TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
| |

Ch. 3 - Processes:
Servers

Ch. 4 - Communication

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

February 18, 2021

OBJECTIVES - 2/18

| = Questions from 2/16 |
= Verify Midterm Scoring
= Assignment 1: Key/Value Store
= Java Maven project template files posted
= Chapter 3: Processes
= Chapter 3.4: Servers
= Chapter 3.5: Resource (Code) Migration (light-review)
= Chapter 4: Communication
= Chapter 4.1: Foundations
= Chapter 4.2: RPC (light-review)
= Chapter 4.3: Message Oriented Communication

TCSS558: Applied Distributed Computing [Winter 2021]

(e e A T e e oy R F S T T = TP

22

= Tuesday surveys: due by ~ Wed @ 10p
® Thursday surveys: due ~ Mon @ 10p

= TCSS558A > Assignments

Winter 2021
Home

Announcements

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

I ¥ Upcoming Assignments
Zoom o TCSS 558~ Online Daily Feedback Survey - 1/5
Chat “¥ Notavailable until Jan 5 at 1:30pm | Due Jan 6 3t 10pm | -/1pts
February 18, 2021 TCS5558: Applied Distributed Computing [Winter 2021] -
School of chnology, y Tacoma

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan 6 at 10pm Points 1 Questions 4
Available Jan 5 at 1:30pm - Jan 6 at 11:59pm 1 day Time Limit None

[Question1 05pts

©Ona scale of 1 to 10, please classify your perspective on material covered in today's
class:

1 2 3 a 5 6 7 8 B 10
Wost, Equar Wostly
Review To Me New and Review New to Me

[Question2 05pts

Please rate the pace of today’s class:

1 2! 3 4 5 6 7 8 9 10

Slow Just Right Fast

TCSS558: Applied Distributed Computing [Winter 2021]

(e ey A T School of Engineering and Technology, University of Washington - Tacoma L124

MATERIAL / PACE

class (15 respondents):
= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 5.80 ({ - previous 6.32)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.27 ({ - previous 5.41)

= Please classify your perspective on material covered in today’s

February 18, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y i Tacoma

Slides by Wes J. Lloyd

FEEDBACK FROM 2/9

= Going over the midterm questions were very helpful. |
definitely suggest doing something like this In your future
classes. | learned a lot more than | thought | would.
= Can also review final exam questions,
but there is no class meeting after the final
= Will plan to offer a similar review of the final exam during
office hours on Friday March 19 @ 11:30a

TCSS558: Applied Distributed Computing [Winter 2021]

(e, Sehoollof FechnolosyUniversityof Weshi Tacoma

126

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 2/18

= Questions from 2/16
| = Verify Midterm Scoring |
= Assignment 1: Key/Value Store
= Java Maven project template files posted
= Chapter 3: Processes
= Chapter 3.4: Servers
= Chapter 3.5: Resource (Code) Migration (light-review)
= Chapter 4: Communication
= Chapter 4.1: Foundations
= Chapter 4.2: RPC (light-review)
= Chapter 4.3: Message Oriented Communication

February 18, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y - Tacoma

February 18, 2021

VERIFY MIDTERM SCORING

= Please verify:

= Questlon 4: message sequencing is now +1 point

= Questlon 5b: no change: roles in hierarchally organized P2P do not
adapt. Nodes are designated as weak or super peers from the
start. Leader election algorithm makes determination.
There is no adaption to system conditions over time.

= Questlon 5c¢: policy-based search is OK. No point deduction
need answer: random walk

= Questlon 5e: policy-based search is OK. No point deduction. Still
need answers: random walk and flooding

= Questlon 7a: No point deduction if scalability is NOT chosen.

Still need: “Embarrassingly parallel request processing” and

“Memory / request isolation”

Questlon 7b: No point deduction if scalability IS chosen.

Still need: “Memory requirements” and “Overhead / resource

requirements”

TCS5558: Applied Distributed Computing [Winter 2021]

School of Technology, University Tacoma ‘ b

February 18, 2021

OBJECTIVES - 2/18

= Questions from 2/16

= Verify Midterm Scoring
= Asslgnment 1: Key/Value Store

= Java Maven project template flles posted
= Chapter 3: Processes

= Chapter 3.4: Servers

= Chapter 3.5: Resource (Code) Migration (light-review)
= Chapter 4: Communication

= Chapter 4.1: Foundations

= Chapter 4.2: RPC (light-review)

= Chapter 4.3: Message Oriented Communication

February 18, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineeri chnology, University i - Tacoma

ASSIGNMENT 1

Extenslon to Sunday February 215t I

Discussion Board created on Canvas
= Answers to common questions posted online

= Team signup posted on Canvas under ‘People’

GenericNode.tar.gz updated- now includes Dockerfile examples I

TCP/UDP/RMI Key Value Store

= Implement a “GenericNode” project which assumes the role of a
client or server for a Key/Value Store

Recommended in Java (11 or 8)

Client node program interacts with server node to put, get, delete,
or list items in a key/value store

TCS5558: Applied Distributed Computing [Winter 2021]

School of Technology, University of Tacoma 20

February 18, 2021

OBJECTIVES - 2/18

= Questions from 2/16

= Verify Midterm Scoring
= Assignment 1: Key/Value Store

= Java Maven project template files posted
= Chapter 3: Processes

= Chapter 3.4: Servers

= Chapter 3.5: Resource (Code) Migration (light-review)
= Chapter 4: Communication

= Chapter 4.1: Foundations

= Chapter 4.2: RPC (light-review)

= Chapter 4.3: Message Oriented Communication

February 18, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y - Tacoma

L1211

Slides by Wes J. Lloyd

CH. 3.4: SERVERS

. &l Boq

L12.2

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

February 18, 2021

EJB - ENTERPRISE JAVA BEANS

= EJB- specialized Java object hosted by a EJB web container
= 4 types: stateless, stateful, entity, and message-driven beans
= Provides “middleware” standard (framework) for implementing
back-ends of enterprise applications
= EJB web application containers integrate support for:
= Transaction processing
= Persistence
= Concurrency
= Event-driven programming
= Asynchronous method invocation
= Job scheduling
= Naming and discovery services (JNDI)
= Interprocess communication
= Security
= Software component deployment to an application server

TCS5558: Applied Distributed Computing [Winter 2021]

EEDaivIE 2028 AT e v s s o T T T T ‘ 213 ‘

APACHE WEB SERVER

= Highly configurable, extensible, platform independent
= Supports TCP HTTP protocol communication

= Uses hooks - placeholders for group of functions

= Requests processed in phases by hooks

= Many hooks: Module Module Funcion Module
= Translate a URL ‘DBIIJ; ‘DD!M /EBEE‘
= Write info to log N/ T e
= Check client ID mEL Mo functon and hook|
= Check access righ.ts]@ \ﬁ‘ ﬁ l

® Hooks processed in order ‘—‘/ Hooks point to functions in modules
enforcing flow-of-control / [p—

Apche core
® Functions in replaceable furetins caked For oo L[—l—‘
modules Roquest Response

TCSS558: Applied Distributed Computing [Winter 2021]

il 2028 School of Engineering and Technology, University of Washington - Tacoma

SERVER CLUSTERS

= Hosted across an LAN or WAN
= Collection of interconnected machines
= Can be organized in tiers:

= Web server > app server > DB server

= App and DB server sometimes integrated

Logical switch
(possibly multiple)

Application/compute servers Distributed
fle/database
system

m—
mE——
[]

Dispatched

Client requests request

NN

First fier Second tier Third tier

February 18, 2021 TC55558: Applied Distributed Computing [Winter 2021] ‘ s ‘

School of Engineering and Technology, University of Washington - Tacoma

LAN REQUEST DISPATCHING

= Front end of three tier architecture (logical switch) provides
distribution transparency - hides multiple servers

= Transport-layer switches: switch accepts TCP connection
requests, hands off to a server
= Example: hardware load balancer (F5 networks - Seattle)
= HW Load balancer - OSl layers 4-7

= Network-address-translation (NAT) approach:
= All requests pass through switch
= Switch sits in the middle of the client/server TCP connection
= Maps (rewrites) source and destination addresses
= Connection hand-off approach:
= TCP Handoff: switch hands of connection to a selected server

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma e

February 18, 2021

LAN REQUEST DISPATCHING - 2

= Who is the best server to handle the request?

