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TCSS 558: 
APPLIED DISTRIBUTED COMPUTING

 Questions from 2/9

 Midterm Review

 Assignment 0: Load Balancing & Performance

 Assignment 1: Key/Value Store
 Java Maven project template files posted

 Chapter 3: Processes
 Chapter 3.4: Servers

 Chapter 3.5: Resource (Code) Migration (light-review)

 Chapter 4: Communication
 Chapter 4.1: Foundations

 Chapter 4.2: RPC

 Chapter 4.3: Message Oriented Communication
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OBJECTIVES – 2/16

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 10p

 Thursday surveys: due ~ Mon @ 10p
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ONLINE DAILY FEEDBACK SURVEY

February 16, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma L11.4

 Please classify your perspective on material covered in today’s 
class (22 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.32  ( - previous 6.10)  

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.41  ( - previous 5.71)
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MATERIAL / PACE

 How can you ef ficiently transfer a very large amount of data 
(TB or PB) from server to server? Do distributed systems play 
a role?
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FEEDBACK FROM 2/9
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 Best case to transfer 240TB is ~32 days
@ 1 Gbps & 75% utilization
 Can’t dedicate entire company Internet to data transfer

 To address large scale data transfer issue,
AWS offers rental hardware & shipping solution

 AWS snowball
 Each device transfers 50 TB
 Rental cost is $300 per device for 10 days
 Round trip shipping time is ~1 week
 5 devices will transfer 250TB ($1500)

 See:
 http://blog.zorangagic .com/2016/09/aws-snowball.html

 https://aws.amazon.com/snowball
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FEEDBACK - 2

 Questions from 2/9

 Midterm Review

 Assignment 0: Load Balancing & Performance

 Assignment 1: Key/Value Store
 Java Maven project template files posted

 Chapter 3: Processes
 Chapter 3.4: Servers

 Chapter 3.5: Resource (Code) Migration (light-review)

 Chapter 4: Communication
 Chapter 4.1: Foundations

 Chapter 4.2: RPC

 Chapter 4.3: Message Oriented Communication
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OBJECTIVES – 2/16

 Extension to Sunday February 21st

 Discussion Board created on Canvas
 Answers to common questions posted online

 Team signup posted on Canvas under ‘People’

 TCP/UDP/RMI Key Value Store

 Implement a “GenericNode” project which assumes the role of 
a client or server for a Key/Value Store

 Recommended in Java (11 or 8)

 Client node program interacts with server node to put, get, 
delete, or list items in a key/value store
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ASSIGNMENT 1

 Questions from 2/9

 Midterm Review

 Assignment 0: Load Balancing & Performance

 Assignment 1: Key/Value Store
 Java Maven project template files posted

 Chapter 3: Processes
 Chapter 3.4: Servers

 Chapter 3.5: Resource (Code) Migration (light-review)

 Chapter 4: Communication
 Chapter 4.1: Foundations

 Chapter 4.2: RPC

 Chapter 4.3: Message Oriented Communication
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OBJECTIVES – 2/16
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CH. 3.4: SERVERS

L11.14

 Cloud & Distributed Systems – rely on Linux

 http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

 IT is moving to the cloud. And, what powers the cloud? 

Linux
 Uptime Institute survey - 1,000 IT executives (2016)
 50% of IT executives – plan to migrate majority of IT workloads to 

off-premise to cloud or colocation sites

 23% expect the shift in 2017, 70% by 2020…

 Docker on Windows / Mac OS X

 Based on Linux
 Mac: Hyperkit Linux VM

 Windows: Hyper-V Linux VM
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SERVERS

 Servers implement a specific service for a collection of clients

 Servers wait for incoming requests, and respond accordingly

 Server types

 Iterative: immediately handle client requests

 Concurrent: Pass client request to separate thread

 Multithreaded servers are concurrent servers
 E.g. Apache Tomcat

 Alternative : fork a new process for each incoming request

 Hybrid : mix the use of multiple processes with thread pools
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SERVERS - 2

 Clients connect to servers via:
IP Address and Port Number

 How do ports get assigned?

Many protocols support “default” port numbers

 Client must find IP address(es) of servers

 A single server often hosts multiple end points 
(servers/services)

When designing new TCP client/servers must be careful 
not to repurpose ports already commonly used by others
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END POINTS
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Daemon server
 Example: NTP server

Superserver

Stateless server
 Example: Apache server

Stateful server

Object servers

EJB servers
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TYPES OF SERVERS
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 Daemon servers 

 Run locally on Linux

 Track current server end points (outside servers)

 Example: network time protocol (ntp) daemon
 Listen locally on specific port (ntp is 123)

 Daemons routes local client traffic to the configured 
endpoint servers

 University of Washington: time.u.washington.edu
 Example “ntpq –p”

 Queries local ntp daemon, routes traffic to configured server(s)
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NTP EXAMPLE

 Linux inetd / xinetd
 Single superserver
 Extended internet service daemon
 Not installed by default on Ubuntu
 Intended for use on server machines
 Used to configure box as a server for multiple internet services
 E.g. f tp, pop, telnet

 inetd daemon responds to multiple endpoints for multiple 
services

 Requests fork a process to run required executable program

 Check what ports you’re listening on:
 sudo netstat -tap | grep LISTEN
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SUPERSERVER

 Server design issue:
 Active client/server communication is taking place over a port

 How can the server / data transfer protocol support interruption?

 Consider transferring a 1 GB image, how do you pass a 
unrelated message in this stream?

