
TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.1

Ch. 4 – Communication - II

Wes J. Lloyd
School of Engineering
& Technology (SET)
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.1: Foundations

 Chapter 4.2: RPC (light-review)

 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.2

OBJECTIVES – 2/25

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.2

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.3

ONLINE DAILY FEEDBACK SURVEY

February 25, 2021
TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.4

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.3

 Please classify your perspective on material covered in today’s
class (22 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.11 (- previous 6.41)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.58 (- previous 5.86)

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.5

MATERIAL / PACE

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.6

FEEDBACK FROM 2/23

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.4

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.1: Foundations

 Chapter 4.2: RPC (light-review)

 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.7

OBJECTIVES – 2/25

 Sunday March 14th

 Goal: Replicated Key Value Store

 Team signup to be posted on Canvas under ‘People’

 Build off of Assignment 1 GenericNode

 Focus on TCP client/server w/ replication

 How to track membership for data replication?
 Can implement multiple types of membership tracking

for extra credit

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.8

ASSIGNMENT 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.5

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.1: Foundations

 Chapter 4.2: RPC (light-review)

 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.9

OBJECTIVES – 2/25

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.10

CHAPTER 4

Reviews and builds on
content from Ch. 2/3

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.6

 Middleware is reused by many applications

 Provide needed functions applications are built and
depend upon
 For example: communication frameworks/libraries

 Middleware offer many general-purpose protocols

 Middleware protocol examples:

 Authentication protocols: supports granting users and
processes access to authorized resources

 Doesn’t fit as an “application specific” protocol

 Considered a “Middleware protocol”

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.11

MIDDLEWARE PROTOCOLS

 Distributed commit protocols

 Coordinate a group of processes (nodes)

 Facilitate all nodes carrying out a particular operation

 Or abort transaction

 Provides distributed atomicity (all-or-nothing) operations

 Distributed locking protocols

 Protect a resource from simultaneous access from
multiple nodes

 Remote procedure call

 One of the oldest middleware protocols

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.12

MIDDLEWARE PROTOCOLS - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.7

 Message queueing services

 Support synchronization of data
streams

 Transfer real-time data

 Distributed and scalable
implementation

 Multicast services

 Scale communication to thousands of
receivers spread across the Internet

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.13

MIDDLEWARE PROTOCOLS - 3

 Message queueing services

 Support synchronization of data
streams

 Transfer real-time data

 Distributed and scalable
implementation

 Multicast services

 Scale communication to thousands of
receivers spread across the Internet

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.14

MIDDLEWARE PROTOCOLS - 3

KEY: middleware protocols offer functionality to satisfy the
software requirements of many applications

Middleware functions are general, application-independent
in nature

Functions are so commonly needed they are offered in
reusable frameworks / libraries

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.8

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.15

ADAPTED REFERENCE MODEL

Combines network
and transport

Physical and
Data link

 Persistent communication
 Message submitted for transmission is stored by communication

middleware as long as it takes to deliver it

 Example: email system (SMTP)

 Receiver can be offline when message sent

 Temporal decoupling (delayed message delivery)

 Transient communication
 Message stored by middleware only as long as sender/receiver

applications are running

 If recipient is not active, message is dropped

 Transport level protocols typically are transient (no msg storage)

 What OSI protocol level is the SMTP Protocol?

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.16

TYPES OF COMMUNICATION

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.9

 Asynchronous communication
 Client does not block, continues doing other work

 Synchronous communication
 Client blocks and waits

 Three types of blocking (synchronous)
1. Until middleware notifies it will take over delivering request

2. Sender may block until request has been delivered

3. Sender waits until request is processed and result is returned

 Persistence + synchronization (blocking)
 Common scheme for message-queueing systems

 Publish message to queue: block until message delivered to queue

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.17

TYPES OF COMMUNICATION - 2

October 24, 2016
TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.18

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.10

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.1: Foundations

 Chapter 4.2: RPC (light-review)

 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.19

OBJECTIVES – 2/25

CH. 4.2: RPC (LIGHT-
REVIEW)

L14.20

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.11

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.21

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

 In a nutshell,

 Allow programs to call procedures on other machines

 Process on machine A calls procedure on machine B

 Calling process on machine A is suspended

 Execution of the called procedure takes place on machine B

 Data transported from caller (A) to provider (B) and back (A).