= Switch plays important role in s
distributing requests gingle 70 —=—= —

= Implements load balancing

" Round-robln - routes client
requests to servers in a looping
fashion -

= Transport-level - route client
requests based on TCP port number

= Content-aware request distribution - route requests based on
inspecting data payload and determining which server node
should process the request

Request
(handed off) *

TCS5558: Applied Distributed Computing [Winter 2021]

EEDatylE 2028 Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms ‘ 217 ‘

WIDE AREA CLUSTERS

= Deployed across the internet

= Leverage resource/infrastructure from Internet Service
Providers (ISPs)

= Cloud computing simplifies building WAN clusters

= Resource from a single cloud provider can be combined to
form a cluster

= For deploylng a cloud-based cluster (WAN), what are the
implications of deploying nodes to:

= (1) a single availability zone (e.g. us-east-1e)?

® (2) across multiple availability zones?

TCS5558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

February 18, 2021 1218 ‘

Slides by Wes J. Lloyd

L12.3

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 18, 2021

WAN REQUEST DISPATCHING

DNS LOOKUP

= Goal: minimize network latency using WANSs (e.g. Internet) = First query local server(s) for address

= Send requests to nearby servers = Typically there are (2) local DNS servers
= One is backup

= Request dispatcher: routes requests to nearby server

= Example: Domain Name System

= Hierarchical decentralized naming system

= Hostname may be cached at local DNS server
= E.g. www.google.com

= |f not found, local DNS server routes to other servers
= Routing based on components of the hostname

= DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

= Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

= Linux: find your DNS servers:

Find you device name of interest
nmcli dev

Show device configuration

nmcli device show <device name>

TCS5558: Applied Distributed Computing [Winter 2021]

TCS5558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

February 18, 2021 School of Engineering and Technology, University of Washington - Tacoma

L1219

February 18, 2021

Local Name Server

5. lterative Query to root

4.Check (root)
cache © o ame Sorverfor eau DNS: LINUX COMMANDS
@ 7z
e ‘Smw Root Name Server
Lot Server | 7. iterative " nslookup <ip addr / hostname>
Query to .edu

3. Recursive
Query 14. Requested
IP Address

2.Check

e £ L
15. Update

I
75

8. Name Server for
googleplex.edu

9. terative Query

10. Name Server for

.edu Name Server

b
to googleplex.edu ij
| tooooolepiexedy SN

Cache Resolver compsci.googleplex.edu
| googleplex.edu
* Ren oo | Name Server
* | e Requested 14, Iterative Query to
1P Address compsci.googleplex.edu

0

12.1P Address for
i edt

f

U o

compsci

User & Browser

Client

A7.HTTP Request

Hame Server E:Vﬂ E:'ZI

...................................... >

= Name server lookup - translates hostname or IP to the inverse

" traceroute <ip addr / hostname>
= Traces network path to destination
= By default, output is limited to 30 hops, can be increased

TCSS558: Applied Distributed Computing [Winter 2021]

(e ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

222

DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:
= nslookup: 6 alternate addresses returned, choose (74.125.28.147)
= Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)
= Ping www.google.com in VA (us-east-1) from EC2 instance:
= nslookup: 1 address returned, choose 172.217.9.196
= Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

= From VA EC2 instance, ping WA www.google server
= Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)
= Pinging the WA-local server is ~60x slower from VA

= From local wireless network, ping VA us-east-1 google :
= Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

February 18, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L1223

DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:
= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

Latency to ping VA server in WA: ~3.63x

WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x

VA client: local-google 1.278ms to WA-google 62.349!

= From local wireless network, ping VA us-east-1 google :
= Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCS$558: Applied Distributed Computing [Winter 2021]

(e, Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

u224

Slides by Wes J. Lloyd

L12.4

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

CH 3.2 - EXAMPLE: PLANETLAB

= Unstructured heterogeneous cluster of servers

= Similar to grid but organized as cluster (no grid middleware)

= Testbed established in 2002 for computer networking and
distributed systems research

: i User-assigned Priviliged management
" organlzatlons Share virtual machines virtual machines
nodes in the cluster e cm e S
3 23 23 Al 22 2
Leverages Linux Vservers o R - - SO - - O k- - SO - -0 PO
Early “containers” @ @l G||a G||a 8 |a 4

similar to Docker

l 'server server Vserver

Linux enhanced operating system

Hardware

L2

TCSS558: Applied Distributed Computing [Winter 2021]
(el 20 AT e v s s o T T T T

25

February 18, 2021

PLANETLAB - 2

= Slices: set of Vservers running across —_= ==
PlanetLab L| i] L0
] =] =1

= Acts as a virtual server cluster (o] I) I []
(similar to Amazon VPC) ==y EREEE

= Node manager: manages Vservers running on a host

= Slice creatlon service (SCS): To create virtual server clusters

= Clients must be slice authorities to create cluster

= Rspec: resource specification
= Specifies resource requirements for a slice

= Rcap: resource capability
= Specifies resource capabilities of nodes

1226

TCSS558: Applied Distributed Computing [Winter 2021]
(e A R e e o R P T =

VSERVERS

= Provided early “container-like” tool
= Vservers share a single operating system kernel

= Primary task is to support a group of processes

= Provides separation of name spaces

= Linux kernel maps process IDs: host 0S > Vservers

= Each Vserver has its own set of libraries and file system
= Similar name separation as the “chroot” command

= Additional isolation provided to prevent unauthorized
access among Vservers directory trees

TCSS558: Applied Distributed Computing [Winter 2021]
(el 2 e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms

11227

VSERVERS - 2

= Advantages of Vservers (contalners) vs. VMs:

= Simpler resource allocation
= Possible to overbook resources by leveraging dynamic
resource allocation - Example: CPU or RAM (assignment 0, config 2)
= \V/Ms reserve a block of memory
= Containers can oversubscribe memory
= Memory not formally reserved
= Linux kernel shares memory among processes
= Swap filesystem can use disk as extended RAM
= Memory sharing important for PlanetLab
= Early nodes had limited memory (e.g. 4 GB)
= Vserver hogging most memory reset when out of swap space

TCS5558: Applied Distributed Computing [Winter 2021] 228

(e ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

OBJECTIVES - 2/18

= Questions from 2/16
= Verify Midterm Scoring
= Assignment 1: Key/Value Store
= Java Maven project template files posted
= Chapter 3: Processes
= Chapter 3.4: Servers
| = Chapter 3.5: Resource (Code) Migration (light-review) |
= Chapter 4: Communication
= Chapter 4.1: Foundations
= Chapter 4.2: RPC (light-review)
= Chapter 4.3: Message Oriented Communication

TCSS558: Applied Distributed Computing [Winter 2021]
2028 Seoo[of Ensineera endTechnolosyilniversity e hingtoniiTacoma

L1229

u 3 When poll is active, respond at PollEv.com/wesleylloyd641
&1 Text WESLEYLLOYD641 to 22333 once to join

What type of Distribution Transparency does

YA/ DNS provide that enables fast ping times to

www.google.com?

