution

 Probability Pedge that two nodes are joined

 Overlay network wil l have: ½ * Pedge * N * (N-1) edges
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RANDOM GRAPHS

Random graphs allow us to assume
some structure (# of nodes, # of edges)
regarding the network by scaling the
Pedge probability 

Assumptions may help then to 
reason or rationalize about the
network…

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)
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 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

March 2, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.31

PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)
½ * (.1) * (10000) * (9999)

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

How many edges does network with 
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)
½ * (.1) * (10000) * (9999)
4,999,500 edges

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message
to Q is p=(1-pflood)n

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce 
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to 
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding
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PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message
to Q is p=(1-pflood)n

if n=10, p=(1-.01)10=.904  (pretty likely)
if n=100, p=(1-.01)100=.366 (less likely)
if n=1000, p=(1-.01)298=.05 (unlikely)   

 For deterministic topologies (such as hypercube), design of 
efficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a 
deterministic topology

 Schlosser et al [2002] – offer simple and efficient 
broadcasting scheme that relies on keeping track of neighbors 
per dimension
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MESSAGE FLOODING
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 Hypercube Broadcast
 N(1001) starts the network broadcast 
 N(1001) neighbors {0001,1000,1011,1101}
 N(1001) Sends message to all neighbors
 >>Edge Labels (which bit  is  changed?, 1st, 2nd, 3 rd, 4 th…)
 Edge to 0001 – labeled 1 – change the 1st bit
 Edge to 1000 – labeled 4 – change the 4th bit
 Edge to 1011 – labeled 3 – change the 3rd bit
 Edge to 1101 – labeled 2 – change the 2nd bit

 RULE: nodes only forward along edges with a higher dimension
 Node 1101 receives message on edge labeled 2
 Broadcast msg is only forwarded on higher valued edges (>2)
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MESSAGE 
FLOODING - 2

 Hypercube: forward msg along edges with higher dimension
 Node(1101)–neighbors {0101,1100,1001,1111} 
 Node (1101) - incoming broadcast edge = 2
 Label Edges:
 Edge to 0101 – labeled 1 – change the 1st bit
 Edge to 1100 – labeled 4 – change the 4th bit *<FORWARD>*
 Edge to 1001 – labeled 2 – change the 2nd bit
 Edge to 1111 – labeled 3 – change the 3rd bit *<FORWARD>*
 N(1101) broadcast – forward only to N(1100) and N(1111)
 (1100) and (1111) are the higher dimension edges

 Broadcast requires just: N-1 messages, where nodes N=2n, 
n=dimensions of hypercube
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MESSAGE FLOODING - 3

 When structured peer-to-peer topologies are not available
 Gossip based approaches support multicast communication 

over unstructured peer-to-peer networks

 General approach is to 
leverage how gossip 
spreads across a group

 This is also called 
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node
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GOSSIP BASED DATA DISSEMINATION

 Epidemic algorithms: algorithms for large-scale distributed 
systems that spread information

 Goal: “infect” all nodes with new information as fast as 
possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data
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INFORMATION DISSEMINATION

Gossiping

Nodes are randomly selected

One node, randomly selects any other node in the 
network to propagate the network

Complete set of nodes is known to each member
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EPIDEMIC PROTOCOLS

 Anti-entropy: Propagation model where node P picks node Q at 
random and exchanges message updates

 Akin to random walk

 Types of message exchange:
 PUSH: P only pushes its own updates to Q
 PULL: P only pulls in new updates from Q
 T WO-WAY: P and Q send updates to each other 

(i.e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden 
susceptible nodes

 Pull: better because susceptible nodes can pull updates from 
infected nodes

 Push-pull is better still
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ANTI ENTROPY DISSEMINATION MODEL 
FOR GOSSIPING

P Q

P Q

P Q
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 Round: span of time during which every node takes initiative 
to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all 
nodes requires O(log(N)), where N=number of nodes

 Let pi denote probability that
node P has not received 
msg m after the ith round.

 For pull,  push, and push-pull 
based approaches:
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ANTI ENTROPY EFFECTIVENESS

10,000 nodes 

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another 
node

 Node P may loose interest in spreading the rumor with 
probability = pstop, let’s say 20% . . .  (or 0.20)
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RUMOR SPREADING

 pstop,  is the probabil ity node will  stop spreading once contacting a 
node that already has the message

 Does not guarantee all nodes will be updated

 The fraction of nodes s, that remain susceptible grows relative 
to the probability that node P 
stops propagating when finding 
a node already having the 
message

 Fraction of nodes not updated 
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping      
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RUMOR SPREADING - 2

 Gossiping is good for spreading data

 But how can data be removed from the system? 

