TCSS 558: Applied Distributed Computing February 9, 2021

[Winter 2021] School of Engineering and Technology,
UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
||

Processes:
Clients & Servers

Wes J. Lloyd

School of Engineering
& Technology (SET)

University of Washington - Tacoma

OBJECTIVES - 2/9

| = Questions from 2/4 |

®m Assignment 1: Key/Value Store

= Java Maven project template files posted
® Midterm Thursday February 11
® Chapter 3: Processes

= Chapter 3.3: Clients

= Chapter 3.4: Servers

® Midterm Thursday February 11
= 27d hour - Tuesday February 9 - practice midterm questions

TCSS558: Applied Distributed Computing [Winter 2021]
February 9, 2021 School of Engineering and Technology, University of Washington - Tacoma to2

Slides by Wes J. Lloyd L10.1

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

ONLINE DAILY FEEDBACK SURVEY

® Daily Feedback Quiz in Canvas - Available After Each Class
® Extra credit available for completing surveys ON TIME

® Tuesday surveys: due by ~ Wed @ 10p

® Thursday surveys: due ~ Mon @ 10p

— TCSS 558 A > Assignments

Winter 2021

Home

Announcements

I * Upcoming Assignments

208 % TCSS 558 - Online Daily Feedback Survey - 1/5
=

Mot available until Jan 5 at 1:30pm | Due Jan 6 at 10pm | -/1 pts
Chat

TCSS558: Applied Distributed Computing [Winter 2021]

February 9, 2021 110.3

School of Engineering and Technology, University of Washington - Tacoma

SURVEY QUESTIONS

® Survey has two questions:

= Be sure to add your questions about the previous class to the
second question

m 1st question: After today’s class, comment on any new
concepts that you learned about?

= Have been getting questions here...

m 27d question: After today’s class, what point(s) remain least
clear to you?

= >> Please add questions HERE

TCSS558: Applied Distributed Computing [Winter 2021]

L10.4
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

Slides by Wes J. Lloyd

February 9, 2021

L10.2

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

TCSS 558 - Online Daily Feedback Survey - 1/5

Due Jan 6 at 10pm Points 1 Questions 4
Available Jan 5 at 1:30pm - Jan 6 at 11:59pm 1 day Time Limit None
[| Question1 0.5 pts

On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:

1 2 3 4 5 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me

[| Question 2 0.5 pts

Please rate the pace of today's class:

1 2 3 4 5 -] 7 8 9 1e

Slow Just Right Fast

TCSS558: Applied Distributed Computing [Winter 2021]

ety & S School of Engineering and Technology, University of Washington - Tacoma L105

MATERIAL / PACE

Please classify your perspective on material covered in today’s
class (21 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.10 (| - previous 6.22)

® Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.71 ({ - previous 5.74)

TCSS558: Applied Distributed Computing [Winter 2021]

L10.6
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

Slides by Wes J. Lloyd

February 9, 2021

L10.3

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

FEEDBACK FROM 2/4

® | am not sure if | completely understand the
Thread-level parallelism (TLP) equation.
It would helpful if you could show us an example of how to use

it.

TCSS558: Applied Distributed Computing [Winter 2021]

L10.7
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

THREAD-LEVEL PARALLELISM

® Metric - measures degree of parallelism realized by running
system, by calculating average utilization:

m C, - fraction of time that i threads are executed simultaneously
= N - maximum threads that can execute at any one time

m C, - is the fraction of time that O threads are executed -
CPU is idle...

