

SURVEY QUESTIONS Survey has two questions: Be sure to add your questions about the previous class to the second question 1st question: After today's class, comment on any new concepts that you learned about? Have been getting questions here... 2nd question: After today's class, what point(s) remain least clear to you? >> Please add questions HERE TCSS558: Applied Distributed Computing [Winter 2021]

Slides by Wes J. Lloyd L10.2

School of Engineering and Technology, University of Washington - Tacoma

L10.4

February 9, 2021

FEEDBACK FROM 2/4

I am not sure if I completely understand the
 Thread-level parallelism (TLP) equation.

 It would helpful if you could show us an example of how to use it.

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.7

THREAD-LEVEL PARALLELISM

Metric – measures degree of parallelism realized by running system, by calculating average utilization:

$$TLP = \frac{\sum_{i=1}^{N} i \cdot c_i}{1 - c_0}$$

- C_i fraction of time that i threads are executed simultaneously
- N maximum threads that can execute at any one time
- C₀ is the fraction of time that 0 threads are executed -CPU is idle...

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.8

OBJECTIVES - 2/9

- Questions from 2/4
- Assignment 1: Key/Value Store
 - Java Maven project template files posted
- Midterm Thursday February 11
- Chapter 3: Processes
 - Chapter 3.3: Clients
 - Chapter 3.4: Servers
- Midterm Thursday February 11
 - 2nd hour Tuesday February 9 practice midterm questions

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.11

ASSIGNMENT 1

- An extension of ~3-5 days is likely and will be posted
- Sunday TCP/UDP/RMI Key Value Store
- Implement a "GenericNode" project which assumes the role of a client or server for a Key/Value Store
- Recommended in Java (11 or 8)
- Client node program interacts with server node to put, get, delete, or list items in a key/value store

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.12

OBJECTIVES - 2/9

- Questions from 2/4
- Assignment 1: Key/Value Store
 - Java Maven project template files posted
- Midterm Thursday February 11
- Chapter 3: Processes
 - Chapter 3.3: Clients
 - Chapter 3.4: Servers
- Midterm Thursday February 11
 - 2nd hour Tuesday February 9 practice midterm questions

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.13

OBJECTIVES - 2/9

- Questions from 2/4
- Assignment 1: Key/Value Store
 - Java Maven project template files posted
- Midterm Thursday February 11
- Chapter 3: Processes
 - Chapter 3.3: Clients
 - Chapter 3.4: Servers
- Midterm Thursday February 11
 - 2nd hour Tuesday February 9 practice midterm questions

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.14

X WINDOWS

- Layered architecture to transport UI over network
- Remote desktop functionality for Linux/Unix systems
- X kernel acts as a server
 - Provides the X protocol: application level protocol
 - Xlib instances (client applications) exchange data and events with X kernels (servers)
 - Clients and servers on single machine → Linux GUI
 - Client and server communication transported over the network → remote Linux GUI

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.18

February 9, 2021

EXAMPLE: VNC SERVER

- How to Install VNC server on Ubuntu EC2 instance VM:
- sudo apt-get update
- # ubuntu 16.04
- sudo apt-get install ubuntu-desktop
- sudo apt-get install gnome-panel gnome-settingsdaemon metacity nautilus gnome-terminal
- # on ubuntu 18.04
- sudo apt install xfce4 xfce4-goodies
- sudo apt-get install tightvncserver # both
- Start VNC server to create initial config file
- vncserver :1

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.21

EXAMPLE: VNC SERVER - UBUNTU 16.04

- On the VM: edit config file: nano ~/.vnc/xstartup
- Replace contents as below (Ubuntu 16.04):

```
#!/bin/sh
export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[ -x /etc/vnc/xstartup ] && exec /etc/vnc/xstartup
[ -r $HOME/.Xresources ] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &
nautilus &
gnome-terminal &
```

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.22

EXAMPLE: VNC SERVER - UBUNTU 18.04

- On the VM:
- Edit config file: nano ~/.vnc/xstartup
- Replace contents as below (Ubuntu 18.04):

```
#!/bin/bash
xrdb $HOME/.Xresources
startxfce4 &
```

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.23

VNC SERVER - UBUNTU 20.04 - GNOME

```
# install vnc server
sudo apt install tigervnc-standalone-server
Sudo apt install ubuntu-gnome-desktop
vncserver :1
                            # creates a config file
                            # stop server
vncserver -kill :1
vi ~/.vnc/xstartup
                            # edit config file
#!/bin/sh
# Start Gnome 3 Desktop
[ -x /etc/vnc/xstartup ] && exec /etc/vnc/xstartup
[ -r $HOME/.Xresources ] && xrdb $HOME/.Xresources
vncconfig -iconic &
dbus-launch --exit-with-session gnome-session &
sudo systemctl start gdm
                                   # start gnome desktop
sudo systemctl enable gdm
vncserver :1
                                   # restart vnc server
                TCSS558: Applied Distributed Computing [Winter 2021]
  February 9, 2021
                                                            L10.24
                School of Engineering and Technology, University of Washington - Tacoma
```