 No message passing is visible to the programmer

 Distribution transparency: make remote procedure call look
l ike a local one

 newlist = append(data, dbList)

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.22

RPC – REMOTE PROCEDURE CALL

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.12

 Transparency enabled with cl ient and server “stubs”

 Client has “stub” implementation of the server-side function

 Interface exactly same as server side

 But cl ient DOES NOT HAVE THE IMPLEMENTATION

 Client stub: packs parameters into message, sends request to
server. Call blocks and waits for reply

 Server stub: transforms incoming
request into local procedure call

 Blocks to wait for reply

 Server stub unpacks request ,
calls server procedure

 I t ’s as i f the routine were called locally

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.23

RPC - 2

 Server packs procedure results and sends back to client.

 Client “request” call unblocks and data is unpacked

 Client can’t tell method was called remotely over the
network… except for network latency…

 Call abstraction enables clients to invoke functions in
alternate languages, on different machines

 Differences are handled by the RPC “framework”

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.24

RPC - 3

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.13

1. Client procedure calls client stub

2. Client stub builds message and calls OS

3. Client’s OS send message to remote OS

4. Server OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server performs work, returns results to server-side stub

7. Server stub packs results in messages, calls server OS

8. Server OS sends message to client’s OS

9. Client’s OS delivers message to client stub

10.Client stub unpacks result, returns to client

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.25

RPC STEPS

 STUBS: take parameters, pack into a message, send across
network

 Parameter marshaling:
 newlist = append(data, dbList)

 Two parameters must be sent over network and correctly
interpreted

 Message is transferred as a series of bytes

 Data is serialized into a “stream” of bytes

 Must understand how to unmarshal (unserialize) data

 Processor architectures vary with how bytes are numbered:
Intel (right lef t), older ARM (lef tright)

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

PARAMETER PASSING

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.14

 Big-Endian: write bytes left to right (ARM)

 Litt le-endian: write bytes r ight to lef t (Intel)

 Networks: typically transfer data in Big-Endian form

 Solution: transform data to machine/network independent
format

 Marshaling/unmarshaling:
transform data to neutral
format

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.27

RPC: BYTE ORDERING

 Passing by value is straightforward
 Passing by reference is challenging
 Pointers only make sense on local machine owning the data
 Memory space of client and server are different

 Solutions to RPC pass-by-reference:
1. Forbid pointers altogether
2. Replace pass-by-reference with pass-by -value
 Requires transferring entire object/array data over network
 Read-only optimization: don’t return data if unchanged on server

3. Passing global references
 Example: file handle to file accessible by client and server

via shared file system

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

RPC: PASS-BY-REFERENCE

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.15

 Let developer specify which routines will be called
remotely

 Automate client/server side stub generation for these
routines

 Embed remote procedure call mechanism into the
programming language

 E.g. Java RMI

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

RPC: DEVELOPMENT SUPPORT

void func(char x; float y; int z[5])
 1-byte character transmits with 3-padded bytes
 Float sent as whole word (4-bytes)
 Array as group of words, proceed by word describing

length
 Client stub must package data in specific format
 Server stub must receive and unpackage in specific format

 Client and server must agree on representation of simple
data structures: int, char, floats w/ little endian

 RPC clients/servers: must agree on protocol
 TCP? UDP?