Replication transparency
Relocation transparency
Concurrency transparency
Location transparency

Failure transparency

Slides by Wes J. Lloyd

L12.5

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

CH. 3.5: RESOURCE
(CODE) MIGRATION

February 18, 2021

RESOURCE MIGRATION

= To support on-the-fly reorganization of distributed
systems, at times there is interest in resource
migration

® Can consider various types of resource migration
=Code migration: source code, libraries
=Process migration: a running job/task
=VM migration: an entire virtual server!

TCS5558: Applied Distributed Computing [Winter 2021]

(e Sehoalor T TRy f T

u232

TYPES OF CODE MIGRATION

= Some situations call for passing programs (e.g. code)
= Live migratlon - moving code while it is executing
= Portability - transferring code (running or not) across

heterogeneous systems:
Mac 0S X > Windows 10 > Linux

= Topologies can be dynamically reconfigured on-the-fly

= Distributed systems can support more than passing data

= Code migration enables flexibllity of distributed systems

February 18, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineeri Technology, University i Tacoma

L1233

PROCESS MIGRATION

= Move an entire process from one node to another
= Motivation is always to address performance

= Process migration is slow, costly, and intricate
=Need to pause, save intermediate state, move, resume
=Consider application specific vs. agnostic approaches

= What would be:

an application agnostic approach to migration?
an application specific approach?

= What are advantages and disadvantages of each?

TCS5558: Applied Distributed Computing [Winter 2021]

(e Schoolof EchnoloayiUniversiyer Tecoma

L234

PROCESS MIGRATION - 2

= Move processes:
from heavily loaded - lightly loaded nodes

= When do we consider a node as heavily loaded?
= Load average
= CPU utilization
= CPU queue length

= Which process(es) should be moved?
= Must consider resource requirements for the task

= Where should process(es) be moved to?

February 18, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

Technology, y i Tacoma

L1235

Slides by Wes J. Lloyd

MOTIVATIONS FOR MIGRATION l%é

= Can migrate processes or entire virtual machlnes

= Goals:

o Off-loading machines: reduce load on oversubscribed servers
o Loading machine: ensure machine has enough work to do

o Minimize total hosts/servers in use to save energy/cost

= VM migration:
= Migrate complete VMs with apps to lightly loaded hosts
= Generally, VM migration is easier than process migration

=|s VM migration application specific or agnostic?

TCS5558: Applied Distributed Computing [Winter 2021]

(e, Schoolof echnoloayUniversityof Tacoma

L2386

L12.6

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

February 18, 2021

LINUX CRIU

® Linux (CRIU) Checkpoint restore in userspace

= Linux tool: https://www.criu.org/

= Supports freezing a running application (or part of it) to create
a checkpoint to persistent storage (e.g. disk) as a collection of
files.
= This means saving the state of RAM to disk

= Can use checkpoint files to restore and run the application
from the point it was frozen at.

= Distinctive feature of CRIU is that it can be run in the user
space (CPU user mode), rather than in kernel mode.

= CRIU can save a Docker container’s state for migration
elsewhere

TCS5558: Applied Distributed Computing [Winter 2021]

(el 20 AT e v s s o T T T T

11237

LOAD DISTRIBUTION ALGORITHMS

= Make decisions concerning allocation and
redistribution of tasks across machines

= Provide resource management for compute intensive
systems

= Often CPU centric
= Algorithms should also account for other resources

= Network capacity may be larger bottleneck that CPU
capacity

TCSS558: Applied Distributed Computing [Winter 2021]

(e A R e e o R P T =

238

WHEN TO MIGRATE?

= Decisions to migrate code often based on qualitative
reasoning or adhoc decisions vs. formal mathematical models
= Difficult to formalize solutions due to heterogeneous composition
and state of systems and networks

= |s It better to migrate code or data?

= What factors should be considered?

= Size of code
= Size of data = Processing power of nodes
= Available network transfer * Cost of processing
speed = Are there security
requirements for the data?

= Cost of data transfer

TCSS558: Applied Distributed Computing [Winter 2021]

Eetmaniit 2021 School of Engineering and Technology, University of Washington - Tacoma L1239

APPROACHES TO CODE MIGRATION

= Traditional clients
= Client interacts with server using specific protocol
=Tight coupling of client->server limits system flexibility
= Difficult to change protocol when there are many clients

= Dynamic web clients
= Web browser downloads client code immediately before use
= New versions can readily be distributed

TCSS558: Applied Distributed Computing [Winter 2021]

(e ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

240

DYNAMIC WEB CLIENTS

= Advantages
= Client code loaded in as necessary
= Discarded when no longer needed
= Can easily change the client/server protocol

= Disadvantages

2. Clientand server

= Security: we have to trust the code Client MMM gorer
= Downloading client requires ﬁ m
network bandwidth & time .n

~ 1. Client fetches code
[Service-specific >
[client-side code

Code repository

TCS5558: Applied Distributed Computing [Winter 2021]

2028 Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

L1241

CODE MIGRATION

= Sender-initiated: (upload the code)... e.g. Github

= Receiver-initiated: (download the code)... e.g. web browser

= Remote cloning
= Produce a copy of the process on another machine
while parent runs

TCS$558: Applied Distributed Computing [Winter 2021]

(e, Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

L2482

Slides by Wes J. Lloyd

L12.7

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

February 18, 2021

CODE MIGRATION - 2

= What is migrated?

= Code segment

= Resource segment (device info)

= Execution segment (process info: data, state, stack, PC)
= Weak mobllity

= Only code segment, no state

= Code always restarts
= Strong mobility

= Code + executlon segment

= Process stopped, state saved, moved, resumed

= Represents true process migration

CODE MOBILITY TYPES

Before execution ‘After execution

Cl Clisot

* indicates what is everything runs remotely
ifi [] code [] code
modified s | i = | | —
) [| resource [] resourcs
= CS: Client-Server —=fentprovide m—
= REV: Remote Evaluation code (] [] code
REV [| []|t excc”
= CoD: Code-on-demand [resourcs | I] T
= MA: Mobile agents | i movs g e —
code code
CoD exec exec”
= Where does state get "35“”:’ moouce
modified? Asss.s
[]| |l] []|
MA [[Texec ! [| [t | exec |
. . resourcs [resourcs | resource |
= State is stored in exec ‘ ‘ [eeows |
CS: Client-Server REV: Remote evaluation
CoD: Code-on-demand MA: Mobile agents

TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma L4

February 18, 2021

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma Lz

February 18, 2021

MIGRATION OF

HETEROGENEOUS SYSTEMS

= Assumption: code will always work at new node
= |nvalid if node architecture is different (heterogeneous)

= What approaches are available to migrate code across
heterogeneous systems?

= Intermediate code
= 1970s Pascal: generate machine-independent intermediate code
= Programs could then run anywhere
= Today: web languages: Javascript, Java

= VM Migration

VIRTUAL MACHINE MIGRATION

= Four approaches:

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory as needed
4. HYBRID: PRECOPY followed by brief STOP-AND-COPY

= What are some advantages and disadvantages of 1-4?

TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma Lds

February 18, 2021

TCSS558: Applied Distributed Computing [Winter 2021]

(e ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

e |

1. PRECOPY: Push all memory pages to new machine
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages,
start new VM

3. ON DEMAND: Start new VM, copy memory pages as
needed

4. HYBRID: PRECOPY and followed by brief STOP-AND-COPY

= What are some advantages and disadvantages of 1-4?
= (+)1/3:no loss of service
= (+) 4: fast transfer, minimal loss of service
= (+) 2: fastest data transfer
= (+)3: new VM immediately available

= (-) 1: must track modified pages during full page copy
= (-) 2: longest downtime - unacceptable for live services
= (-) 3: prolonged, slow, migration

= () 3: original VM must stay online for quite a while

= (-) 1/3: network load while original VM still in service

L1247

n LJ When poll is active, respond at PollEv.com/wesleylloyd641

&1 Text WESLEYLLOYD641 to 22333 once to join

With process migration it is necessary to pause
the process, save intermediate state, move the
process, and resume on another server. Which
type of process migration is generally more

resource intensive? (generally may imply not

always...)