TCSS558: Applied Distributed Computing [Winter 2021]

L10.8
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

Slides by Wes J. Lloyd

February 9, 2021

L10.4

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

FEEDBACK - 2

® I[mage a 4-core CPU, need to know:
= fraction of time just 1 thread runs
= fraction of time 2 threads run
= fraction of time 3 threads run
= fraction of time 4 threads run

® Divide by 1 minus fraction of time CPU is idle

= Example:
® 4-virtual CPU Ubuntu 20.04 Virtual Machine

® Firefox browser pointed at news website

TCSS558: Applied Distributed Computing [Winter 2021]

February 9, 2021 School of Engineering and Technology, University of Washington - Tacoma

L10.9

£ (=) Terminal

CALCULATE & CNN - Breaking News, L X

& c

© | & https://www.cnn.com

T L P " . Snapshot from htop on Ubuntu 20.04 Firefox w/ 4 vCPUs viloyd@

= CPU 1: 16.8%

= CPU 2: 9.7%

= CPU 3: 9.4%

= CPU 4: 10.7%

= CPU idle: 53.4%
{(1-.168)+(2:.097)+(3:.094)+(4:.107) }

1-.534
{ (.168)+(.194)+(.282)+(.428) }
.466
Vi i 1.072
PLE — 2=k 1 =-2L< =2 3 estimated TLP
1—¢ .466
0
(FElELRY &), P2 ;Er?zzlsif /I-E\r':gilrifeirl'?rimsgtr;zl:it:':cﬁsng;,ingn[i\cg:stif; (2)? 3\]I.z]ashington - Tacoma 11010

Slides by Wes J. Lloyd

February 9, 2021

L10.5

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 2/9

® Questions from 2/4

= Assignment 1: Key/Value Store
= Java Maven project template files posted
® Midterm Thursday February 11
® Chapter 3: Processes
= Chapter 3.3: Clients
= Chapter 3.4: Servers
® Midterm Thursday February 11
= 2"d hour - Tuesday February 9 - practice midterm questions

TCSS558: Applied Distributed Computing [Winter 2021]

February's, 2021 School of Engineering and Technology, University of Washington - Tacoma

110.11

ASSIGNMENT 1

|l An extension of ~3-5 days is likely and will be posted |

® Sunday TCP/UDP/RMI Key Value Store

B Implement a “GenericNode” project which assumes the role of

a client or server for a Key/Value Store

® Recommended in Java (11 or 8)

® Client node program interacts with server node to put, get,
delete, or list items in a key/value store

TCSS558: Applied Distributed Computing [Winter 2021]

February 9, 2021 School of Engineering and Technology, University of Washington - Tacoma

L10.12

Slides by Wes J. Lloyd

February 9, 2021

L10.6

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 2/9

® Questions from 2/4

®m Assignment 1: Key/Value Store

= Java Maven project template files posted
| = Midterm Thursday February 11 |

® Chapter 3: Processes
= Chapter 3.3: Clients
= Chapter 3.4: Servers

® Midterm Thursday February 11
= 2"d hour - Tuesday February 9 - practice midterm questions

TCSS558: Applied Distributed Computing [Winter 2021]

February's, 2021 School of Engineering and Technology, University of Washington - Tacoma

110.13

OBJECTIVES - 2/9

= Questions from 2/4

®m Assignment 1: Key/Value Store
= Java Maven project template files posted
® Midterm Thursday February 11
® Chapter 3: Processes
| =Chapter 3.3: Clients |
= Chapter 3.4: Servers
® Midterm Thursday February 11
= 2nd hour - Tuesday February 9 - practice midterm questions

TCSS558: Applied Distributed Computing [Winter 2021]

February 9, 2021 School of Engineering and Technology, University of Washington - Tacoma

L10.14

Slides by Wes J. Lloyd

February 9, 2021

L10.7

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

CH. 3.3: CLIENTS

TYPES OF CLIENTS

®Thick clients
= Web browsers
= Client-side scripting
= Mobile apps
= Multi-tier MVC apps

®Thin clients
= Remote desktops/GUIs (very thin)

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.16

Slides by Wes J. Lloyd

February 9, 2021

L10.8

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

CLIENTS

® Application specific protocol

Client machine Server machine|

= Thick clients

Application Application
Application-

specific

= Clients maintain local data

Middleware protocol Middleware

= Middleware (APIs)

= Clients synchronize data with remote nodes
= Example: shared calendar application

Local O3 Local 0S
) :