EXAMPLE: VNC CLIENT On the client (e.g. laptop): Create SSH connection to securely forward port 5901 on the EC2 instance to your localhost port 5901 This way your VNC client doesn't need an SSH key ssh -i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N -f -1 <username> <EC2-instance ip_address> For example: ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -1 ubuntu 52.111.202.44

THIN CLIENTS

- Thin clients
 - X windows protocol
 - A variety of other remote desktop protocols exist:

Remote desktop protocols include the following:

- Apple Remote Desktop Protocol (ARD) Original protocol for Apple Remote Desktop on macOS machines.
- Appliance Link Protocol (ALP) a Sun Microsystems-specific protocol featuring audio (play and record), remote printing, remote USB, accelerated video
- . HP Remote Graphics Software (RGS) a proprietary protocol designed by Hewlett-Packard specifically for high end workstation remoting and collaboration.
- . Independent Computing Architecture (ICA) a proprietary protocol designed by Citrix Systems
- NX technology (NoMachine NX) Cross platform protocol featuring audio, video, remote printing, remote USB, H264-enabled.
- PC-over-IP (PCoIP) a proprietary protocol used by VMware (licensed from Teradici)^[2]
- · Remote Desktop Protocol (RDP) a Windows-specific protocol featuring audio and remote printing
- Remote Frame Buffer Protocol (RFB) A framebuffer level cross-platform protocol that VNC is based on.
- SPICE (Simple Protocol for Independent Computing Environments) remote-display system built for virtual environments by Qumranet, now Red Hat
- Splashtop a high performance remote desktop protocol developed by Splashtop, fully optimized for hardware (H.264) including Intel / AMD chipsets, NVIDIA
 of media codecs, Splashtop can deliver high frame rates with low latency, and also low power consumption.
- . X Window System (X11) a well-established cross-platform protocol mainly used for displaying local applications; X11 is network transparent

February 9, 2021 TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

THIN CLIENTS - 2

- Applications should separate application logic from UI
- When application logic and UI interaction are tightly coupled many requests get sent to X kernel
- Client must wait for response
- Synchronous behavior and app-to-UI coupling adverselt affects performance of WAN / Internet
- Protocol optimizations: reduce bandwidth by shrinking size of X protocol messages
- Send only differences between messages with same identifier
- Optimizations enable connections with 9600 kbps

 February 9, 2021
 TCSS558: Applied Distributed Computing [Winter 2021]

 School of Engineering and Technology, University of Washington - Tacoma

THIN CLIENTS - 3

- Virtual network computing (VNC)
- Send display over the network at the pixel level (instead of X lib events)
- Reduce pixel encodings to save bandwidth fewer colors
- Pixel-based approaches loose application semantics
- Can transport any GUI this way
- THINC- hybrid approach
- Send video device driver commands over network
- More powerful than pixel based operations
- Less powerful compared to protocols such as X

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.31

L10.32

TRADEOFFS: ABSTRACTION OF REMOTE **DISPLAY PROTOCOLS** Tradeoff space: abstraction level of remote display protocols

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma

CLIENT ROLES IN PROVIDING DISTRIBUTION TRANSPARENCY - 2

- Location/relocation/migration transparency
 - Harness convenient naming system to allow client to infer new locations
 - Server inform client of moves / Client reconnects to new endpoint
 - Client hides network address of server, and reconnects as needed
 - May involve temporary loss in performance
- Replication transparency
 - Client aggregates responses from multiple servers
- Failure transparency
 - Client retries, or maps to another server, or uses cached data
- Concurrency transparency
 - Transaction servers abstract coordination of multithreading

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.35

WE WILL RETURN AT 2:55PM

OBJECTIVES - 2/9

- Questions from 2/4
- Assignment 1: Key/Value Store
 - Java Maven project template files posted
- Midterm Thursday February 11
- Chapter 3: Processes
 - Chapter 3.3: Clients
 - Chapter 3.4: Servers
- Midterm Thursday February 11
 - 2nd hour Tuesday February 9 practice midterm questions

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.37

SERVERS

- Cloud & Distributed Systems rely on Linux
- http://www.zdnet.com/article/it-runs-on-the-cloud-and-thecloud-runs-on-linux-any-questions/
- IT is moving to the cloud. And, what powers the cloud?
 - Linux
- Uptime Institute survey 1,000 IT executives (2016)
 - 50% of IT executives plan to migrate majority of IT workloads to off-premise to cloud or colocation sites
 - 23% expect the shift in 2017, 70% by 2020...
- Docker on Windows / Mac OS X
 - Based on Linux
 - Mac: Hyperkit Linux VM
 - Windows: Hyper-V Linux VM