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.30

STUB GENERATION

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.16

 Interfaces are specified using an Interface Definition
Language (IDL)

 Interface specifications in IDL are used to generate language
specific stubs

 IDL is compiled into cl ient and server-side stubs

 Much of the plumbing for RPC involves maintaining
boilerplate-code

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

STUB GENERATION - 2

 Leads to simpler application development

 Helps with providing access transparency

 Differences in data representation, and how object is
accessed

 Inter-language parameter passing issues resolved:
 just 1 language

 Well known example: Java Remote Method Invocation
RPC equivalent embedded in Java

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.32

LANGUAGE BASED SUPPORT

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.17

 RPC: client typically blocks unti l reply is returned

 Strict blocking unnecessary when there is no result

 Asynchronous RPCs

 When no result, server can immediately send reply

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

RPC VARIATIONS

Client/server synchronous RPC Client/server asynchronous RPC

 What are tradeoffs for synchronous vs. asynchronous
procedure calls?

 For a local program

 For a distributed program (system)

 Use cases for asynchronous procedure calls

 Long running jobs allow client to perform alternate work
in background (in parallel)

 Client may need to make multiple service calls to multiple
server backends at the same time…

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.34

RPC VARIATIONS – 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.18

 Deferred synchronous RPC
 Server performs CALLBACK to client

 Client, upon making call, spawns separate thread which blocks and
waits for call

 One-way RPCs
 Client does not wait for any server acknowledgement – it just goes…

 Client polling
 Client (using separate thread) continually polls server for result

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.35

TYPES OF ASYNCHRONOUS RPC

 Send RPC request simultaneously to group of servers

 Hide that multiple servers are involved

 Consideration:
Does the client need all results or just one?

 Use cases:

 Fault tolerance – wait for just one

 Replicate execution – verify
results, use first result

 Divide and conquer - multiple
RPC calls work in parallel on
different parts of dataset,
client aggregates results

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.36

MULTICAST RPC

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.19

 DCE: basis for Microsoft’s distributed computing object model
(DCOM)

 Used in Samba, cross-platform fi le and print sharing via RPC
 Middleware system – provides layer of abstraction between OS

and distr ibuted applications
 Designed for Unix, ported to all major operating systems
 Install DCE middleware on set of heterogeneous machines –

distributed applications can then access shared resources to:
 Mount a windows file system on Linux
 Share a printer connected to a Windows server

 Uses client/server model
 All communication via RPC
 DCE daemon tracks participating machines, ports

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.37

RPC EXAMPLE: DISTRIBUTED
COMPUTING ENVIRONMENT (DCE)

 Server name comes from directory server

 Server port comes from DCE daemon
 DCE daemon has a well known port # client already knows

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

DCE CLIENT-TO-SERVER BINDING

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.20

1. Create Interface definition language (IDL) files
 IDL files contain Globally unique identifier (GUID)
 GUIDs must match: client and server compare GUIDs to

verify proper versions of the distributed object
 128-bit binary number

2. Next, add names of remote procs and params to IDL

3. Then compile the IDL files
Compiler generates:
 Header file (interface.h in C)
 Client stub
 Server stub

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

EXTRA: DCE – CLIENT/SERVER DEVELOPMENT

 For a cl ient to call a server, server must be registered
 Java: uses RMI registry

 Client process to search for RMI server:
1. Locate the server’s host machine

2. Locate the server (i.e. process) on the host

 Client must discover the server’s RPC port

 DCE daemon: maintains table of (server,port) pairs

 When servers boot:

1. Server asks OS for a port, registers port with DCE daemon

2. Also, server registers with directory server, separate server
that tracks DCE servers

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

EXTRA: DCE – BINDING CLIENT TO SERVER

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.21

WE WILL RETURN AT
2:45 PM

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.1: Foundations

 Chapter 4.2: RPC (light-review)

 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.42

OBJECTIVES – 2/25

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.22

Apache Act iveMQ

CH. 4.3: MESSAGE-
ORIENTED

COMMUNICATION

L14.43

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.23

 RPC assumes that the client and server are running
at the same time… (temporally coupled)