L e :-J—

® Application independent

Client machine Server machine|
= Thin clients -AppEication -Appiication
q . A Application- A
= Client acts as a remote terminal independent

= Provides interface to user (GUI / Ul)

Middleware protocol Middleware
< »

Local OS Local 08

= Server houses entire application stack

Netwark

February 9, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma

110.17

X WINDOWS

m Layered architecture to transport Ul over network

B Remote desktop functionality for Linux/Unix systems

B X kernel acts as a server

= Provides the X protocol: application level protocol

= Xlib instances (client applications) exchange data and

events with X kernels (servers)

= Clients and servers on single machine - Linux GUI

= Client and server communication transported over the

network = remote Linux GUI

February 9, 2021 TCSS558: Applied Distributed Computing [Winter 2021]

School of Engineering and Technology, University of Washington - Tacoma

110.18

Slides by Wes J. Lloyd

February 9, 2021

L10.9

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

Slides by Wes J. Lloyd

X WINDOWS - 2

= Window manager:

= Application running
atop of X-windows
which provides flair

= Many variants

= Without X windows is
quite bland

The current manual page is: xsetdx).

user preference utility for ¥

15
xset |-display display] [-b] [b on/off] [b [voluse [pitch [duration]]]
[i-Ibe] [=c] [c onfaff] [c [volume]] [[+~[dpns] [dpns stanady [suspend

I offll] [dpns force standby/suspend/offfen] [(-+]fp(-+

pathlpatal,... 1] [£p default] [fp cehashl ({-]led [intogerl] [lod
enfest] [afowsel laccel mulel/eccel divl ~[thrssdoldl]] Infousel
aspeals) [pin ctee] [CE Bopeondy] (€ caface] Jlx kies seniy
Ire £ Tiongeh [poriod]]] [o Dlankrnoblank] lo cxpose/aerposal [n
i NG Pl i et fal

DESCRIPTION

This program is used to set various user preference options of the dis-
play.
oPTIONS

- display display
This aption apecifies the secver to uss; see X(77

b The b option controls bell volme. pitch and ducation This

option accepts up to thres mmerical paraneters, = preceding
dash(-). or a ‘enfoff' flag If no paraneters ace given. or
the ‘on’ flag 1s used, the system defaults will be used If
the dash or 'Off' are given, the bell vill be turned off. If
caly one numecical parmnete:

be The be option controls fug compatifility node in the secver, if

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

110.19

= Layered architecture

= X-kernel: low level
interface/APlIs for
controlling screen,
capturing keyboard
and mouse events
(X window Server)

® Provided on Linux
as Xlib

® Provides network
enabled GUI

® | ayering allows for
use for custom
window managers

February 9, 2021

Application Clients - User Productivity
OpenOffice.org, Firefox, Gimp

Desktop Environment - Application and
File Management
Gnome/KDE panels, desktop icon managers

Window and Compositing Manager -
Placement and Controls Of Windows
Compiz, Metacity, kwin

Session Manager
gnome-session, ksmserver

Dlsglay Manager - Local X Server Startup
User Authentication
gdm, kdm, xdm

Toolkits
GTK, Qt, Moif, Xaw

)’g Window Server - Display Hardware Management
org

Network Transports - Client -Server Connections
TCP/IP, Unix domain sockets

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma L10.20

February 9, 2021

L10.10

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

EXAMPLE: VNC SERVER

= How to Install VNC server on Ubuntu EC2 instance VM:
® sudo apt-get update

" # ubuntu 16.04
® sudo apt-get install ubuntu-desktop

® sudo apt-get install gnome-panel gnome-settings-
daemon metacity nautilus gnome-terminal

= # on ubuntu 18.04
® sudo apt install xfced4 xfced-goodies

" sudo apt-get install tightvncserver # both

m Start VNC server to create initial config file
B yncserver :1

TCSS558: Applied Distributed Computing [Winter 2021]