Application agnostic - process migration accomplished
atthe systemslevel (e.g, OS, VM/container level)

Application specific - process migration accomplished by
the program where custom application code is used to
pause, save state, move to another server, and resume

Slides by Wes J. Lloyd

L12.8

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

WE WILL RETURN AT
3:02 PM

February 18, 2021

OBJECTIVES - 2/18

= Questions from 2/16

= Verify Midterm Scoring
= Assignment 1: Key/Value Store
= Java Maven project template files posted
= Chapter 3: Processes
= Chapter 3.4: Servers
= Chapter 3.5: Resource (Code) Migration (light-review)

= Chapter 4: Communication
= Chapter 4.1: Foundations

= Chapter 4.2: RPC (light-review)
= Chapter 4.3: Message Oriented Communication

TCS5558: Applied Distributed Computing [Winter 2021]

February 18, 2021 s T . - Tacoma

250

CHAPTER 4

= 4.1 Foundations

- Pieieees Reviews and builds on
= Types of communication content from Ch. 2/3
= 4.2 Remote procedure call

= 4.3 Message-oriented communication
= Socket communication
= Messaging libraries
= Message-Passing Interface (MPI)
= Message-queueing systems
= Examples
= 4.4 Multicast communication
= Flooding-based multicasting
= Gossip-based data dissemination

TCS5558: Applied Distributed Computing [Winter 2021]

School of Technology, Y Tacoma s

February 18, 2021

LAYERED PROTOCOLS

= Distributed systems lack shared memory

= All distributed system communication
is based on sending and receiving low-level messages

“P>Q

= Open Systems Interconnection Reference Model
(0SI Model)

= Open systems communicate with any other open system
= Standards govern format, contents, meaning of messages
= Formalization of rules forms a communlcatlon protocol

TCS5558: Applied Distributed Computing [Winter 2021]

February 18, 2021 e Ty . Tacoma

254

Slides by Wes J. Lloyd

L12.9

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

LAYERED PROTOCOLS - 2

= Protocols provide a communlcatlon service

=Two service types:

=Connection-oriented: sender/receiver establish
connection, negotiate parameters of the protocol, close
connection when done

= Physical example: telephone

=Connectionless: No setup. Sender sends. Receiver
receives.

= Physical example: Mailing a letter

TCS5558: Applied Distributed Computing [Winter 2021]

(el 20 AT e v s s o T T T T

February 18, 2021

0S|I MODEL REVISITED

Application

Session

Transport

Network

patatink [I
Physical D’

Network
= Physical layer: just sends bits > ...0001011011 ..
= Data link layer: Groups bits into frames

= Provides error correction via checksum

= Special bit pattern at start/end of frame

TCSS558: Applied Distributed Computing [Winter 2021]

(e A R e e o R P T =

256

Applcaton
eresentaton
Session
Transport

Network

Data ik

Prysical

= Data link layer:

= Checksum: computed by adding all bytes in frame in particular
way

= Added to message

= Receiver removes checksum, recomputes checksum, and
compares

= If receiver and sender agree, frame is considered correct
= Receiver can request failed frames to be resent
= Frames assigned sequence numbers in the header
= Network layer:
= Sometimes referred to as the Internet layer
= On WANs sending msgs between client/server requires routing
= Provides addressing using IPV4 (32-bit), IPV6 (64-bit)

TCS5558: Applied Distributed Computing [Winter 2021]

(el 2 e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms

L1257

Appication b
presentaton b
Sossion <

Transpor
Network

Dalink

Physical prolocal
Physical piaies

= Network layer:
= Helps with routing network traffic
= Shortest route (# of hops) may not be the best route
= Minimizing delay (latency) is paramount

= Routing algorithms: use long-term average network
conditions, or try to adapt to changing conditions

= |CMP Protocol: Internet Control Message Protocol

= Not typically for sending data, used for diagnostic/control
purposes

= |CMP Examples: (ping, traceroute)

Natwork

TCSS558: Applied Distributed Computing [Winter 2021]

(e ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

L2ss

0S| MODEL - 4

Network

Data ik

Prysical

= |[nternet Control Message Protocol (ICMP)
= 8 bytes header: 4 fixed, 4 variable

ICMP Header Format

Ntk

Offsets Octet o i 2 3
Octet Bt 0 1|2|3|4 5|6|7 8 9|10 11 12]13)14]15 16]17|18]19|20 21| 22|23 24|25 26| 27|28 29|30 | ;1
o o e Code Checksum
4 32 | RestofHeader

= Example message types:

= 0- echo reply (PING), 3- destination unreachable, 4- source quench
(congestion control), 5- redirect message, 8- echo request (PING),
9- router advertisement

= Others: 10 (router solicitation), 11 (time exceeded), 12 (parameter
problem), 13 (timestamp), 15 (info request), 16 (info reply), 17
(address mask request), 18 (address mask reply),
30-39 (traceroute), 40 (security failures), 42 (ext echo request)...255

TCS5558: Applied Distributed Computing [Winter 2021]

2028 Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

Appication b
presentaton b
Sossion

Tansoor

Network
Dalink

Physical prolocl
Physical piaies

= Transport layer:
= Provides reliable connections
= Reorganizes packets arriving out of sequence
= Requests delivery of missing packets

Natwork

1. Breaks application layer protocol messages into pieces
to transmit

2. Assigns messages sequence nhumbers
3. Sends all messages

TCS$558: Applied Distributed Computing [Winter 2021]

(e, Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

o |

Slides by Wes J. Lloyd

L12.10

TCSS 558: Applied Distributed Computing February 18, 2021
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

feston protoo
Apploaton AmekResl. Aoptcatin
Presentaton o)

eresentaton

0S|I MODEL - 6 s

i
-
T
ot [Tt)
LR
e
=

presentaton

Sossion

Tansoor

fework protocal 0
Network aworkpotocal

Network
Data ik protocol.

Data ik Dalink

Physical profocs.

Physical prolocal

Prysical Physical

= Other transport protocols

o
i i) . = Real-time transport protocol (RTP): real-time data, no data delivery
= Transport layer provides an infallible “message pipe” guarantee

= Put messages in = Streaming Control Transmission Protocol (SCTP): alternative to TCP

Ntk

= Always come out undamaged, in correct order = Higher-level protocols:

= Sesslon layer: mechanisms for opening, closing, managing session
between communicating processes
= Presentatlon layer: deals with syntactical meaning of messages
= Presentation services convert data among formats, for example:
= UDP: Universal Datagram Protocol (connectionless) = from extended binary coded decimal interchange code (EBCDIC) to ASCII
= Appllcatlon layer: protocols that don’t fit into other layers
= Many protocols: FTP, SFTP, HTTP, etc. etc.