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from 
reinitializing from gossip from other nodes

 Death certificates time-out after expected time required 
for data element to clear out of entire system

 A few nodes maintain death certificates forever
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REMOVING DATA

 For example:

 Node P keeps death certificates forever

 Item X is removed from the system

 Node P receives an update request for Item X, but also holds 
the death certificate for Item X

 Node P will recirculate the death certificate across the 
network for Item X
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DEATH CERTIFICATE EXAMPLE

WE WILL RETURN AT 
2:46 PM
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 Questions from 2/25

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

 Chapter 6: Coordination
 Chapter 6.1: Clock Synchronization
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OBJECTIVES – 3/2

 6.1 Clock Synchronization

 Physical clocks

 Clock synchronization algorithms

 6.2 Logical clocks

 Lamport clocks

 Vector clocks

 6.3 Mutual exclusion

 6.4 Election algorithms

 6.6 Distributed event matching (l ight)

 6.7 Gossip-based coordination (l ight)
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CHAPTER 6 - COORDINATION

 How can processes synchronize and coordinate data?

 Process synchronization
 Coordinate cooperation to grant individual processes temporary 

access to shared resources (e.g. a file)

 Data synchronization
 Ensure two sets of data are the same (data replication)

 Coordination
 Goal is to manage interactions and dependencies between activities 

in the distributed system

 Encapsulates synchronization
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CHAPTER 6 - COORDINATION

 Synchronization challenges begin with t ime:

 How can we synchronize computers, so they all agree on 
the time?

 How do we measure and coordinate when things happen?

 Fortunately, for synchronization in distributed systems, it 
is often sufficient to only agree on a relative ordering of 
events

 E.g. not actual time
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COORDINATION - 2

 Groups of processes often appoint a coordinator

 Election algorithms can help elect a leader

 Synchronizing access to a shared resource is achieved 
with distributed mutual exclusion algorithms

 Also in chapter 6:
Matching subscriptions to publications in publish-

subscribe systems
 Gossip-based coordination problems:
 Aggregation
 Peer sampling
 Overlay construction
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COORDINATION - 3

 Questions from 2/25

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

 Chapter 6: Coordination
 Chapter 6.1: Clock Synchronization
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OBJECTIVES – 3/2
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CH. 6.1: CLOCK
SYNCHRONIZATION

L15.55

 Example:

 “make” is used to compile source files into binary object and 
executable files

 As an optimization, make only compiles files when the “last 
modified time” of source files is more recent than object and 
executables

 Consider if files are on a shared disk of a distributed system 
where there is no agreement on time

 Consider if the program has 1,000 source files
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CLOCK SYNCHRONIZATION

 Updates from different machines, may have clocks set to 
different times

 Make becomes confused with which files to recompile
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TIME SYNCHRONIZATION PROBLEM 
FOR DISTRIBUTED SYSTEMS
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PHYSICAL CLOCKS

 Computer t imers: precisely machined
quartz crystals

 When under tension, they oscillate at 
a well defined frequency

 In analog electronics/communications
crystals once used to set the frequency
of two-way radio transceivers for 

 Today, crystals are associated with 
a counter and holding register on a digital computer.

 Each oscillation decrements a counter by one
 When counter gets to zero, an interrupt fires
 Can program timer to generate interrupt, let’s say 60 

times a second, or another frequency to track time

1960s ERA radio crystal 

 Digital clock on computer sets base time

 Crystal clock tracks forward progress of time
 Translation of wave “ticks” to clock pulses

 CMOS battery on motherboard maintains clock on power loss

 Clock skew: physical clock crystals are not exactly the same

 Some run at slightly different rates

 Time differences accumulate as clocks
drift forward or backward slightly

 In an automobile, where there is no
clock synchronization, clock skew may
become noticeable over months, years
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COMPUTER CLOCKS

 Universal Coordinated Time (UTC)
Worldwide standard for time keeping
 Equivalent to Greenwich Mean Time (United Kingdom)
 40 shortwave radio stations around the world broadcast a 

short pulse at the start of each second (WWV)
World wide “atomic” clocks powered by constant 

transitions of the non-radioactive caesium-133 atom 
 9,162,631,770 transitions per second

 Computers track time using UTC as a base
 Avoid thinking in local time, which can lead to 

coordination issues
 Operating systems may translate to show local time
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UNIVERSAL COORDINATED TIME



TCSS 558: Applied Distributed Computing
[Winter 2021]  School of Engineering and Technology, 
UW-Tacoma

March 2, 2021

Slides by Wes J. Lloyd L15.11

How do we synchronize computer clocks with 
real-world clocks?