110.21
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

EXAMPLE: VNC SERVER - UBUNTU 16.04

® On the VM: edit config file: nano ~/.vnc/xstartup

®m Replace contents as below (Ubuntu 16.04):
#!/bin/sh

export XKL XMODMAP DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r SHOME/.Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &

nautilus &
gnome-terminal &

TCSS558: Applied Distributed Computing [Winter 2021]

110.22
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

Slides by Wes J. Lloyd

February 9, 2021

L10.11

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

EXAMPLE: VNC SERVER - UBUNTU 18.04

® On the VM:
® Edit config file: nano ~/.vnc/xstartup
®m Replace contents as below (Ubuntu 18.04):

#!/bin/bash
xrdb $HOME/ .Xresources
startxfced &

TCSS558: Applied Distributed Computing [Winter 2021]

110.23
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

VNC SERVER - UBUNTU 20.04 - GNOME

install vnc server
sudo apt install tigervnc-standalone-server
Sudo apt install ubuntu-gnome-desktop

vncserver :1 # creates a config file
vncserver -kill :1 # stop server

vi ~/.vnc/xstartup # edit config file
#!/bin/sh

Start Gnome 3 Desktop

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[—-r SHOME/ .Xresources] && xrdb $HOME/.Xresources
vncconfig -iconic &

dbus-launch --exit-with-session gnome-session &
sudo systemctl start gdm # start gnome desktop
sudo systemctl enable gdm

vncserver :1 # restart vnc server

TCSS558: Applied Distributed Computing [Winter 2021]

L10.24
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

Slides by Wes J. Lloyd

February 9, 2021

L10.12

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

EXAMPLE: VNC SERVER - 3

®m On the VM: reload config by restarting server
® yncserver -kill :1

® yncserver :1

® Open port 22 & 5901 in EC2 security group:

Edit inbound rules X

Type i Protocol (i Port Range (i Source (i

S5H ToP 22 Anywhere v [0.0.0.0/0 %]

Custom TCP Rule - TCP | [5801 ; Anywhere v 0.0.0.00 9
Add Rule Cancel “

TCSS558: Applied Distributed Computing [Winter 2021]
110.25
February's, 2021 School of Engineering and Technology, University of Washington - Tacoma

EXAMPLE: VNC CLIENT

® On the client (e.g. laptop):

m Create SSH connection to securely forward port 5901 on the
EC2 instance to your localhost port 5901

® This way your VNC client doesn’t need an SSH key

ssh -i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
-f -1 <username> <EC2-instance ip address>

® For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
1l ubuntu 52.111.202.44

TCSS558: Applied Distributed Computing [Winter 2021] 110.26

February 9, 2021 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

February 9, 2021

L10.13

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

EXAMPLE: VNC CLIENT - 2

® On the client (e.g. laptop):

Use a VNC Client to connect

® Remmina is provided by default on Ubuntu 16.04

®m Can “google” for many others

® Remmina login:

® Chose “VNC” protocol

® Log into “localhost:5901” 0 L

g YNC ¥ || localhost:5901 Connect!

j Name « Group Server

TCSS558: Applied Distributed Computing [Winter 2021]

February's, 2021 School of Engineering and Technology, University of Washington - Tacoma

110.27

REMOTE COMPUTER IN THE CLOUD

® EC2 instance
with a GUI. . .!I!

Downloads

[~

Templates

= F1 ubuntu@ip172315.. @ Home

TCSS558: Applied Distributed Computing [Winter 2021]

February 9, 2021 School of Engineering and Technology, University of Washington - Tacoma

110.28

Slides by Wes J. Lloyd

February 9, 2021

L10.14

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

THIN CLIENTS

® Thin clients
= X windows protocol
= A variety of other remote desktop protocols exist:

Remote desktop protocals include the following:

« Apple Remote Desktop Protocol (ARD) - Original protocol for Apple Remote Desktop on macOS machines.

= Appliance Link Protocol (ALP) — a Sun Microsystems-specific protocol featuring audio (play and record), remote printing, remote USB, accelerated video

« HP Remate Graphics Software (RGS) — a proprietary protocol designed by Hewlett-Packard specifically for high end workstation remoting and collaboration.