= Transport layer protocols:
= TCP: Transmission Control Protocol (connection-oriented)

February 18, 2021 TCS5558: Applied Distributed Computing [Winter 2021] ‘ L1261 ‘ February 18, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma ‘ 26 ‘

0S|I MODEL - 8 PROTOCOL STACK

Data link layer header

= Collection of layers used for communication from 0S| model
Network layer header

Transport layer header bo
Session layer header ul

Presentation layer header 67 - Applcation
[Applcationlyer header Stroams) o Ueer
- Hobder biia

[] Message I i
L L1 LT ayertraier P g

Bits that actually appear on the network | T Protoc Mezenes | 1ck Application Data

. . et TGP Segment
= Each OSI layer contributes overhead bits to the message ook M
| Podtogams | S Application Data
Honter | Hesier
= Layers append data to front (and maybe end) of the message . I P Datagram
~oataLin , SUP Etornet
= Receiver strips off headers as the message goes up the 0SI [« pework Specic | EOEt | P e \ A \ Application Data Bt
model stack: " “ N
1-physica Physical Dovices f 500 bytes ‘
physical > data-link - network = transport = application | —_— |
| ametFrame ‘
February 18, 2021 TC55558: Applied Distributed Computing [Winter 2021] ‘ s ‘ February 18, 2021 7C55558: Applied Distributed Computing [Winter 2021] ‘ e ‘

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

MIDDLEWARE PROTOCOLS MIDDLEWARE PROTOCOLS - 2

= Middleware is reused by many applications = DIstributed commit protocols
= Provide needed functions applications are built and = Coordinate a group of processes (nodes)
depend upon = Facilitate all nodes carrying out a particular operation
= For example: communication frameworks/libraries = Or abort transaction
= Middleware offer many general-purpose protocols = Provides distributed atomicity (all-or-nothing) operations
= Middleware protocol examples: = Distributed locking protocols
= Authenticatlon protocols: supports granting users and = Protect a resource from simultaneous access from
processes access to authorized resources multiple nodes
= Doesn't fit as an “application specific” protocol = Remote procedure call
= Considered a “Middleware protocol” = One of the oldest middleware protocols

TCS5558: Applied Distributed Computing [Winter 2021]

2028 Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

‘ L1265 ‘ February 18, 2021 TCS$558: Applied Distributed Computing [Winter 2021]

Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma ‘ e ‘

Slides by Wes J. Lloyd L12.11

TCSS 558: Applied Distributed Computing February 18, 2021
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

MIDDLEWARE PROTOCOLS - 3 MIDDLEWARE PROTOCOLS - 3
= Message queuelng services [Producer | Producer | | Producer | = Message queueing services [Producer\\ | Producer | /I:roducer

= Support synchronization of data
streams

KEY: middleware protocols offer functionality to satisfy the
= Transfer real-time data software requirements of many applications
= Distributed and scalable

implementation

Middleware functions are general, application-independent

[Consumer | " Consumer Consumer

in nature
= Multicast services . .
. Functions are so commonly needed they are offered in
= Scale communication to thousands of reusable frameworks / libraries
receivers spread across the Internet
Feary s 21| IG5 A O oo L o e e rebmary s 21| IS5 i o e N - e e |

ADAPTED REFERENCE MODEL TYPES OF COMMUNICATION

= Persistent communication

= Message submitted for transmission is stored by communication
Application protocol

" middleware as long as it takes to deliver it
Application | = [d---mmmmmmmmmm e « .
= Example: email system (SMTP)
_ B Middleware protocol N = Receiver can be offline when message sent
Middleware [« > « = Temporal decoupling (delayed message delivery)
| I
= Transient communication
Operating - Host-to-host protocol » Combines network))
system and transport = Message stored by middleware only as long as sender/receiver
applications are running
. < Physical/Link-level protocal » Physical and = If recipient is not active, message is dropped
Data link = Transport level protocols typically are transient (no msg storage)
Network = What 0S| protocol level is the SMTP Protocol?
TCSS558: Applied Distributed Cor iting [Winter 2021] TCSS558: Applied Distributed C iting [Winter 2021]
February 18,2021 | gpooof Engineering and Technology,Univeriy of Washingtan- Tacoma w2 February 18,2021 | $ipo5of Engineering and Technology, University of Washington- Tacoma a2

Consider each type of client blocking (1-until

TYPES OF COMMUNICATION - 2 middleware takes over, 2- until request

L DTS G e e W delivered to server, 3- until server responds
= Client does not block, continues doing other work With result). Are these modes commonly
= Synchronous communication . .
= Client blocks and waits assouated Wlth ?
= Three types of blocking (synchronous)
1. Until middleware notlf.les it will take over delllverlng request connectionless (UDP) A
2. Sender may block until request has been delivered
3. Sender waits until request is processed and result is returned

connection-oriented (TCP) [B
= Persistence + synchronization (blocking)
= Common scheme for message-queueing systems Both UDP and TCP |€
= Publish message to queue: block until message delivered to queue

Neither UDP or TCP [P

February 18, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

’ u2n
chnology, y Tacoma

-. October 24, 2046, TCSS558: Applied Distributed Cemp:y\jnggl\/m(e; 2021) o 7!.

Slides by Wes J. Lloyd L12.12

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

February 18, 2021

OBJECTIVES - 2/18

= Questions from 2/16

= Verify Midterm Scoring
= Assignment 1: Key/Value Store
= Java Maven project template files posted
= Chapter 3: Processes
= Chapter 3.4: Servers
= Chapter 3.5: Resource (Code) Migration (light-review)
= Chapter 4: Communication
= Chapter 4.1: Foundations

= Chapter 4.2: RPC (lIght-review) |

= Chapter 4.3: Message Oriented Communication

11273

February 18, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y - Tacoma

Call P(X, Y, Z) cjient
e O

Return (P)

CH. 4.2: RPC (LIGHT-

REVIEW)

RPC - REMOTE PROCEDURE CALL

= In a nutshell,
= Allow programs to call procedures on other machines

= Process on machine A calls procedure on machine B

= Calling process on machline A is suspended

= Execution of the called procedure takes place on machine B
= Data transported from caller (A) to provider (B) and back (A).

= No message passing is visible to the programmer

= Distributlon transparency: make remote procedure call look
like a local one

" newlist = append(data, dbList)

RPC - 2

= Transparency enabled with client and server “stubs”

= Client has “stub” implementation of the server-side function
= Interface exactly same as server side

= But client DOES NOT HAVE THE IMPLEMENTATION

= Client stub: packs parameters into message, sends request to
server. Call blocks and waits for reply

Wait for result

Client

= Server stub: transforms incoming

request into local procedure call g g
= Blocks to wait for reply
Request Reply
= Server stub unpacks request, [S S
calls server procedure Ooll localprocecure’ Tifel—

= It’s as if the routine were called locally

L1275

February 18, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y Tacoma

TCS5558: Applied Distributed Computing [Winter 2021] 1276

School of Technology, University of Tacoma

February 18, 2021

RPC - 3

= Server packs procedure results and sends back to client.
= Client “request” call unblocks and data is unpacked

= Client can’t tell method was called remotely over the
network... except for network latency...

= Call abstraction enables clients to invoke functions in
alternate languages, on different machines

= Differences are handled by the RPC “framework”

RPC STEPS

. Client procedure calls client stub

. Client stub builds message and calls 0S

. Client’s OS send message to remote 0S

. Server OS gives message to server stub

. Server stub unpacks parameters, calls server

. Server performs work, returns results to server-side stub
. Server stub packs results in messages, calls server 0S

. Server OS sends message to client’s 0S

© 00 N O O s WN PR

. Client’s OS delivers message to client stub
10.Client stub unpacks result, returns to client

11277

February 18, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y Tacoma

TCS5558: Applied Distributed Computing [Winter 2021]

School of Technology, University of Tacoma s

February 18, 2021

Slides by Wes J. Lloyd

L12.13

TCSS 558: Applied Distributed Computing February 18, 2021
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

PARAMETER PASSING RPC: BYTE ORDERING

= STUBS: take parameters, pack into a message, send across = Big-Endian: write bytes left to right (ARM)

network
= Little-endian: write bytes right to left (Intel)
= Parameter marshaling:

"newlist = append(data, dbList) = Networks: typically transfer data in Big-Endian form

- TW° parameters must be sent over network and correctly = Solution: transform data to machine/network independent
interpreted format

= Message is transferred as a series of bytes = Marshaling/unmarshaling: BiG-ENDIAN Memory

= Data is serialized into a “stream” of bytes transform data to neutral ~Joo]o1]o2]oa]oa]os]0s 07]

= Must understand how to unmarshal (unserialize) data format @ o+l a+2 a+3 o+l a5 a+6 a7