 RPC communication is typically synchronous

 When client and server are not running at the same time

 Or when communications should not be blocked…

 This is a use case for message-oriented communication

 Synchronous vs. asynchronous

Messaging systems

Message-queueing systems

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

MESSAGE ORIENTED COMMUNICATION

 Communication end point

 Applications can read / write data to

 Analogous to fi le streams for I/O, but network streams

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.46

SOCKETS

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.24

 Servers execute 1st - 4 operations (socket, bind, l isten, accept)

 Methods refer to C API functions

 Mappings across dif ferent l ibraries wil l vary (e.g. Java)

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.47

SOCKETS - 2

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Socket: creates new communication end point

 Bind: associated IP and port with end point

 Listen: for connection-oriented communication, non-blocking
call reserves buffers for specified number of pending
connection requests server is wil ling to accept

 Accept: blocks unti l connection request arrives
 Upon arrival, new socket is created matching original

 Server spawns thread, or forks process to service incoming request

 Server continues to wait for new connections on original socket

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.48

SERVER SOCKET OPERATIONS

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.25

 Socket: Creates socket client uses for communication

 Connect: Server transport-level address provided, cl ient blocks
unti l connection established

 Send: Supports sending data (to: server/client)

 Receive: Supports receiving data (from: server/client)

 Close: Closes communication channel
 Analogous to closing a file stream

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.49

CLIENT SOCKET OPERATIONS

 Sockets provide primitives for implementing your own
TCP/UDP communication protocols

 Directly using sockets for transient (non-persisted)
messaging is very basic, can be brittle

 Easy to make mistakes…

 Any extra communication facilities must be implemented
by the application developer

 More advanced approaches are desirable

 E.g. frameworks with support common desirable
functionality

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.50

SOCKET COMMUNICATION

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.26

 (0MQ) High per formance intelligent socket library
 zero broker, zero latency, zero admin, zero cost, zero waste

 Provides a message queue

 Builds upon functionality of traditional sockets

 Implementation in C++
 30+ language bindings provided

 Enables support for various messaging patterns

 Can support brokered (centralized) and broker-less topologies

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.51

ZEROMQ – SOCKET LIBRARY

 ZeroMQ is TCP-connection-oriented communication

 Provides socket-like primitives with more functionality

 Basic socket operations abstracted away

 Supports many-to-one, one-to-one, and one-to-many
connections

Multicast connections (one-to-many – single server socket
simultaneously “connects” to multiple clients)

 Asynchronous messaging

 Supports pairing sockets to support communication
patterns

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.52

ZEROMQ – 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.27

 Request-reply pattern
 Traditional client-server communication (e.g. RPC)

 Client: request socket (REQ)

 Server: reply socket (REP)

 Publish-subscribe pattern
 Clients subscribe to messages published by servers

 As in event-based coordination (Ch. 1)

 Supports multicasting messages from
server to multiple

 Client: subscribe socket (SUB)

 Server: publish socket (PUB)

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.53

ZEROMQ - PATTERNS

 Pipeline pattern (FIFO-queue)

 Analogous to a producer/consumer bounded buffer

 Producing processes generate results, push to pipe

 Consuming processes consume results,
pull from pipe

 Producers: push socket (PUSH socket)

 Consumers: pull socket (PULL socket)

 Push- distributes messages to all pull
clients evenly

 Consumers pull results from pipe and
push results downstream

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.54

ZEROMQ – PATTERNS - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.28

Cloud services

Amazon Simple Queueing Service (SQS)

Azure service bus

Open source frameworks

Nanomsg

ZeroMQ

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.55

QUEUEING ALTERNATIVES

 MPI introduced – version 1.0 March 1994

 Message passing API for parallel programming: supercomputers

 Communication protocol for parallel programming for:
Supercomputers, High Performance Computing (HPC) clusters

 Point-to-point and collective communication

 Goals: high performance, scalability, portability

 Most implementations
in C, C++, Fortran

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.56

MESSAGE PASSING INTERFACE (MPI)

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.29

 Motivation: sockets insufficient for interprocess
communication on large scale HPC compute clusters and
super computers

 Sockets at the wrong level of abstraction

 Sockets designed to communicate over the network using
general purpose TCP/IP stacks

 Not designed for proprietary protocols

 Not designed for high-speed interconnection
networks used by supercomputers,
HPC-clusters, etc.