1. Out-of-band data:  special messages sent in-stream to support 
interrupting the server  (TCP urgent data)

2. Use a separate connection (different port) for admin control info

 Example: sftp secure file transfer protocol
 Once a file transfer is started, can’t be stopped easily

 Must kill the client and/or server
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INTERRUPTING A SERVER

 Data about state of clients is not stored

 Example: web application servers are typically stateless
 Also function-as-a-service (FaaS) platforms

 Many servers maintain information on clients (e.g. log files)

 Loss of stateless data doesn’t disrupt server availability
 Loosing log files typically has minimal consequences

 Soft s tate: server maintains state on the client for a limited 
time (to support sessions)

 Soft state information expires and is deleted
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STATELESS SERVERS

 Maintain persistent information about clients

 Information must be explicitly deleted by the server

 Example: 
File server - allows clients to keep local file copies for RW

 Server tracks client file permissions and most recent versions
 Table of (client, file) entries

 If server crashes data must be recovered

 Entire state before a crash must be restored

 Fault tolerance - Ch. 8
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STATEFUL SERVERS

 Session state
 Tracks series of operations by a single user

 Maintained temporarily, not indefinitely

 Often retained for multi-tier client server applications

 Minimal consequence if session state is lost

 Clients must start over, reinitialize sessions

 Permanent state
 Customer information, software keys

 Client-side cookies
 When servers don’t maintain client state, clients can store state 

locally in “cookies”

 Cookies are not executable, simply client-side data
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STATEFUL SERVERS - 2
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 OBJECTIVE: Host objects and enable remote client access
 Do not provide a specific service 

 Do nothing if there are no objects to host
 Support adding/removing hosted objects 
 Provide a home where objects live
 Objects, themselves ,  provide “services”

 Object parts
 State data
 Code (methods, etc.)

 Transient object(s)
 Objects with limited lifetime (< server)
 Created at first invocation, destroyed when no longer used

(i.e. no clients remain “bound”).
 Disadvantage: initialization may be expensive
 Alternative: preinitialize and retain objects on server start-up
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OBJECT SERVERS

 Should object servers isolate memory for object instances?
 Share neither code nor data
 May be necessary if objects couple data and implementation

 Object server threading designs:
 Single thread of control for object server
 One thread for each object
 Servers use separate thread for client requests

 Threads created on demand    vs.
Server maintains pool of threads

 What are the t radeoffs for  creating server threads on  demand vs.  
using a thread pool?
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OBJECT SERVERS - 2

 EJB- specialized Java object hosted by a EJB web container
 4 types: stateless, stateful, entity,  and message-driven beans
 Provides “middleware” standard (framework) for implementing 

back-ends of enterprise applications
 EJB web application containers integrate support for:

 Transaction processing
 Persistence
 Concurrency
 Event-driven programming
 Asynchronous method invocation
 Job scheduling
 Naming and discovery services (JNDI)
 Interprocess communication
 Security 
 Software component deployment to an application server
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EJB – ENTERPRISE JAVA BEANS

 Highly configurable, extensible, platform independent

 Supports TCP HTTP protocol communication

 Uses hooks – placeholders for group of functions

 Requests processed in phases by hooks

 Many hooks:
 Translate a URL

 Write info to log

 Check client ID

 Check access rights

 Hooks processed in order
enforcing flow-of-control

 Functions in replaceable
modules
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APACHE WEB SERVER

Hooks point to functions in modules

 Hosted across an LAN or WAN

 Collection of interconnected machines 

 Can be organized in tiers:
 Web server  app server  DB server

 App and DB server sometimes integrated
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SERVER CLUSTERS

 Front end of three tier architecture (logical switch) provides 
distribution transparency – hides multiple servers

 Transport-layer switches: switch accepts TCP connection 
requests, hands off to a server
 Example: hardware load balancer (F5 networks – Seattle)

 HW Load balancer - OSI layers 4-7

 Network-address-translation (NAT) approach:
 All requests pass through switch

 Switch sits in the middle of the client/server TCP connection

 Maps (rewrites) source and destination addresses

 Connection hand-off approach:
 TCP Handoff: switch hands of connection to a selected server
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LAN REQUEST DISPATCHING
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 Who is the best server to handle the request?

 Switch plays important role in 
distributing requests

 Implements load balancing

 Round-robin – routes client 
requests to servers in a looping
fashion

 Transport-level – route client 
requests based on TCP port number

 Content-aware request distribution – route requests based on 
inspecting data payload and determining which server node 
should process the request
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LAN REQUEST DISPATCHING - 2

 Deployed across the internet 

 Leverage resource/infrastructure from Internet Service 
Providers (ISPs)

 Cloud computing simplifies building WAN clusters

 Resource from a single cloud provider can be combined to 
form a cluster

 For deploying a cloud-based cluster (WAN), what are the 
implications of deploying nodes to :

 (1) a single availability zone (e.g. us-east-1e)?

 (2) across multiple availability zones?
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WIDE AREA CLUSTERS

 Goal: minimize network latency using WANs (e.g. Internet)

 Send requests to nearby servers

 Request dispatcher: routes requests to nearby server

 Example: Domain Name System
 Hierarchical decentralized naming system

 Linux: find your DNS servers:

# Find you device name of interest

nmcli dev

# Show device configuration

nmcli device show <device name>
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WAN REQUEST DISPATCHING

 First query local server(s) for address

 Typically there are (2) local DNS servers
 One is backup

 Hostname may be cached at local DNS server
 E.g. www.google.com

 If not found, local DNS server routes to other servers

 Routing based on components of the hostname

 DNS servers down the chain mask the client IP, and use the 
originating DNS server IP to identify a local host

 Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not 
necessarily close to the client
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DNS LOOKUP
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 nslookup <ip addr / hostname>

 Name server lookup – translates hostname or IP to the inverse

 traceroute <ip addr / hostname>

 Traces network path to destination

 By default, output is limited to 30 hops, can be increased
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DNS: LINUX COMMANDS
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 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server 

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts,  27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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DNS EXAMPLE – WAN DISPATCHING

 Ping www.google.com in WA from wireless network:
 nslookup: 6 alternate addresses returned, choose (74.125.28.147)

 Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)

 Ping www.google.com in VA (us-east-1) from EC2 instance:
 nslookup: 1 address returned, choose 172.217.9.196

 Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

 From VA EC2 instance, ping WA www.google server 

 Ping 74.125.28.147: Average RTT 62.349ms (11 attempts,  27 hops)

 Pinging the WA-local server is ~60x slower from VA

 From local wireless network, ping VA us-east-1 google :

 Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)
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DNS EXAMPLE – WAN DISPATCHING

Latency to ping VA server in WA: ~3.63x
WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x
VA client: local-google 1.278ms to WA-google 62.349!