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.39

SERVERS - 2

- Servers implement a specific service for a collection of clients
- Servers wait for incoming requests, and respond accordingly
- Server types
- Iterative: immediately handle client requests
- Concurrent: Pass client request to separate thread
- Multithreaded servers are concurrent servers
 - E.g. Apache Tomcat
- Alternative: fork a new process for each incoming request
- <u>Hybrid</u>: mix the use of multiple processes with thread pools

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.40

END POINTS

- Clients connect to servers via:
 IP Address and Port Number
- How do ports get assigned?
 - Many protocols support "default" port numbers
 - Client must find IP address(es) of servers
 - A single server often hosts multiple end points (servers/services)
 - When designing new TCP client/servers must be careful not to repurpose ports already commonly used by others

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.41

TYPES OF SERVERS

- Daemon server
 - Example: NTP server
- Superserver
- Stateless server
 - Example: Apache server
- Stateful server
- Object servers
- EJB servers

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.43

NTP EXAMPLE

- Daemon servers
 - Run locally on Linux
 - Track current server end points (outside servers)
 - Example: network time protocol (ntp) daemon
 - Listen locally on specific port (ntp is 123)
 - Daemons routes local client traffic to the configured endpoint servers
 - University of Washington: time.u.washington.edu
 - Example "ntpq -p"
 - Queries local ntp daemon, routes traffic to configured server(s)

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.44

SUPERSERVER

- Linux inetd / xinetd
 - Single superserver
 - Extended internet service daemon
 - Not installed by default on Ubuntu
 - Intended for use on server machines
 - Used to configure box as a server for multiple internet services
 - E.g. ftp, pop, telnet
 - inetd daemon responds to multiple endpoints for multiple services
 - Requests fork a process to run required executable program
- Check what ports you're listening on:
 - sudo netstat -tap | grep LISTEN

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.45

INTERRUPTING A SERVER

- Server design issue:
 - Active client/server communication is taking place over a port
 - How can the server / data transfer protocol support interruption?
- Consider transferring a 1 GB image, how do you pass a unrelated message in this stream?
 - 1. <u>Out-of-band</u> data: special messages sent in-stream to support interrupting the server (*TCP urgent data*)
 - 2. Use a separate connection (different port) for admin control info
- Example: sftp secure file transfer protocol
 - Once a file transfer is started, can't be stopped easily
 - Must kill the client and/or server

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.46

STATELESS SERVERS

- Data about state of clients is not stored
- Example: web application servers are typically stateless
 - Also function-as-a-service (FaaS) platforms
- Many servers maintain information on clients (e.g. log files)
- Loss of stateless data doesn't disrupt server availability
 - Loosing log files typically has minimal consequences
- Soft state: server maintains state on the client for a limited time (to support sessions)
- Soft state information expires and is deleted

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.47

STATEFUL SERVERS

- Maintain persistent information about clients
- Information must be explicitly deleted by the server
- Example:

File server - allows clients to keep local file copies for RW

- Server tracks client file permissions and most recent versions
 - Table of (client, file) entries
- If server crashes data must be recovered
- Entire state before a crash must be restored
- Fault tolerance Ch. 8

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.48

STATEFUL SERVERS - 2

- Session state
 - Tracks series of operations by a single user
 - Maintained temporarily, not indefinitely
 - Often retained for multi-tier client server applications
 - Minimal consequence if session state is lost
 - Clients must start over, reinitialize sessions
- Permanent state
 - Customer information, software keys
- Client-side cookies
 - When servers don't maintain client state, clients can store state locally in "cookies"
 - Cookies are not executable, simply client-side data

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.49

OBJECT SERVERS

- OBJECTIVE: Host objects and enable remote client access
- Do not provide a specific service
 - Do nothing if there are no objects to host
- Support adding/removing hosted objects
- Provide a home where objects live
- Objects, themselves, provide "services"
- Object parts
 - State data
 - Code (methods, etc.)
- Transient object(s)
 - Objects with limited lifetime (< server)
 - Created at first invocation, destroyed when no longer used (i.e. no clients remain "bound").
 - Disadvantage: initialization may be expensive
 - Alternative: preinitialize and retain objects on server start-up

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.50

OBJECT SERVERS - 2

- Should object servers isolate memory for object instances?
 - Share neither code nor data
 - May be necessary if objects couple data and implementation
- Object server threading designs:
 - Single thread of control for object server
 - One thread for each object
 - Servers use separate thread for client requests
- Threads created on demand vs.

Server maintains pool of threads

What are the tradeoffs for creating server threads on demand vs. using a thread pool?