 Better buffering and synchronization needed

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.57

MOTIVATIONS FOR MPI

 Supercomputers had proprietary communication libraries

 Offer a wealth of efficient communication operations

 All libraries mutually incompatible

 Led to significant portability problems developing parallel
code that could migrate across supercomputers

 Led to development of MPI
 To support transient (non-persistent) communication for

parallel programming

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.58

MOTIVATIONS FOR MPI - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.30

 Very large l ibrary, v1.0 (1994) 128 functions

 Version 3 (2015) 440+

 MPI data types:

 Provide common mappings

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.59

MPI FUNCTIONS / DATATYPES

 MPI - no recovery for process crashes, network partitions

 Communication among grouped processes:(groupID, processID)

 IDs used to route messages in place of IP addresses

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.60

COMMON MPI FUNCTIONS

Operation Description

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send message, wait until copied to local/remote buffer

MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue

MPI_issend Pass reference to outgoing messages, wait until receipt start

MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.31

 Message-queueing systems

 Provide extensive support for persistent asynchronous
communication

 In contrast to transient systems

 Temporally decoupled: messages are eventually delivered
to recipient queues

 Message transfers may take minutes vs. sec or ms

 Each application has its own private queue to which other
applications can send messages

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.61

MESSAGE-ORIENTED-MIDDLEWARE

 Enables communication between applications, or sets of
processes

 User applications

 App-to-database

 To support distributed real-time computations

 Use cases

 Batch processing, Email, workflow, groupware, routing
subqueries

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.62

MESSAGE QUEUEING SYSTEMS:
USE CASES

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.32

 Scenarios:
(a) Sender/receiver

both running

(b) Sender running,
receiver offl ine

(c) Sender offl ine,
receiver running

(d) Sender/receiver
both offline

 Queue persists msgs,
and attempts to send
them but no one may be available to receive them…

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.63

MESSAGE QUEUEING SYSTEMS

SENDS

READS

 Key: Truly persistent messaging

 Message queueing systems can persist messages for awhile
and senders and receivers can be offl ine

 Messages

 Contain any data, may have size l imit

 Are properly addressed, to a destination queue

 Basic Inteface

 PUT: called by sender to append msg to specified queue

 GET: blocking call to remove oldest msg from specified queue
 Blocked if queue is empty

 POLL: Non-blocking, gets msg from specified queue

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.64

MESSAGE QUEUEING SYSTEMS - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.33

 Basic interface cont’d

 NOTIFY: install a callback function, for when msg is placed
into a queue. Notifies receivers

 Queue managers: manage individual message queues as a
separate process/library

 Applications get/put messages only from local queues

 Queue manager and apps share local network

 ISSUES:

 How should we reference the destination queue?

 How should names be resolved (looked-up)?
 Contact address (host, port) pairs

 Local look-up tables can be stored at each queue manager

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.65

MESSAGE QUEUEING SYSTEMS
ARCHITECTURE

 ISSUES:

 How do we route traffic between queue managers?

 How are name-to-address mappings efficiently kept?