 Unstructured heterogeneous cluster of servers

 Similar to grid but organized as cluster (no grid middleware)

 Testbed established in 2002 for computer networking and 
distributed systems research

 Organizations share 
nodes in the cluster
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CH 3.2 - EXAMPLE: PLANETLAB

Leverages Linux Vservers
Early “containers” 
similar to Docker

 Slices: set of Vservers running across
PlanetLab

 Acts as a virtual server cluster 
(similar to Amazon VPC)

 Node manager: manages Vservers running on a host

 Slice creation service (SCS): To create vir tual server clusters

 Clients must be s l ice authorities to create cluster

 Rspec: resource specification
 Specifies resource requirements for a slice 

 Rcap: resource capability
 Specifies resource capabilities of nodes
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PLANETLAB - 2

 Early container based approach

 Vservers share a single operating system kernel

 Primary task is to support a group of processes

 Provides separation of name spaces

 Linux kernel maps process IDs: host OS  Vservers

 Each Vserver has its own set of libraries and file system

 Similar name separation as the “chroot” command

 Additional isolation provided to prevent unauthorized 
access among Vservers directory trees
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VSERVERS

 Advantages of  Vservers (containers) vs . VMs:

 Simpler resource allocation

 Possible to overbook resources by leveraging dynamic 
resource allocation - Example: CPU or  RAM (assignment 0, config 2)

 VMs reserve a block of memory

 Containers can oversubscribe memory
 Memory not formally reserved 

 Linux kernel shares memory among processes 

 Swap filesystem can use disk as extended RAM

 Memory sharing important for PlanetLab
 Early nodes had limited memory (e.g. 4 GB)

 Vserver hogging most memory reset when out of swap space
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VSERVERS - 2
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WE WILL RETURN AT 
2:44PM

 Questions from 2/9

 Midterm Review

 Assignment 0: Load Balancing & Performance

 Assignment 1: Key/Value Store
 Java Maven project template files posted

 Chapter 3: Processes
 Chapter 3.4: Servers

 Chapter 3.5: Resource (Code) Migration ( light-review)

 Chapter 4: Communication
 Chapter 4.1: Foundations

 Chapter 4.2: RPC

 Chapter 4.3: Message Oriented Communication
February 16, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington  - Tacoma
L11.45

OBJECTIVES – 2/16

CH. 3.5: RESOURCE
(CODE) MIGRATION

L11.46

 To support on-the-fly reorganization of distributed 
systems, at times there is interest in resource 
migration

Can consider various types of resource migration

Code migration: source code, libraries

Process migration: a running job/task

VM migration: an entire virtual server!
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RESOURCE MIGRATION

 Distributed systems can support more than passing data

 Some situations call for passing programs (e.g. code)

 Live migration – moving code while it is executing

 Portability – transferring code (running or not) across 
heterogeneous systems:

Mac OS X  Windows 10  Linux

 Code migration enables f lex ibili ty of distributed systems
 Topologies can be dynamically reconfigured on-the-fly
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TYPES OF CODE MIGRATION

Move an entire process from one node to another

Motivation is always to address performance

Process migration is slow, costly, and intricate
Need to pause, save intermediate state, move, resume

Consider application specific vs. agnostic approaches

What would be:
an application agnostic approach to migration? 
an application specific approach?

What are advantages and disadvantages of each?
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PROCESS MIGRATION
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 Move processes:  
from heavily loaded  lightly loaded nodes

 When do we consider a node as heavily loaded?
 Load average
 CPU utilization
 CPU queue length

 Which process(es) should be moved?
Must consider resource requirements for the task

 Where should process(es) be moved to?
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PROCESS MIGRATION - 2

 Can migrate processes or entire virtual machines

 Goals:

o Off-loading machines: reduce load on oversubscribed servers

o Loading machine: ensure machine has enough work to do

o Minimize total hosts/servers in use to save energy/cost

 VM migration:

 Migrate complete VMs with apps to lightly loaded hosts

 Generally, VM migration is easier than process migration

 Is VM migration application specific or agnostic?
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MOTIVATIONS FOR MIGRATION

 Linux (CRIU) Checkpoint restore in userspace

 Linux tool: https://www.criu.org/

 Supports freezing a running application (or part of it) to create 
a checkpoint to persistent storage (e.g. disk) as a collection of 
files.
 This means saving the state of RAM to disk

 Can use checkpoint files to restore and run the application 
from the point it was frozen at. 

 Distinctive feature of CRIU is that it can be run in the user 
space (CPU user mode), rather than in kernel mode.

 CRIU can save a Docker container’s state for migration 
elsewhere
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LINUX CRIU

 Make decisions concerning allocation and 
redistribution of tasks across machines

 Provide resource management for compute intensive 
systems

 Often CPU centric
 Algorithms should also account for other resources

 Network capacity may be larger bottleneck that CPU 
capacity
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LOAD DISTRIBUTION ALGORITHMS

 Decisions to migrate code often based on qualitative 
reasoning or adhoc decisions vs. formal mathematical models
 Difficult to formalize solutions due to heterogeneous composition 

and state of systems and networks

 Is  it  better to  migrate code or  data?

 What factors should be considered?