LITTLE-ENDIAN Memory

= Processor architectures vary with how bytes are numbered: ‘ 07 ‘ 06 ‘ 05 ‘ 04 ‘ 03 | 02 ‘ 01 ‘ 00 ‘

Intel (right->left), older ARM (left>right) a arl a+2 a+3 ard a5 a6 a7
TCSS558: Applied Distributed Computing [Winter 2021] TCSS558: Applied Distributed Computing [Winter 2021]

(el 20 AT e v s s o T T T T 27 (e A R e e o R P T = 280

RPC: PASS-BY-REFERENCE RPC: DEVELOPMENT SUPPORT

= Passing by value is straightforward = Let developer specify which routines will be called
= Passing by reference is challenging remotely

= Pointers only make sense on local machine owning the data

= Automate client/server side stub generation for these
= Memory space of client and server are different

routines

= Solutions to RPC pass-by-reference: i .
1. Forbid pointers altogether = Embed remote procedure call mechanism into the
2. Replace pass-by-reference with pass-by-value programming language

= Requires transferring entire object/array data over network =E.g.Java RMI

= Read-only optimlzatlon: don’t return data if unchanged on server
3. Passing global references

= Example: file handle to file accessible by client and server

via shared file system
TCSS558: Applied Distributed C iting [Winter 2021] TCSS558: Applied Distributed C iting [Winter 2021]
(T, 2 School of Er‘::ir'\eeeri:graln: ?ech::\:;y:r:i\ive"r‘si:; of Washington - Tacoma e February 18, 2021 School of E:Eirl-eeeri:\sg:n: fech::‘lzgviﬁniv;:iz of Washington - Tacoma e

STUB GENERATION STUB GENERATION - 2

words >

®"void func(char x; float y; int z[5]) = Interfaces are specified using an Interface Definition
= 1-byte character transmits with 3-padded bytes Language (IDL)
= Float sent as whole word (4-bytes)
= Array as group of words, proceed by word describing u Inter.fa.ce specifications in IDL are used to generate language
length specific stubs

= Client stub must package data in specific format
= Server stub must receive and unpackage in specific format = IDL is compiled into client and server-side stubs

= Client and server must agree on representation of simple
data structures: int, char, floats w/ little endian

= RPC clients/servers: must agree on protocol
=TCP? UDP?

® Much of the plumbing for RPC involves maintaining
boilerplate-code

TCSS558: Applied Distributed Computing [Winter 2021] e
School of Engineering and Technology, University of Washington - Tacoma

February 18, 2021 112.84

TCSS558: Applied Distributed Computing [Winter 2021]
(e, Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

Slides by Wes J. Lloyd L12.14

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

= Leads to simpler application development

= Helps with providing access transparency

accessed

- just 1 language

= Well known example: Java Remote Method In
RPC equivalent embedded in Java

LANGUAGE BASED SUPPORT

= Differences in data representation, and how object is

= Inter-language parameter passing issues resolved:

vocatlon

February 18, 2021 TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma

RPC VARIATIONS - 2

= What are tradeoffs for synchronous vs. asyn
procedure calls?
= For a local program
= For a distributed program (system)

= Use cases for asynchronous procedure calls

in background (in parallel)
= Client may need to make multiple service c
server backends at the same time...

= Long running jobs allow client to perform alternate work

chronous

alls to multiple

TCS5558: Applied Distributed Computing [Winter 2021]

(el 2 Seoolof Enpineerna and TechnoloayiUniversity of Washington®

L1287

Tacoma

February 18, 2021

RPC VARIATIONS

= RPC: client typically blocks until reply is returned
= Strict blocking unnecessary when there is no result

= Asynchronous RPCs

= When no result, server can immediately send reply

Client/server sy RPC Client/server asy RPC
Client Wait for result Client Wait for acceptance

Retumn Call remote Return

Call remote
procedure from call procedure from call
Request Reply Request Accept request

Server Call local procedure ~ Time —»
and return results

Server Call local procedure Time —»|

TCS5558: Applied Distributed Computing [Winter 2021] 2ss

School of Engineering and Technology, University of Washington - Tacoma

February 18, 2021

TYPES OF ASYNCHRONOUS RPC

= Deferred synchronous RPC
= Server performs CALLBACK to client
= Client, upon making call, spawns separate thread which blocks and

waits for call Wait for Callback tg client
Client acceptance
Call remote Return
procedure from call Return
results
Accept
Request request
Time —»

Call local procedure

= One-way RPCs Server
= Client does not walt for any server acknowledgement - it just goes...

= Cllent polling
= Client (using separate thread) continually polls server for result

288

TCSS558: Applied Distributed Computing [Winter 2021]

(e ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

MULTICAST RPC

= Hide that multiple servers are involved
= Consideration:

= Send RPC request simultaneously to group of servers

Does the client need all results or just one?

= Use cases:
= Fault tolerance - wait for just one

. .) erver CallTocal procedure
= Replicate execution - verify) \
results, use first result ,/ \
/ C/al!backs to client
= Divide and conquer - multiple | j\ \/’/
RPC calls work in parallel on (Cat remote '\ /
L procedires | /
different parts of dataset, \ /
client aggregates results Iserver Calllocal procedure_Time —»

February 18, 2021 TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma

RPC EXAMPLE: DISTRIBUTED

COMPUTING ENVIRONMENT (DCE)

= DCE: basis for Microsoft’s distributed computing object model
(DCOM)
= Used in Samba, cross-platform file and print sharing via RPC
= Middleware system - provides layer of abstraction between 0S
and distributed applications
= Designed for Unix, ported to all major operating systems
= [nstall DCE middleware on set of heterogeneous machines -
distributed applications can then access shared resources to:
= Mount a windows file system on Linux
= Share a printer connected to a Windows server
= Uses client/server model
= All communication via RPC
= DCE daemon tracks participating machines, ports

TCS5558: Applied Distributed Computing [Winter 2021] 250

School of Engineering and Technology, University of Washington - Tacoma

February 18, 2021

Slides by Wes J. Lloyd

L12.15

February 18, 2021

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

EXTRA: DCE - CLIENT/SERVER DEVELOPMENT

DCE CLIENT-TO-SERVER BINDING

1. Create Interface definition language (IDL) files

Directory machine
=IDL files contain Globally unique identifier (GUID)
3. Look up server e Z Reglsierservice = GUIDs must match: client and server compare GUIDs to
Servermeching verify proper versions of the distributed object

= 128-bit binary number
2. Next, add names of remote procs and params to IDL

Client machine

5. Do RPC
| SDoRPG]
nt

4. Ask for port

3. Then compile the IDL files

Compiler generates:

= Header file (interface.h in C)

= Server name comes from directory server

= Server port comes from DCE daemon = Client stub
= DCE daemon has a well known port # client already knows S tub
=Server stu
mpuling[_Win(_erZOZ]]) 291 February 18, 2021 ;ﬁ:zﬁ;App}ied I?istribu(edcumpu(ing[_Wint_erZUZl]) P 112,92

Tacoma

TCSS558: Applied Distributed Cor
School of Engineering and Technology, y

February 18, 2021

OBJECTIVES - 2/18

EXTRA: DCE - BINDING CLIENT TO SERVER

= Questions from 2/16

= For a client to call a server, server must be registered
= Java: uses RMI registry = Verify Midterm Scoring
= Client process to search for RMI server: = Assignment 1: Key/Value Store
= Java Maven project template files posted

1. Locate the server’s host machine
2. Locate the server (i.e. process) on the host
= Client must discover the server’s RPC port

= Chapter 3: Processes

= Chapter 3.4: Servers
= Chapter 3.5: Resource (Code) Migration (light-review)