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.51

EJB - ENTERPRISE JAVA BEANS

- EJB- specialized Java object hosted by a EJB web container
- 4 types: stateless, stateful, entity, and message-driven beans
- Provides "middleware" standard (framework) for implementing back-ends of enterprise applications
- EJB web application containers integrate support for:
 - Transaction processing
 - Persistence
 - Concurrency
 - Event-driven programming
 - Asynchronous method invocation
 - Job scheduling
 - Naming and discovery services (JNDI)
 - Interprocess communication
 - Security
 - Software component deployment to an application server

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.52

LAN REQUEST DISPATCHING

- Front end of three tier architecture (logical switch) provides distribution transparency – hides multiple servers
- Transport-layer switches: switch accepts TCP connection requests, hands off to a server
 - Example: hardware load balancer (F5 networks Seattle)
 - HW Load balancer OSI layers 4-7
- Network-address-translation (NAT) approach:
 - All requests pass through switch
 - Switch sits in the middle of the client/server TCP connection
 - Maps (rewrites) source and destination addresses
- Connection hand-off approach:
 - TCP Handoff: switch hands of connection to a selected server

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.55

LAN REQUEST DISPATCHING - 2

Logically a single TCP connection

Request

- Who is the best server to handle the request?
- Switch plays important role in distributing requests
- Implements load balancing
- Round-robin routes client requests to servers in a looping fashion
- Transport-level route client requests based on TCP port number
- Content-aware request distribution route requests based on inspecting data payload and determining which server node should process the request

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.56

Server

Server

Request

(handed off)

Response

WIDE AREA CLUSTERS

- Deployed across the internet
- Leverage resource/infrastructure from Internet Service Providers (ISPs)
- Cloud computing simplifies building WAN clusters
- Resource from a single cloud provider can be combined to form a cluster
- For deploying a cloud-based cluster (WAN), what are the implications of deploying nodes to:
- (1) a single availability zone (e.g. us-east-1e)?
- (2) across multiple availability zones?

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.57

WAN REQUEST DISPATCHING

- Goal: minimize network latency using WANs (e.g. Internet)
- Send requests to nearby servers
- Request dispatcher: routes requests to nearby server
- Example: Domain Name System
 - Hierarchical decentralized naming system
- Linux: find your DNS servers:
 - # Find you device name of interest nmcli dev
 - # Show device configuration
 nmcli device show <device name>

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.58

DNS LOOKUP

- First query local server(s) for address
- Typically there are (2) local DNS servers
 - One is backup
- Hostname may be cached at local DNS server
 - E.g. www.google.com
- If not found, local DNS server routes to other servers
- Routing based on components of the hostname
- DNS servers down the chain mask the client IP, and use the originating DNS server IP to identify a local host
- Weakness: client may be far from DNS server used. Resolved hostname is close to DNS server, but not necessarily close to the client

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.59

DNS: LINUX COMMANDS

- nslookup <ip addr / hostname>
- Name server lookup translates hostname or IP to the inverse
- traceroute <ip addr / hostname>
- Traces network path to destination
- By default, output is limited to 30 hops, can be increased

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.61

DNS EXAMPLE - WAN DISPATCHING

- Ping <u>www.google.com</u> in WA from wireless network:
 - nslookup: 6 alternate addresses returned, choose (74.125.28.147)
 - Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)
- Ping <u>www.google.com</u> in VA (us-east-1) from EC2 instance:
 - nslookup: 1 address returned, choose 172.217.9.196
 - Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)
- From VA EC2 instance, ping WA www.google server
- Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)
- Pinging the WA-local server is ~60x slower from VA
- From local wireless network, ping VA us-east-1 google :
- Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.62

DNS EXAMPLE - WAN DISPATCHING

- Ping www.google.com in WA from wireless network:
 - nslookup: 6 alternate addresses returned, choose (74.125.28.147)

Latency to ping VA server in WA: ~3.63x

WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x

VA client: local-google 1.278ms to WA-google 62.349!

- From local wireless network, ping VA us-east-1 google:
- Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.63

OBJECTIVES - 2/9

- Questions from 2/4
- Assignment 1: Key/Value Store
 - Java Maven project template files posted
- Midterm Thursday February 11
- Chapter 3: Processes
 - Chapter 3.3: Clients
 - Chapter 3.4: Servers
- Midterm Thursday February 11
 - 2nd hour Tuesday February 9 practice midterm questions

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.64

PRACTICE MIDTERM

- Envisioned as a class activity
- Form groups using Zoom breakout rooms
- Each group works on 2 assigned questions
- Group submits PDF solution by end of day today
 - Late submission accepted through 5pm Wednesday
- Instructor shares best solutions provided from the class submission via Canvas by Wednesday morning
 - Subject to updates for late submissions
- All students have access to solutions for review and practice
- Follow link:

https://bit.ly/3p8aLzH

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021] School of Engineering and Technology, University of Washington - Tacoma

L10.65