 Cost of data transfer

 Processing power of nodes

 Cost of processing 

 Are there security 
requirements for the data?

WHEN TO MIGRATE?
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 Size of code
 Size of data
 Available network transfer 

speed

 Traditional clients

 Client interacts with server using specific protocol

 Tight coupling of client->server limits system flexibility

 Difficult to change protocol when there are many clients

 Dynamic web clients
Web browser downloads client code immediately before use

 New versions can readily be distributed
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APPROACHES TO CODE MIGRATION
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 Advantages

 Client code loaded in as necessary

 Discarded when no longer needed

 Can easily change the client/server protocol

 Disadvantages

 Security: we have to trust the code

 Downloading client requires 
network bandwidth & time
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DYNAMIC WEB CLIENTS

 Sender-initiated: (upload the code)… e.g. Github

 Receiver-initiated: (download the code)… e.g. web browser

 Remote cloning

 Produce a copy of the process on another machine 
while parent runs
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CODE MIGRATION

 What is migrated?

 Code segment

 Resource segment (device info)

 Execution segment (process info: data, state, stack, PC)

 Weak mobility

 Only code segment, no state

 Code always restarts 

 Strong mobil ity

 Code + execution segment

 Process stopped, state saved, moved, resumed

 Represents true process migration
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CODE MIGRATION - 2

* indicates what is 
modified 

 CS: Client-Server

 REV: Remote Evaluation

 CoD: Code-on-demand

 MA: Mobile agents

 Where does state get
modified?

 State is stored in exec
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CODE MOBILITY TYPES

client obtains & runs code

client provides code for remote exec

everything runs remotely

client moves code and exec to server

 Assumption: code will always work at new node

 Invalid if node architecture is different (heterogeneous)

 What approaches are available to migrate code across 
heterogeneous systems?

 Intermediate code
 1970s Pascal: generate machine-independent intermediate code

 Programs could then run anywhere

 Today: web languages: Javascript, Java

 VM Migration 
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MIGRATION OF 
HETEROGENEOUS SYSTEMS

 Four approaches:

1. PRECOPY: Push all memory pages to new machine 
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages, 
start new VM

3. ON DEMAND: Start new VM, copy memory as needed

4. HYBRID: PRECOPY followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of  1-4?
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VIRTUAL MACHINE MIGRATION
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1. PRECOPY: Push all memory pages to new machine 
(slow), resend modified pages later, transfer control

2. STOP-AND-COPY: Stop the VM, migrate memory pages, 
start new VM

3. ON DEMAND: Start new VM, copy memory pages as 
needed

4. HYBRID: PRECOPY and followed by brief STOP-AND-COPY

 What are some advantages and disadvantages of  1-4?
 (+) 1/3: no loss of service
 (+) 4: fast transfer, minimal loss of service
 (+) 2: fastest data transfer
 (+) 3: new VM immediately available

 (-) 1: must track modified pages during full page copy
 (-) 2: longest downtime - unacceptable for live services
 (-) 3: prolonged, slow, migration
 (-) 3: original VM must stay online for quite a while
 (-) 1/3: network load while original VM still in service

 Questions from 2/9

 Midterm Review

 Assignment 0: Load Balancing & Performance

 Assignment 1: Key/Value Store
 Java Maven project template files posted

 Chapter 3: Processes
 Chapter 3.4: Servers

 Chapter 3.5: Resource (Code) Migration (light-review)

 Chapter 4: Communication
 Chapter 4.1: Foundations

 Chapter 4.2: RPC

 Chapter 4.3: Message Oriented Communication
February 16, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington  - Tacoma
L11.63

OBJECTIVES – 2/16

CH. 4 COMMUNICATION 

L11.64

 4.1 Foundations
 Protocols
 Types of communication

 4.2 Remote procedure call
 4.3 Message-oriented communication
 Socket communication
 Messaging libraries
 Message-Passing Interface (MPI)
 Message-queueing systems
 Examples

 4.4 Multicast communication
 Flooding-based multicasting
 Gossip-based data dissemination
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CHAPTER 4

Reviews and builds on
content from Ch. 2/3

CH. 4.1: FOUNDATIONS

L11.66

 Distributed systems lack shared memory

 All distributed system communication 
is based on sending and receiving low-level messages

 P  Q

 Open Systems Interconnection Reference Model 
(OSI Model)

 Open systems communicate with any other open system

 Standards govern format, contents, meaning of messages

 Formalization of rules forms a communication protocol
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LAYERED PROTOCOLS
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 Protocols provide a communication service

 Two service types:

Connection-oriented: sender/receiver establish 
connection, negotiate parameters of the protocol, close 
connection when done

 Physical example: telephone

Connectionless: No setup.  Sender sends. Receiver 
receives.

 Physical example: Mailing a letter
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LAYERED PROTOCOLS - 2

 Physical layer: just sends bits  … 0 0 0 1 0 1 1 0 1 1 …
 Data link layer: Groups bits into frames
 Provides error correction via checksum
 Special bit pattern at start/end of frame
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OSI MODEL REVISITED

 Data link layer:
 Checksum: computed by adding all bytes in frame in particular 

way
 Added to message
 Receiver removes checksum, recomputes checksum, and 

compares
 If receiver and sender agree, frame is considered correct
 Receiver can request failed frames to be resent
 Frames assigned sequence numbers in the header

 Network layer:
 Sometimes referred to as the Internet layer
 On WANs sending msgs between client/server requires routing
 Provides addressing using IPV4 (32-bit), IPV6 (64-bit)
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OSI MODEL - 2

 Network layer:

 Helps with routing network traffic

 Shortest route (# of hops) may not be the best route

Minimizing delay (latency) is paramount

 Routing algorithms: use long-term average network 
conditions, or try to adapt to changing conditions