= Independent Computing Architecture (ICA) — a proprietary protocol designed by Citrix Systems

s NX technology (NoMachine NX) — Cross platform protocol featuring audio, video, remote printing, remote USB, H264-enabled.

« PC-over-IP (PColP) — a proprietary protocol used by VMware (licensed from Teradici)?

s Remote Desktop Protocol (RDP) — a Windows-specific protocol featuring audio and remote printing

s Remote Frame Buffer Protocol (RFB) — A framebuffer level cross-platform protocol that VNC is based on.

+ SPICE (Simple Protocol for Independent Computing Environments) — remote-display system built for virtual environments by Qumranet, now Red Hat

+ Splashtop —a high performance remote desktop protocol developed by Splashtop, fully optimized for hardware (H.264) including Intel / AMD chipsets, NVIDIA
of media codecs, Splashtop can deliver high frame rates with low latency, and also low power consumption.

« X Window System (X11) — a well-established cross-platform protocol mainly used for displaying local applications; X11 is network transparent

TCSS558: Applied Distributed Computing [Winter 2021]

110.29
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

THIN CLIENTS - 2

®m Applications should separate application logic from Ul

= When application logic and Ul interaction are tightly coupled
many requests get sent to X kernel

® Client must wait for response

®m Synchronous behavior and app-to-Ul coupling adverselt affects
performance of WAN / Internet

= Protocol optimizations: reduce bandwidth by shrinking size of
X protocol messages

®m Send only differences between messages with same identifier
®m Optimizations enable connections with 9600 kbps

TCSS558: Applied Distributed Computing [Winter 2021]

110.30
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

Slides by Wes J. Lloyd

February 9, 2021

L10.15

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

THIN CLIENTS - 3

® Virtual network computing (VNC)

® Send display over the network at the pixel level
(instead of X lib events)

® Reduce pixel encodings to save bandwidth - fewer colors
® Pixel-based approaches loose application semantics
® Can transport any GUI this way

® THINC- hybrid approach

® Send video device driver commands over network
® More powerful than pixel based operations

® | ess powerful compared to protocols such as X

TCSS558: Applied Distributed Computing [Winter 2021]

110.31
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics lib
VNC |'| X11
<

1] >

TCSS558: Applied Distributed Computing [Winter 2021]

110.32
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

Slides by Wes J. Lloyd

February 9, 2021

L10.16

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,
UW-Tacoma

Pixel-level
VNC I‘I

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols

Graphics lib
X11

>

< U
Generic - no app context
Graphics data
Higher network bandwidth
Fewer colors

Utilize graphics compression
More network traffic

e Application context
is available
e Ul data/operations
e Lower network bandwidth
e More colors

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]

110.33

School of Engineering and Technology, University of Washington - Tacoma

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY

m Clients help enable distribution transparency of servers

m Replication transparency
= Client aggregates responses from multiple servers
= Only the client knows of replicas

Client machine Server 1 Server £ Server 3
Client Server Server Server
appl! appl appl appl
|
A4

Client side handles \

request replication

—— I

Replicated request

TCSS558: Applied Distributed Computing [Winter 2021]

February 9, 2021 School of Engineering and Technology, University of Washington - Tacoma

L10.34

Slides by Wes J. Lloyd

February 9, 2021

L10.17

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY - 2

= | ocation/relocation/migration transparency

= Harness convenient naming system to allow client to infer new
locations

= Server inform client of moves / Client reconnects to new endpoint
= Client hides network address of server, and reconnects as needed
= May involve temporary loss in performance

®m Replication transparency
= Client aggregates responses from multiple servers

® Failure transparency
= Client retries, or maps to another server, or uses cached data

® Concurrency transparency
= Transaction servers abstract coordination of multithreading

TCSS558: Applied Distributed Computing [Winter 2021]

110.35
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

WE WILL RETURN AT

2:55PM

Slides by Wes J. Lloyd

February 9, 2021

L10.18

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

OBJECTIVES - 2/9

® Questions from 2/4

®m Assignment 1: Key/Value Store

= Java Maven project template files posted
® Midterm Thursday February 11
® Chapter 3: Processes

= Chapter 3.3: Clients

| =Chapter 3.4: Servers |

® Midterm Thursday February 11
= 2nd hour - Tuesday February 9 - practice midterm questions

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

110.37

Slides by Wes J. Lloyd

February 9, 2021

L10.19

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

SERVERS

® Cloud & Distributed Systems - rely on Linux

® http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

® |IT is moving to the cloud. And, what powers the cloud?