 Each queue manager should be known to all others

 Message brokers

 Handle message conversion among dif ferent users/formats

 Addresses cases when senders and receivers don’t speak the
same protocol (language)

 Need arises for message protocol converters
 “Reformatter” of messages

 Act as application-level gateway

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.66

MESSAGE QUEUEING SYSTEMS
ARCHITECTURE - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.34

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.67

MESSAGE BROKER ORGANIZATION

Plugins to convert
messages between APPs Application-level

Queues

 Message-queueing systems initially developed to enable
legacy applications to interoperate

 Decouple inter-application communication to “open”
messaging-middleware

 Many are proprietary solutions, so not very open
 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP), 2006
 Address openness/interoperability of proprietary solutions
 Open wire protocol for messaging with powerful routing

capabilities
 Help abstract messaging and application interoperabil ity by

means of a generic open protocol
 Suffer from incompatibility among protocol versions
 pre-1.0, 1.0+

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.68

AMQP PROTOCOL

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.35

 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with
potentially many channels, stable, reused by many
channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two
channels

 Link: provide fine-grained flow-control of message
transfer/status between applications and queue manager

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.69

AMQP - 2

 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to
recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.70

AMQP MESSAGING

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.36

 Some examples:
 RabbitMQ, Apache QPid
 Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka
 Dumb broker (message store), similar to a distributed log file
 Smart consumers – intelligence pushed off to the clients
 Stores stream of records in categories called topics
 Supports voluminous data, many consumers, with minimal O/H
 Kafka does not track which messages were read by each consumer
 Messages are removed after timeout
 Clients must track their own consumption (Kafka doesn’t help)
 Messages have key, value, timestamp
 Supports high volume pub/sub messaging and streams

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.71

MESSAGE-ORIENTED-MIDDLEWARE
EXAMPLES:

 Questions from 2/23

 Assignment 2: Replicated Key Value Store

 Chapter 4: Communication
 Chapter 4.1: Foundations

 Chapter 4.2: RPC (light-review)

 Chapter 4.3: Message Oriented Communication

 Chapter 4.4: Multicast Communication

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.72

OBJECTIVES – 2/25

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.37

Apache Act iveMQ

CH. 4.4: MULTICAST
COMMUNICATION

L14.73

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.74

CHAPTER 4

These sections feature
many details,
Our focus is on the
“big picture”

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.38

 Sending data to multiple receivers
 Many failed proposals for network-level / transport-level

protocols to support multicast communication
 Problem: How to set up communication paths for

information dissemination?
 Solutions: require huge management effort, human

intervention

 Focus shifted more recently to peer-to-peer networks
 Structured overlay networks can be setup easily and

provide efficient communication paths
 Application-level multicasting techniques more successful
 Gossip-based dissemination: unstructured p2p networks

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.75

MULTICAST COMMUNICATION

 Overlay network
 Virtual network implemented on top of an actual physical network

 Underlying network
 The actual physical network that implements the overlay

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.76

NETWORK STRUCTURE

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.39

 Application level multi -casting
 Nodes organize into an overlay network

 Network routers not involved in group membership

 Group membership is managed at the application level (A2)

 Downside:
 Application-level routing likely less efficient than network-level

 Necessary tradeoff until having better multicasting protocols at
lower layers

 Overlay topologies
 TREE: top-down, unique paths between nodes

 MESH: nodes have multiple neighbors; multiple paths between nodes

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.77

APPLICATION LEVEL
TREE-BASED MULTICASTING

 Measure quality of application-level multicast tree

 Link stress: is defined per l ink, counts how often a packet
crosses same link (ideally not more than 1)

 Stretch: ratio in delay between two nodes in the overlay vs.
the underlying networks

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.78

MULTICAST TREE METRICS

Numbers represent
network delay
between nodes

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.40

 Stretch (Relative Delay Penalty RDP)

 CONSIDER routing from B to C

 What is the Stretch?

 Stretch (delay ratio) = Overlay -delay / Underlying-delay

 Overlay: BRbRaReEReRcRdDRdRc C
= 73

 Underlying: BRbRdRcC = 47

 Stretch = 73 / 47 = 1 .55

 Captures additional t ime (stretch) to transfer msg on overlay net

 Tree cost: Overall cost of the overlay network

 Ideally would l ike to minimize network costs

 Find a minimal spanning tree which minimizes total t ime for
disseminating information to all nodes

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.79

MULTICAST TREE METRICS - 2

 Broadcasting: every node in overlay network receives message

 How many nodes are in the overlay network?