 ICMP Protocol: Internet Control Message Protocol

 Not typically for sending data, used for diagnostic/control 
purposes

 ICMP Examples: (ping, traceroute)
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OSI MODEL - 3

 Internet Control Message Protocol (ICMP)
 8 bytes header: 4 fixed, 4 variable

 Example message types:

 0- echo reply (PING), 3- destination unreachable, 4- source quench 
(congestion control), 5- redirect message, 8- echo request (PING), 
9- router advertisement

 Others: 10 (router solicitation), 11 (time exceeded), 12 (parameter 
problem), 13 (timestamp), 15 (info request), 16 (info reply), 17 
(address mask request), 18 (address mask reply), 
30-39 (traceroute), 40 (security failures), 42 (ext echo request)…255
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OSI MODEL - 4

 Transport layer:

 Provides reliable connections

 Reorganizes packets arriving out of sequence

 Requests delivery of missing packets

1. Breaks application layer protocol messages into pieces 
to transmit

2. Assigns messages sequence numbers

3. Sends all messages
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OSI MODEL - 5
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 Transport layer provides an infallible “message pipe”

 Put messages in

 Always come out undamaged, in correct order

 Transport layer protocols:

 TCP: Transmission Control Protocol (connection-oriented)

 UDP: Universal Datagram Protocol (connectionless)
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OSI MODEL - 6

 Other transport protocols
 Real-time transport protocol (RTP): real-time data, no data delivery 

guarantee

 Streaming Control Transmission Protocol (SCTP): alternative to TCP

 Higher-level protocols:

 Session layer:  mechanisms for opening, closing, managing session 
between communicating processes

 Presentation layer:  deals with syntactical meaning of messages
 Presentation services convert data among formats, for example:

 from extended binary coded decimal interchange code (EBCDIC) to ASCII

 Application layer:  protocols that don’t fit  into other layers
 Many protocols: FTP, SFTP, HTTP, etc. etc.
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OSI MODEL - 7

 Each OSI layer contributes overhead bits to the message

 Layers append data to front (and maybe end) of the message

 Receiver strips off headers as the message goes up the OSI 
model stack: 

physical  data-link  network  transport  application
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OSI MODEL - 8

 Collection of layers used for communication from OSI model
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PROTOCOL STACK

 Middleware is reused by many applications

 Provide needed functions applications are built and 
depend upon
 For example: communication frameworks/libraries

 Middleware offer many general-purpose protocols

 Middleware protocol examples:

 Authentication protocols: supports granting users and 
processes access to authorized resources

 Doesn’t fit as an “application specific” protocol

 Considered a “Middleware protocol”
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MIDDLEWARE PROTOCOLS

 Distributed commit protocols

 Coordinate a group of processes (nodes)

 Facilitate all nodes carrying out a particular operation

 Or abort transaction

 Provides distributed atomicity (all-or-nothing) operations

 Distributed locking protocols

 Protect a resource from simultaneous access from 
multiple nodes

 Remote procedure call

 One of the oldest middleware protocols
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MIDDLEWARE PROTOCOLS - 2
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 Message queueing services

 Support synchronization of data 
streams

 Transfer real-time data

 Distributed and scalable 
implementation

 Multicast services

 Scale communication to thousands of 
receivers spread across the Internet
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MIDDLEWARE PROTOCOLS - 3

 Message queueing services

 Support synchronization of data 
streams

 Transfer real-time data

 Distributed and scalable 
implementation

 Multicast services

 Scale communication to thousands of 
receivers spread across the Internet
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MIDDLEWARE PROTOCOLS - 3

KEY: middleware protocols offer functionality to satisfy the
software requirements of many applications

Middleware functions are general, application-independent
in nature

Functions are so commonly needed they are offered in
reusable frameworks / libraries
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ADAPTED REFERENCE MODEL

Combines network
and transport 

Physical and
Data link

 Persistent communication
 Message submitted for transmission is stored by communication 

middleware as long as it takes to deliver it

 Example: email system (SMTP)

 Receiver can be offline when message sent

 Temporal decoupling (delayed message delivery)

 Transient communication
 Message stored by middleware only as long as sender/receiver 

applications are running

 If recipient is not active, message is dropped

 Transport level protocols typically are transient (no msg storage)

 What OSI protocol level is  the SMTP Protocol?
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TYPES OF COMMUNICATION

 Asynchronous communication
 Client does not block, continues doing other work

 Synchronous communication
 Client blocks and waits

 Three types of blocking
1. Until middleware notifies it will take over delivering request

2. Sender may block until request has been delivered

3. Sender waits until request is processed and result is returned

 Persistence + synchronization (blocking)
 Common scheme for message-queueing systems

 Block until message delivered to queue

 Consider each type of  blocking (1 ,  2 ,  3) .  Are these modes 
connectionless (UDP)? connection-oriented (TCP)?
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TYPES OF COMMUNICATION - 2

 Questions from 2/9

 Midterm Review

 Assignment 0: Load Balancing & Performance

 Assignment 1: Key/Value Store
 Java Maven project template files posted

 Chapter 3: Processes
 Chapter 3.4: Servers

 Chapter 3.5: Resource (Code) Migration (light-review)

 Chapter 4: Communication
 Chapter 4.1: Foundations

 Chapter 4.2: RPC

 Chapter 4.3: Message Oriented Communication
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CH. 4.2: RPC

L11.86

 In a nutshell,

 Allow programs to call procedures on other machines

 Process on machine A calls procedure on machine B

 Calling process on machine A is suspended

 Execution of the called procedure takes place on machine B

 Data transported from caller (A) to provider (B) and back (A).