= DCE daemon: maintains table of (server,port) pairs
= Chapter 4: Communication

= When servers boot: Chapter 4.1: F dati
= Chapter 4.1: Foundations
1. Server asks OS for a port, registers port with DCE daemon 2 . .
. . R = Chapter 4.2: RPC (light-review)
2. Also, server registers with directory server, separate server " T
| = Chapter 4.3: Message Oriented Communication |

that tracks DCE servers

L1294

TCS5558: Applied Distributed Computing [Winter 2021]

School of - Tacoma

‘ February 18, 2021

L1203

Tacoma

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineeri Technology, University i

February 18, 2021

MESSAGE ORIENTED COMMUNICATION

Ganneciors

= RPC assumes that the client and server are running
at the same time... (temporally coupled)

Apache ActiveMQ = RPC communication is typically synchronous

CH. 4.3: MESSAGE-
= When client and server are not running at the same time
ORI ENTED = Or when communications should not be blocked...
COMMUNICATION e . -
This is a use case for message-oriented communication

=Synchronous vs. asynchronous
= Messaging systems
= Message-queueing systems

L1296

TCS5558: Applied Distributed Computing [Winter 2021]

(e, Schoolof echnoloayUniversityof Tacoma

Slides by Wes J. Lloyd L12.16

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 18, 2021

SOCKETS

= Communication end point
= Applications can read / write data to
= Analogous to file streams for 1/0, but network streams

Operation Description

socket Create a new communication end point
bind Attach local address to socket (IP / port)
listen Tell 0S what max # of pending connection requests should be
accept Block caller until a connection request arrives
connect Actively attempt to establish a connection
send Send some data over the connection
receive Receive some data over the connection
close Release the connection
February 18, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma

SOCKETS - 2

= Servers execute 15t - 4 operations (socket, bind, listen, accept)
= Methods refer to C API functions
= Mappings across different libraries will vary (e.g. Java)

Operation Description

socket Create a new communication end point
bind Attach local address to socket (IP / port)
listen Tell 0S what max # of di tion should be
accept Block caller until a connection request arrives
connect Actively attempt to establish a connection
send Send some data over the connection
receive Receive some data over the connection
close Release the connection
February 18, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma 1298 ‘

SERVER SOCKET OPERATIONS

= Socket: creates new communication end point

: associated IP and port with end point

= LIsten: for connection-oriented communication, non-blocking
call reserves buffers for specified number of pending
connection requests server is willing to accept

= Accept: blocks until connection request arrives
= Upon arrival, new socket is created matching original
= Server spawns thread, or forks process to service incoming request
= Server continues to wait for new connections on original socket

February 18, 2021 TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma ‘ %9 ‘

CLIENT SOCKET OPERATIONS

= Socket: Creates socket client uses for communication

= Connect: Server transport-level address provided, client blocks
until connection established

= Send: Supports sending data (to: server/client)
= Receive: Supports receiving data (from: server/client)
= Close: Closes communication channel

= Analogous to closing a file stream

Server
socket -3 bind [listen |- »[accept receive send close
4 \
Synchronization point —— / Communication

/ \

! h |
[socket . »[connect} »[send ——»{receive | »[close

I

Client
February 18, 2021 TCS5558: Applied Distributed Computing [Winter 2021] 2100

School of Engineering and Technology, University of Washington - Tacoma

SOCKET COMMUNICATION

= Sockets provide primitives for implementing your own
TCP/UDP communication protocols

= Directly using sockets for transient (non-persisted)
messaging is very basic, can be brittle
= Easy to make mistakes...

= Any extra communication facilities must be implemented
by the application developer

= More advanced approaches are desirable

= E.g. frameworks with support common desirable
functionality

February 18, 2021 TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma Lzion

ZEROMQ - SOCKET LIBRARY

= (0MQ) High performance intelligent socket library
= zero broker, zero latency, zero admin, zero cost, zero waste
= Provides a message queue

= Builds upon functionality of traditional sockets QMQ

= Implementation in C++

= 30+ language bindings provided
= Enables support for various messaging patterns
= Can support brokered (centralized) and broker-less topologies

TCS$558: Applied Distributed Computing [Winter 2021]

(e, Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

L2102

Slides by Wes J. Lloyd

L12.17

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

February 18, 2021

= ZeroMQ is TCP-connectlon-orlented communication

= Provides socket-like primitives with more functionality
= Basic socket operations abstracted away

= Supports many-to-one, one-to-one, and one-to-many
connections

= Multicast connections (one-to-many - single server socket
simultaneously “connects” to multiple clients)

= Asynchronous messaging

= Supports pairing sockets to support communication
patterns

ZEROMQ - PATTERNS

= Request-reply pattern
= Traditional client-server communication (e.g. RPC) [rea]

= Client: request socket (REQ) “Hellof *World"
= Server: reply socket (REP)

= Publish-subscribe pattern
= Clients subscribe to messages published by servers
= As in event-based coordination (Ch. 1)
= Supports multicasting messages from
server to multiple
= Client: subscribe socket (SUB)

= Server: publish socket (PUB)) .
[T T T B |

Subscriber

TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma L2103

February 18, 2021

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma 08

February 18, 2021

ZEROMQ - PATTERNS - 2

= Pipeline pattern (FIFO-queue)
= Analogous to a producer/consumer bounded buffer
= Producing processes generate results, push to pipe
= Consuming processes consume results,
pull from pipe
= Producers: push socket (PUSH socket)
= Consumers: pull socket (PULL socket)

= Push- distributes messages to all pull
clients evenly

= Consumers pull results from pipe and
push results downstream

QUEUEING ALTERNATIVES

ECloud services
=Amazon Simple Queueing Service (SQS)
=Azure service bus

= QOpen source frameworks
=Nanomsg
=ZeroMQ

TC55558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

February 18, 2021 112,105

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma 112108

February 18, 2021

MESSAGE PASSING INTERFACE (MPI)

= MPI introduced - version 1.0 March 1994
= Message passing API for parallel programming: supercomputers

= Communication protocol for parallel programming for:
Supercomputers, High Performance Computing (HPC) clusters

= Point-to-point and collective communication
= Goals: high performance, scalability, portability

= Most implementations
in C, C++, Fortran

network |

MOTIVATIONS FOR MPI

= Motivation: sockets insufficient for interprocess
communication on large scale HPC compute clusters and
super computers

=Sockets at the wrong level of abstraction
= Sockets designed to communicate over the network using

general purpose TCP/IP stacks | mER
= Not designed for proprietary protocols

= Not designed for high-speed interconnection
networks used by supercomputers,
HPC-clusters, etc.

= Better buffering and synchronization needed

TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma Liz107

February 18, 2021

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma 12108

February 18, 2021

Slides by Wes J. Lloyd

L12.18

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

February 18, 2021

MOTIVATIONS FOR MPI - 2

MPI FUNCTIONS / DATATYPES

= Supercomputers had proprietary communication libraries
= Offer a wealth of efficient communication operations

= All libraries mutually incompatible

= Led to significant portability problems developing parallel
code that could migrate across supercomputers

= Led to development of MPI

= To support transient (non-persistent) communication for
parallel programming

TCS5558: Applied Distributed Computing [Winter 2021]