 How many nodes are in the underlying network?

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.80

FLOOD-BASED MULTICASTING

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.41

 Broadcasting: every node in overlay network receives message

 Key design issue: minimize the use of intermediate nodes for
which the message is not intended

 If only leaf nodes are to receive the multicast message, many
intermediate nodes are involved in storing and forwarding the
message not meant for them

 Solution: construct an overlay network for each multicast
group
 Sending a message to the group, becomes the same as broadcasting

to the multicast group (group of nodes that listen and receive traffic
for a shared IP address)

 Flooding: each node simply forwards a message to each of its
neighbors, except to the message originator

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.81

FLOOD-BASED MULTICASTING

 When there is no information on the structure of the overlay network

 Assume network can be represented as a Random graph

 Random graphs are described by a probability distr ibution

 Probability Pedge that two nodes are joined

 Overlay network will have: ½ * Pedge * N * (N-1) edges

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.82

RANDOM GRAPHS

Random graphs allow us to assume
some structure (# of nodes, # of edges)
regarding the network by scaling the
Pedge probability

Assumptions may help then to
reason or rationalize about the
network…

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.42

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.83

PROBABILISTIC FLOODING

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.84

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.43

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.85

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.86

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)
½ * (.1) * (10000) * (9999)

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.44

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.87

PROBABILISTIC FLOODING

How many edges does network with
10,000 nodes have with pedge=0.1?

Edges = ½ * Pedge * N * (N-1)
½ * (.1) * (10000) * (9999)
4,999,500 edges

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.88

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.45

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.89

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message
to Q is p=(1-pflood)n

 ….Washington state in winter?

 When a node is flooding a message, concept is to enforce
a probability that the message is spread (pflood)

 Throttle message flooding based on a probability

 Implementation needs to considers # of neighbors to
achieve various pflood scores

 With lower pflood messages may not reach all nodes

 USEFULNESS: For random network with 10,000 nodes

 With pedge = 0.1 and pflood =.01

 Achieves 50-fold reduction in messages vs. full flooding

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.90

PROBABILISTIC FLOODING

What does it mean to have pflood =.01?

If a node Q has n neighbors, the probability
that all neighbors don’t forward the message
to Q is p=(1-pflood)n

if n=10, p=(1-.01)10=.904 (pretty likely)
if n=100, p=(1-.01)100=.366 (less likely)
if n=1000, p=(1-.01)298=.05 (unlikely)

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.46

 For deterministic topologies (such as hypercube), design of
efficient flooding scheme is much simpler

 If the overlay network is structured, this gives us a
deterministic topology

 Schlosser et al [2002] – offer simple and efficient
broadcasting scheme that relies on keeping track of neighbors
per dimension

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.91

MESSAGE FLOODING

 Hypercube Broadcast
 N(1001) starts the network broadcast
 N(1001) neighbors {0001,1000,1011,1101}
 N(1001) Sends message to all neighbors
 >>Edge Labels (which bit is changed?, 1st, 2nd, 3rd, 4th…)
 Edge to 0001 – labeled 1 – change the 1st bit
 Edge to 1000 – labeled 4 – change the 4th bit
 Edge to 1011 – labeled 3 – change the 3rd bit
 Edge to 1101 – labeled 2 – change the 2nd bit

 RULE: nodes only forward along edges with a higher dimension
 Node 1101 receives message on edge labeled 2

 Broadcast msg is only forwarded on higher valued edges (>2)

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.92

MESSAGE
FLOODING - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.47

 Hypercube: forward msg along edges with higher dimension
 Node(1101)–neighbors {0101,1100,1001,1111}
 Node (1101) - incoming broadcast edge = 2
 Label Edges:
 Edge to 0101 – labeled 1 – change the 1st bit
 Edge to 1100 – labeled 4 – change the 4th bit *<FORWARD>*
 Edge to 1001 – labeled 2 – change the 2nd bit
 Edge to 1111 – labeled 3 – change the 3rd bit *<FORWARD>*
 N(1101) broadcast – forward only to N(1100) and N(1111)
 (1100) and (1111) are the higher dimension edges