 No message passing is visible to the programmer

 Distribution transparency: make remote procedure call look 
like a local one

 newlist = append(data, dbList)
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RPC – REMOTE PROCEDURE CALL

 Transparency enabled with client and server “stubs”

 Client has “stub” implementation of the server-side function

 Interface exactly same as server side

 But client DOES NOT HAVE THE IMPLEMENTATION

 Client stub: packs parameters into message, sends request to 
server. Call blocks and waits for reply

 Server stub: transforms incoming 
request into local procedure call

 Blocks to wait for reply

 Server stub unpacks request , 
calls server procedure

 I t ’s as i f  the routine were called locally
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RPC - 2

 Server packs procedure results and sends back to client.

 Client “request” call unblocks and data is unpacked

 Client can’t tell method was called remotely over the 
network… except for network latency…

 Call abstraction enables clients to invoke functions in 
alternate languages, on different machines

 Differences are handled by the RPC “framework”
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RPC - 3

1. Client procedure calls client stub

2. Client stub builds message and calls OS

3. Client’s OS send message to remote OS

4. Server OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server performs work, returns results to server-side stub

7. Server stub packs results in messages, calls server OS

8. Server OS sends message to client’s OS

9. Client’s OS delivers message to client stub

10.Client stub unpacks result, returns to client

February 16, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L11.90

RPC STEPS

 STUBS: take parameters, pack into a message, send across 
network

 Parameter marshaling:
 newlist = append(data, dbList)

 Two parameters must be sent over network and correctly 
interpreted

 Message is transferred as a series of bytes

 Data is serialized into a “stream” of bytes

 Must understand how to unmarshal (unserialize) data

 Processor architectures vary with how bytes are numbered: 
Intel (right left),  older ARM (leftright)
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PARAMETER PASSING
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 Big-Endian: write bytes left to right (ARM)

 Little-endian: write bytes right to left (Intel)

 Networks: typically transfer data in Big-Endian form

 Solution: transform data to machine/network independent 
format

 Marshaling/unmarshaling: 
transform data to neutral 
format
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RPC: BYTE ORDERING

 Passing by value is straightforward
 Passing by reference is challenging
 Pointers only make sense on local machine owning the data
 Memory space of client and server are different

 Solutions to RPC pass-by-reference:
1. Forbid pointers altogether
2. Replace pass-by-reference with pass-by-value
 Requires transferring entire object/array data over network
 Read-only optimization: don’t return data if unchanged on server

3. Passing global references
 Example: file handle to file accessible by client and server 

via shared file system
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RPC: PASS-BY-REFERENCE

 Let developer specify which routines will be called 
remotely

 Automate client/server side stub generation for these 
routines

 Embed remote procedure call mechanism into the 
programming language

 E.g. Java RMI
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RPC: DEVELOPMENT SUPPORT

void func(char x; float y; int z[5])
 1-byte character transmits with 3-padded bytes
 Float sent as whole word (4-bytes)
 Array as group of words, proceed by word describing 

length
 Client stub must package data in specific format
 Server stub must receive and unpackage in specific format

 Client and server must agree on representation of simple 
data structures: int, char, floats w/ little endian 

 RPC clients/servers: must agree on protocol
 TCP? UDP?
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STUB GENERATION

 Interfaces are specified using an Interface Definition 
Language (IDL)

 Interface specifications in IDL are used to generate language 
specific stubs

 IDL is compiled into client and server-side stubs

 Much of the plumbing for RPC involves maintaining 
boilerplate-code
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STUB GENERATION - 2

 Leads to simpler application development

 Helps with providing access transparency 

 Differences in data representation, and how object is 
accessed

 Inter-language parameter passing issues resolved: 
 just 1 language

 Well known example: Java Remote Method Invocation
RPC equivalent embedded in Java
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LANGUAGE BASED SUPPORT
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 RPC: client typically blocks until reply is returned

 Strict blocking unnecessary when there is no result

 Asynchronous RPCs

 When no result, server can immediately send reply
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RPC VARIATIONS

Client/server synchronous RPC         Client/server asynchronous RPC

 What are tradeoffs for synchronous vs. asynchronous 
procedure calls?

 For a local program

 For a distributed program (system)

 Use cases for asynchronous procedure calls

 Long running jobs allow client to perform alternate work 
in background (in parallel)

 Client may need to make multiple service calls to multiple 
server backends at the same time…
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RPC VARIATIONS – 2

 Deferred synchronous RPC
 Server performs CALLBACK to client

 Client, upon making call, spawns separate thread which blocks and 
waits for call 

 One-way RPCs
 Client does not wait for any server acknowledgement – it just goes…

 Client polling
 Client (using separate thread) continually polls server for result
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TYPES OF ASYNCHRONOUS RPC

 Send RPC request simultaneously to group of servers

 Hide that multiple servers are involved

 Consideration: 
Does the client need all results or just one?

 Use cases:

 Fault tolerance – wait for just one

 Replicate execution – verify 
results, use first result

 Divide and conquer - multiple 
RPC calls work in parallel on 
different parts of dataset, 
client aggregates results

February 16, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L11.101

MULTICAST RPC

 DCE: basis for Microsoft’s distributed computing object model 
(DCOM)

 Used in Samba, cross-platform file and print sharing via RPC
 Middleware system – provides layer of abstraction between OS 

and distributed applications
 Designed for Unix, ported to all major operating systems
 Install DCE middleware on set of heterogeneous machines –

distributed applications can then access shared resources to:
 Mount a windows file system on Linux
 Share a printer connected to a Windows server

 Uses client/server model
 All communication via RPC
 DCE daemon tracks participating machines, ports
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RPC EXAMPLE: DISTRIBUTED 
COMPUTING ENVIRONMENT (DCE)

 Server name comes from directory server

 Server port comes from DCE daemon
 DCE daemon has a well known port # client already knows
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DCE CLIENT-TO-SERVER BINDING
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1. Create Interface definition language (IDL) files
 IDL files contain Globally unique identifier (GUID)
 GUIDs must match: client and server compare GUIDs to 

verify proper versions of the distributed object
 128-bit binary number

2. Next, add names of remote procs and params to IDL

3. Then compile the IDL files
Compiler generates:
 Header file (interface.h in C)
 Client stub
 Server stub
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EXTRA: DCE – CLIENT/SERVER DEVELOPMENT