How do we synchronize computer clocks with 
each other?
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COMPUTING: CLOCK CHALLENGES

 UTC services: use radio and satellite signals to provide time 
accuracy to 50ns

 Time servers: Server computers with UTC receivers that 
provide accurate time

 Precision () : how close together a set of clocks may be

 Accuracy: how correct to actual time clocks may be

 Internal synchronization: Sync local computer clocks

 External synchronization: Sync to UTC clocks

 Clock dri ft: clocks on different machines gradually become 
out of sync due to crystal imperfections, temperature 
differences, etc.

 Clock dri ft rate: typical is 31.5s per year

 Maximum clock dri ft rate ():  clock specifications include one
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CLOCK SYNCHRONIZATION

 If two clocks drift from UTC in opposite directions, 
after time t after synchronization, they may be 2 apart.

  - clock drift rate,  - clock precision (max 50ns)

 Clocks must be resynchronized every /2 seconds

 Network time protocol

 Provide coordination of 
time for servers

 Leverage distributed network 
of time servers
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CLOCK SYNCHRONIZATION - 2

 Servers organized 
into stratums

 Stratum-1 servers
have UTC receivers
and are sync’d 
with atomic clocks

 Servers connect
with closest NTP 
server for time 
synchronization

 Servers assume 
role as NTP server
at stratum+1
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NETWORK TIME PROTOCOL

Atomic
clocks

 Must estimate network delays when synchronizing with remote UTC 
receiver clocks / t ime servers

Time server B

Client A

1. A sends message to B, with t imestamp T1
2. B records t ime of receipt T2 (from local clock)
3. B returns response with send time T3, and receipt t ime T2 
4. A records arrival of T4
 Assuming propagation delay of ABA is the same
 Estimate propagation delay:
 Add delay to t ime

March 2, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L15.65

NTP - 2

 Cannot set clocks backwards (recall “make” file example)
 Instead, temporarily slow the progress of time to allow fast 

clock to align with actual time
 Change rate of clock interrupt routine
 Slow progress of time until synchronized
 NTP accuracy is within 1-50ms

 In Ubuntu Linux, to quickly synchronize time:
$apt install ntp ntpdate

 Specify local timeservers in /etc/ntp.conf
server time.u.washington.edu iburst
server bigben.cac.washington.edu iburst

 Shutdown service (sudo service ntp stop)
 Run ntpdate: (sudo ntpdate time.u.washington.edu)
 Startup service (sudo service ntp start)
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NTP - 3
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 Berkeley time daemon server actively polls network to 
determine average time across servers

 Suitable when no machine has a UTC receiver

 Time daemon instructs servers how much to adjust clocks 
to achieve precision

 Accuracy can not be guaranteed

 Berkeley is an internal clock synchronization algorithm
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BERKELEY ALGORITHM

 Sensor networks bring unique challenges for clock synchronization
 Address resource constraints: limited power, multihop routing slow

 Reference broadcast synchronization (RBS)

 Provides precision of t ime, not accuracy as in Berkeley

 No UTC clock available

 RBS sender broadcasts a reference message to allow receivers to 
adjust clocks

 No multi -hop routing

 Time to propagate a signal to nodes is roughly constant

 Message propagation time does not consider t ime spent waiting in 
NIC for message to send
 Wireless network resource contention may force wait before message 

even can be sent
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CLOCK SYNCHRONIZATION
IN WIRELESS NETWORKS

 Node broadcasts reference message m

 Each node p records time Tp,m when m is received

 Tp,m is read from node p’s clock

 Two nodes p and q can exchange delivery times to estimate 
mutual relative offset

 Then calculate relative average offset for the network:

 Where M is the total number of reference messages sent

 Nodes can simply store offsets instead of frequently 
synchronizing clocks to save energy
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REFERENCE BROADCAST 
SYNCHRONIZATION (RBS)

 Cloud skew: over time clocks drift apart

 Averages become less precise

 Elson et al. propose using standard linear regression to 
predict offsets, rather than calculating them

 IDEA: Use node’s history of message times in a simple linear 
regression to continuously refine a formula with coefficients 
to predict time offsets:
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REFERENCE BROADCAST 
SYNCHRONIZATION (RBS) - 2

QUESTIONS
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