 Broadcast requires just: N-1 messages, where nodes N=2n,
n=dimensions of hypercube

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.93

MESSAGE FLOODING - 3

 When structured peer-to-peer topologies are not available
 Gossip based approaches support multicast communication

over unstructured peer-to-peer networks

 General approach is to
leverage how gossip
spreads across a group

 This is also called
“epidemic behavior”…

 Data updates for a specific
item begin at a specific
node

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.94

GOSSIP BASED DATA DISSEMINATION

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.48

 Epidemic algorithms: algorithms for large-scale distributed
systems that spread information

 Goal: “infect” all nodes with new information as fast as
possible

 Infected: node with data that can spread to other nodes

 Susceptible: node without data

 Removed: node with data that is unable to spread data

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.95

INFORMATION DISSEMINATION

Gossiping

Nodes are randomly selected

One node, randomly selects any other node in the
network to propagate the network

Complete set of nodes is known to each member

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.96

EPIDEMIC PROTOCOLS

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.49

 Anti-entropy: Propagation model where node P picks node Q at
random and exchanges message updates

 Akin to random walk

 Types of message exchange:
 PUSH: P only pushes its own updates to Q
 PULL: P only pulls in new updates from Q
 TWO-WAY: P and Q send updates to each other

(i .e. a push-pull approach)

 Push only: hard to propagate updates to last few hidden
susceptible nodes

 Pull : better because susceptible nodes can pull updates from
infected nodes

 Push-pull is better stil l

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.97

ANTI ENTROPY DISSEMINATION MODEL
FOR GOSSIPING

P Q

P Q

P Q

 Round: span of time during which every node takes initiative
to exchange updates with a randomly chosen node

 The number of rounds to propagate a single update to all
nodes requires O(log(N)), where N=number of nodes

 Let pi denote probability that
node P has not received
msg m after the i th round.

 For pull, push, and push-pull
based approaches:

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.98

ANTI ENTROPY EFFECTIVENESS

10,000 nodes

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.50

 Variant of epidemic protocols

 Provides an approach to “stop” message spreading

 Mimics “gossiping” in real life

 Rumor spreading:

 Node P receives new data item X

 Contacts an arbitrary node Q to push update

 Node Q reports already receiving item X from another
node

 Node P may loose interest in spreading the rumor with
probability = pstop, let’s say 20% . . . (or 0.20)

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.99

RUMOR SPREADING

 pstop, is the probabil ity node wil l stop spreading once contacting a
node that already has the message

 Does not guarantee all nodes wil l be updated

 The fraction of nodes s, that remain susceptible grows relative
to the probability that node P
stops propagating when finding
a node already having the
message

 Fraction of nodes not updated
remains < 0.20 with high pstop

 Susceptible nodes (s) vs.
probability of stopping

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.100

RUMOR SPREADING - 2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.51

 Gossiping is good for spreading data

 But how can data be removed from the system?

 Idea is to issue “death certificates”

 Act like data records, which are spread like data

 When death certificate is received, data is deleted

 Certificate is held to prevent data element from
reinitializing from gossip from other nodes

 Death certificates time-out after expected time required
for data element to clear out of entire system

 A few nodes maintain death certificates forever

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.101

REMOVING DATA

 For example:

 Node P keeps death cer tificates forever

 I tem X is removed from the system

 Node P receives an update request for I tem X, but also holds
the death certificate for I tem X

 Node P will recirculate the death cer tificate across the
network for I tem X

February 25, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L14.102

DEATH CERTIFICATE EXAMPLE

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 25, 2021

Slides by Wes J. Lloyd L14.52

QUESTIONS

February 25, 2021
TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma L14.10

3