 For a client to call a server, server must be registered
 Java: uses RMI registry

 Client process to search for RMI server:
1. Locate the server’s host machine

2. Locate the server (i.e. process) on the host

 Client must discover the server’s RPC port

 DCE daemon: maintains table of (server,port) pairs

 When servers boot: 

1. Server asks OS for a port, registers port with DCE daemon

2. Also, server registers with directory server, separate server 
that tracks DCE servers
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EXTRA: DCE – BINDING CLIENT TO SERVER

 Questions from 2/9

 Midterm Review

 Assignment 0: Load Balancing & Performance

 Assignment 1: Key/Value Store
 Java Maven project template files posted

 Chapter 3: Processes
 Chapter 3.4: Servers

 Chapter 3.5: Resource (Code) Migration (light-review)

 Chapter 4: Communication
 Chapter 4.1: Foundations

 Chapter 4.2: RPC

 Chapter 4.3: Message Oriented Communication
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OBJECTIVES – 2/16

Apache Act i veMQ

CH. 4.3: MESSAGE-
ORIENTED 

COMMUNICATION

L11.10
7

 RPC assumes that the cl ient and server are running 
at the same time…  (temporally coupled)

 RPC communication is typically synchronous

 When client and server are not running at the same time

 Or when communications should not be blocked…

 This is a use case for message-oriented communication

 Synchronous vs. asynchronous

Messaging systems

Message-queueing systems
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MESSAGE ORIENTED COMMUNICATION

 Communication end point

 Applications can read / write data to

 Analogous to file streams for I/O, but network streams
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SOCKETS

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection
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 Servers execute 1st - 4 operations (socket, bind, listen, accept)

 Methods refer to C API functions

 Mappings across different libraries will vary (e.g. Java)
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SOCKETS - 2

Operation Description

socket Create a new communication end point

bind Attach local address to socket (IP / port)

listen Tell OS what max # of pending connection requests should be

accept Block caller until a connection request arrives

connect Actively attempt to establish a connection

send Send some data over the connection

receive Receive some data over the connection

close Release the connection

 Socket: creates new communication end point

 Bind: associated IP and port with end point

 Listen: for connection-oriented communication, non-blocking 
call reserves buffers for specified number of pending 
connection requests server is willing to accept

 Accept: blocks until connection request arrives
 Upon arrival, new socket is created matching original

 Server spawns thread, or forks process to service incoming request

 Server continues to wait for new connections on original socket

February 16, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L11.111

SERVER SOCKET OPERATIONS

 Socket: Creates socket client uses for communication

 Connect: Server transport-level address provided, client blocks 
until connection established

 Send: Supports sending data (to: server/client)

 Receive: Supports receiving data (from: server/client)

 Close: Closes communication channel
 Analogous to closing a file stream
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CLIENT SOCKET OPERATIONS

 Sockets provide primitives for implementing your own 
TCP/UDP communication protocols

 Directly using sockets for transient (non-persisted) 
messaging is very basic, can be brittle

 Easy to make mistakes…

 Any extra communication facilities must be implemented 
by the application developer

 More advanced approaches are desirable

 E.g. frameworks with support common desirable 
functionality
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SOCKET COMMUNICATION

 (0MQ) High performance intelligent socket library
 zero broker,  zero latency, zero admin, zero cost, zero waste

 Provides a message queue

 Builds upon functionality of traditional sockets

 Implementation in C++
 30+ language bindings provided

 Enables support for various messaging patterns

 Can support brokered (centralized) and broker-less topologies
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ZEROMQ – SOCKET LIBRARY

 ZeroMQ is TCP-connection-oriented communication

 Provides socket-like primitives with more functionality

 Basic socket operations abstracted away

 Supports many-to-one, one-to-one, and one-to-many 
connections

Multicast connections (one-to-many – single server socket 
simultaneously “connects” to multiple clients)

 Asynchronous messaging

 Supports pairing sockets to support communication 
patterns
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ZEROMQ – 2
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 Request-reply pattern
 Traditional client-server communication (e.g. RPC)

 Client: request socket (REQ)

 Server: reply socket (REP)

 Publish-subscribe pattern
 Clients subscribe to messages published by servers

 As in event-based coordination (Ch. 1)

 Supports multicasting messages from 
server to multiple

 Client: subscribe socket (SUB)

 Server: publish socket (PUB)
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ZEROMQ - PATTERNS

 Pipeline pattern (FIFO-queue)

 Analogous to a producer/consumer bounded buffer

 Producing processes generate results, push to pipe

 Consuming processes consume results,
pull from pipe

 Producers: push socket (PUSH socket)

 Consumers: pull socket (PULL socket)

 Push- distributes messages to all pull 
clients evenly

 Consumers pull results from pipe and 
push results downstream
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ZEROMQ – PATTERNS - 2

Cloud services

Amazon Simple Queueing Service (SQS)

Azure service bus

Open source frameworks

Nanomsg

ZeroMQ
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QUEUEING ALTERNATIVES

 MPI introduced – version 1.0 March 1994

 Message passing API for parallel programming: supercomputers

 Communication protocol for parallel programming for:
Supercomputers, High Performance Computing (HPC) clusters

 Point-to-point and collective communication

 Goals: high performance, scalability, portability

 Most implementations
in C, C++, Fortran
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MESSAGE PASSING INTERFACE (MPI)

 Motivation: sockets insufficient for interprocess
communication on large scale HPC compute clusters and 
super computers 

 Sockets at the wrong level of abstraction

 Sockets designed to communicate over the network using 
general purpose TCP/IP stacks

 Not designed for proprietary protocols

 Not designed for high-speed interconnection 
networks used by supercomputers, 
HPC-clusters, etc.