(el 20 AT e v s s o T T T T

L12.109

= Very large library, v1.0 (1994) 128 functions

e o e e
ek e i AT e
= Version 3 (2015) 440+ wr oo o s, 11T Ter e Ak vt s oeTech
Lo LoRBNGT wiow cms eow oo
o o oar et Cow_ oL o e e
= MPI data types: e e
= Provide common mappings WP ERRADLER SET 1PT_ERROR_CLASS VP1_ERROR_STRTIG wer_FrnaLTzE
e o e LGOS 1P AT CONT 61 e COE
S Gt e A e SLSnESm e s o o
X signed char ek o e e e
MPI_SHORT migned short int WPT_GROUP_STZE WPT_GROUP_TRANSLATE RANKS MPT_GROUP_UNTON WPT_TBSEND
et i adtice i T L GaTe i e
MPILLONG signed long int 1 1S58 WP KEVVAL CREATE T KEVVAL FREE WP 07 cREATE
MPIUNSIGNED CHAR | unsigned char MPL_OP_FREE MPL_PACK. MPT_PACK SIZE WPL_PCONTROL.
MELUAGEENED SHORT' |eas gt by o T moewe e EE
MPLUNSIGNED unsigned int WL scav z WL SCATTERY 11
MPIUNSIGNED LONG | unsigned long int WL SENDRECY MPL_SENORECY REPLACE MPI_SEND_INIT WL ssE
MPLFLOAT bryind i N
e o, L oL e s oL Tes e
A e O EEe Bl Tioee Bl
MPIBYTE MPL_TYPE L8 WPL_TYPE_SIZE MPT_TYPE_STRUCT WPL_TYPE U8
MELPACKED Wi e i e
TCSS558: Applied Distributed Computing [Winter 2021]
wan
(RS School of Engineering and Technology, University of Washington - Tacoma

COMMON MPI FUNCTIONS

MESSAGE-ORIENTED-MIDDLEWARE

= MPI - no recovery for process crashes, network partitions
= Communication among grouped processes: (groupID, processID)
= |Ds used to route messages in place of IP addresses

Description

MPI_bsend Append outgoing message to a local send buffer
MPI_send Send message, wait until copied to local/remote buffer
MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue
MPI_issend Pass reference to outgoing messages, wait until receipt start
MPI_recv Receive a message, block if there is none
MPI_irecv Check for incoming message, do not block!
TCSS558: Applied Distributed Computing [Winter 2021]
(el 2 e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms 211t ‘

= Message-queuelng systems
= Provide extensive support for persistent asynchronous
communication

= In contrast to transient systems

=Temporally decoupled: messages are eventually delivered
to recipient queues

= Message transfers may take minutes vs. sec or ms

= Each application has its own private queue to which other
applications can send messages

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma L

February 18, 2021

MESSAGE QUEUEING SYSTEMS:

USE CASES

MESSAGE QUEUEING SYSTEMS

= Enables communication between applications, or sets of
processes

= User applications
= App-to-database
= To support distributed real-time computations

= Use cases

= Batch processing, Email, workflow, groupware, routing
subqueries

TCS5558: Applied Distributed Computing [Winter 2021]

2028 Seoolof Ensineera endTechnolomyilniversity/hiNes hington S Tecoms

L2113

. Sender Sender Sander Sender
= Scenarios: running running passive passive
(a) Sender/receiver D D I i [i
f ! ! | i
both running ENDS Lo L

(b) Sender running, ¢ ¢

receiver offline u

(c) Sender offline, ;

receiver running s 1 s f
i i | !
. | ' i j
(d) Sender/receiver @ADS [[
both offline Receiver Receiver Receiver Receive
running passive running passive

= Queue persists msgs,
and attempts to send
them but no one may be available to receive them...

(@) (b) (© (d)

TCS$558: Applied Distributed Computing [Winter 2021]

(e, Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

u2118

Slides by Wes J. Lloyd

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

MESSAGE QUEUEING SYSTEMS - 2

= Key: Truly persistent messaging

= Message queueing systems can persist messages for awhile
and senders and receivers can be offline

= Messages
= Contain any data, may have size limit
= Are properly addressed, to a destination queue

= Basic Inteface

= PUT: called by sender to append msg to specified queue

= GET: blocking call to remove oldest msg from specified queue
= Blocked if queue is empty

= POLL: Non-blocking, gets msg from specified queue

February 18, 2021

TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma Ltz

February 18, 2021

MESSAGE QUEUEING SYSTEMS
ARCHITECTURE

= Baslc Interface cont’d

= NOTIFY: install a callback function, for when msg is placed
into a queue. Notifies receivers

= Queue managers: manage individual message queues as a
separate process/library

= Applications get/put messages only from local queues
= Queue manager and apps share local network
= |ISSUES:
= How should we reference the destination queue?
= How should names be resolved (looked-up)?
= Contact address (host, port) pairs
= Local look-up tables can be stored at each queue manager

TCSS558: Applied Distributed Computing [Winter 2021]

(e A R e e o R P T =

L2116

MESSAGE QUEUEING SYSTEMS

ARCHITECTURE - 2

= |SSUES:

= How do we route traffic between queue managers?
= How are name-to-address mappings efficiently kept?
= Each queue manager should be known to all others

= Message brokers
= Handle message conversion among different users/formats
= Addresses cases when senders and receivers don’t speak the
same protocol (language)
= Need arises for message protocol converters
= “‘Reformatter” of messages
= Act as application-level gateway

TCS5558: Applied Distributed Computing [Winter 2021]

(el 2 e oolol Enpinear s erd Technoloayilnve sy e hinetonETecoms

L2117

MESSAGE BROKER ORGANIZATION

Source Message broker Desfination

Application ppli

Broker plugins _ Rules
’_:ﬁ é Queung | ¥
N aver [|5
i Local 0S|\ Local OS

| —— I N

i

e]

Local OS

Plugins to convert \
messages between APPs Application-level
Queues

TCSS558: Applied Distributed Computing [Winter 2021]

(e ISehoal of Engineerng snd Technoloay Unrversity of Washinaton S Tacoma

L2118

AMQP PROTOCOL

= Message-queueing systems initially developed to enable
legacy applications to interoperate

= Decouple inter-application communication to “open”
messaging-middleware

= Many are proprietary solutions, so not very open
= e.g. Microsoft Message Queueing service, Windows NT 1997

= Advanced message queuelng protocol (AMQP), 2006

= Address openness/interoperability of proprietary solutions

= Open wire protocol for messaging with powerful routing
capabilities

= Help abstract messaging and application interoperability by
means of a generic open protocol

= Suffer from incompatibility among protocol versions

= pre-1.0, 1.0+

TCS5558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma Ltz

February 18, 2021

= Consists of: Applications, Queue managers, Queues

= Connections: set up to a queue manager, TCP, with
potentially many channels, stable, reused by many
channels, long-lived

= Channels: support short-lived one-way communication

= Sesslons: bi-directional communication across two
channels

= Link: provide fine-grained flow-control of message
transfer/status between applications and queue manager

TCS$558: Applied Distributed Computing [Winter 2021]

(e, Sehoal of Engineerng and Technoloay Unrversity of Washinaton S Tacoma

u2120

Slides by Wes J. Lloyd

L12.20

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

AMQP MESSAGING

= AMQP nodes: producer, consumer, queue
= Producer/consumer: represent regular applications
= Queues: store/forward messages

= Persistent messaging:
= Messages can be marked durable

recover in case of failure

= Source/target nodes can be marked durable
= Track what is durable (node state, node+msgs)

= These messages can only be delivered by nodes able to

= Non-failure resistant nodes must reject durable messages

February 18, 2021

February 18, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of

chnology, y Tacoma

L2121

MESSAGE-ORIENTED-MIDDLEWARE

EXAMPLES:

= Some examples:
= RabbitMQ, Apache QPid
= Implement Advanced Message Queueing Protocol (AMQP)

= Apache Kafka
= Dumb broker (message store), similar to a distributed log file
= Smart consumers - intelligence pushed off to the clients
= Stores stream of records in categories called topics
= Supports voluminous data, many consumers, with minimal O/H
= Kafka does not track which messages were read by each consumer
= Messages are removed after timeout
= Clients must track their own consumption (Kafka doesn’t help)
= Messages have key, value, timestamp
= Supports high volume pub/sub messaging and streams

TCS5558: Applied Distributed Computing [Winter 2021]

February 18, 2021 School of Technology, Tacoma

u212

QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington -

February 18, 2021

Slides by Wes J. Lloyd

L12.21