 Better buffering and synchronization needed
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MOTIVATIONS FOR MPI

 Supercomputers had proprietary communication libraries

 Offer a wealth of efficient communication operations

 All libraries mutually incompatible

 Led to significant portability problems developing parallel 
code that could migrate across supercomputers

 Led to development of MPI
 To support transient (non-persistent) communication for 

parallel programming
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MOTIVATIONS FOR MPI - 2
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 Very large library, v1.0 (1994) 128 functions 

 Version 3 (2015) 440+

 MPI data types:

 Provide common mappings
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MPI FUNCTIONS / DATATYPES

 MPI - no recovery for process crashes, network partitions

 Communication among grouped processes:(groupID, processID)

 IDs used to route messages in place of IP addresses
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COMMON MPI FUNCTIONS

Operation Description

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send message, wait until copied to local/remote buffer

MPI_ssend Send message, wat until transmission starts

MPI_sendrecv Send message, wait for reply

MPI_isend Pass reference to outgoing message and continue

MPI_issend Pass reference to outgoing messages, wait until receipt start

MPI_recv Receive a message, block if there is none

MPI_irecv Check for incoming message, do not block!

 Message-queueing systems

 Provide extensive support for persistent asynchronous 
communication

 In contrast to transient systems

 Temporally decoupled: messages are eventually delivered 
to recipient queues

 Message transfers may take minutes vs. sec or ms

 Each application has its own private queue to which other 
applications can send messages

February 16, 2021 TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L11.124

MESSAGE-ORIENTED-MIDDLEWARE

 Enables communication between applications, or sets of 
processes

 User applications

 App-to-database

 To support distributed real-time computations

 Use cases

 Batch processing, Email, workflow, groupware, routing 
subqueries
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MESSAGE QUEUEING SYSTEMS:
USE CASES

 Scenarios:
(a) Sender/receiver

both running

(b)  Sender running,
receiver offline

(c)  Sender offline,
receiver running

(d)  Sender/receiver
both offline

 Queue persists msgs,
and attempts to send 
them but no one may be available to receive them…
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MESSAGE QUEUEING SYSTEMS

SENDS

READS

 Key: Truly persistent messaging

 Message queueing systems can persist messages for awhile 
and senders and receivers can be offline

 Messages

 Contain any data, may have size limit

 Are properly addressed, to a destination queue

 Basic Inteface

 PUT: called by sender to append msg to specified queue

 GET: blocking call to remove oldest msg from specified queue
 Blocked if queue is empty

 POLL: Non-blocking, gets msg from specified queue
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MESSAGE QUEUEING SYSTEMS - 2
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 Basic interface cont’d

 NOTIFY: install a callback function, for when msg is placed 
into a queue. Notifies receivers

 Queue managers: manage individual message queues as a 
separate process/library

 Applications get/put messages only from local queues

 Queue manager and apps share local network

 ISSUES:

 How should we reference the destination queue? 

 How should names be resolved (looked-up)?
 Contact address (host, port) pairs

 Local look-up tables can be stored at each queue manager
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MESSAGE QUEUEING SYSTEMS 
ARCHITECTURE

 ISSUES:

 How do we route traffic between queue managers?

 How are name-to-address mappings efficiently kept?

 Each queue manager should be known to all others

 Message brokers

 Handle message conversion among different users/formats

 Addresses cases when senders and receivers don’t speak the 
same protocol ( language)

 Need arises for message protocol converters
 “Reformatter” of messages

 Act as application-level gateway
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MESSAGE QUEUEING SYSTEMS 
ARCHITECTURE - 2
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MESSAGE BROKER ORGANIZATION

Plugins to convert 
messages between APPs Application-level

Queues

 Message-queueing systems initially developed to enable 
legacy applications to interoperate

 Decouple inter-application communication to “open” 
messaging-middleware

 Many are proprietary solutions, so not very open
 e.g. Microsoft Message Queueing service, Windows NT 1997

 Advanced message queueing protocol (AMQP), 2006
 Address openness/interoperability of proprietary solutions
 Open wire protocol for messaging with powerful routing 

capabilities
 Help abstract messaging and application interoperability by 

means of a generic open protocol
 Suffer from incompatibility among protocol versions
 pre-1.0, 1.0+
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AMQP PROTOCOL

 Consists of: Applications, Queue managers, Queues

 Connections: set up to a queue manager, TCP, with 
potentially many channels, stable, reused by many 
channels, long-lived

 Channels: support short-lived one-way communication

 Sessions: bi-directional communication across two 
channels

 Link: provide fine-grained flow-control of message 
transfer/status between applications and queue manager
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AMQP - 2

 AMQP nodes: producer, consumer, queue

 Producer/consumer: represent regular applications

 Queues: store/forward messages

 Persistent messaging:

 Messages can be marked durable

 These messages can only be delivered by nodes able to 
recover in case of failure

 Non-failure resistant nodes must reject durable messages

 Source/target nodes can be marked durable

 Track what is durable (node state, node+msgs)
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AMQP MESSAGING
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 Some examples:
 RabbitMQ, Apache QPid
 Implement Advanced Message Queueing Protocol (AMQP)

 Apache Kafka
 Dumb broker (message store), similar to a distributed log file
 Smart consumers – intelligence pushed off to the clients
 Stores stream of records in categories called topics
 Supports voluminous data, many consumers, with minimal O/H
 Kafka does not track which messages were read by each consumer
 Messages are removed after timeout
 Clients must track their own consumption (Kafka doesn’t help)
 Messages have key, value, timestamp
 Supports high volume pub/sub messaging and streams
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MESSAGE-ORIENTED-MIDDLEWARE 
EXAMPLES: QUESTIONS
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