= Linux
® Uptime Institute survey - 1,000 IT executives (2016)

= 50% of IT executives - plan to migrate majority of IT workloads to
off-premise to cloud or colocation sites

= 23% expect the shift in 2017, 70% by 2020...
® Docker on Windows / Mac 0S X

= Based on Linux

= Mac: Hyperkit Linux VM

= Windows: Hyper-V Linux VM

TCSS558: Applied Distributed Computing [Winter 2021]

110.39
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

SERVERS - 2

m Servers implement a specific service for a collection of clients
m Servers wait for incoming requests, and respond accordingly

m Server types
= |[terative: immediately handle client requests

® Concurrent: Pass client request to separate thread

® Multithreaded servers are concurrent servers
= E.g. Apache Tomcat

m Alternative: fork a new process for each incoming request
® Hybrid: mix the use of multiple processes with thread pools

TCSS558: Applied Distributed Computing [Winter 2021]

L10.40
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

Slides by Wes J. Lloyd

February 9, 2021

L10.20

TCSS 558: Applied Distributed Computing

[Winter 2021] School of Engineering and Technology,

UW-Tacoma

Slides by Wes J. Lloyd

® Clients connect to servers via:
IP Address and Port Number

END POINTS

® How do ports get assigned?

= Many protocols support “default” port numbers

= Client must find IP address(es) of servers

= A single server often hosts multiple end points

(servers/services)

= When designing new TCP client/servers must be careful
nhot to repurpose ports already commonly used by others

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.41

CoMMON PORTS

7 Echo
19 Chargen
20-21 FTP
22
23 Telnet
25 SMTP
42 WINS Replication
43 WHOIS
49 TACACS
53 DNS
67-68 DHCP/BOOTP
69 TFTP
70 Gopher
79 Finger
80 HTTP
88 Kerberos
102 MS Exchange
110 POP3
113 Ident
119 NNTP (Usenet)
123 NTP
135 Microsoft RPC
137-139 NetBIOS
143 IMAP4
161-162 SNMP
177 XDMCP
179 BGP

989-990

TCP/UDP Port Numbers

554 RTSP

546-547 DHCPv6

560 rmonitor

563

587 SMTP

591 FileMaker

593 Microsoft DCOM
631 Internet Printing
636
639 MSDP (PIM)
646 LDP (MPLS)
691 MS Exchange
860 isCs!

873 rsync

902 VMware Server

993
995
1025 Microsoft RPC

1026-1029 Windows Messenger

1080 SOCKS Proxy
1080
1194 OpenVPN
1214
1241 Nessus

1311 Dell OpenManage
1337

2745
2967 Symantec AV
3050 Interbase DB
3074
3124 HTTP Proxy
3127
3128 HTTP Proxy
3222 GLBP

3260 iSCSI Target
3306 MySQL

3389 Terminal Server
3689 iTunes

3690 Subversion
3724

3784-3785 Ventrilo

4333 mSQL
4444
4664 Google Desktop
4672
4899 Radmin
5000 UPnP

5001 Slingbox
5001 iperf

5004-5005 RTP

5050
5060 SIP
5190

6891-6901

7648-7649

12035-12036

packetlife.net

6970 Quicktime
7212 GhostSurf

8000 Internet Radio
8080 HTTP Proxy

8086-8087 Kaspersky AV

8118 Privoxy

8200 VMware Server
8500 Adobe ColdFusion
8767
8866
9100 HP JetDirect

9101-9103 Bacula

9119
9800 WebDAV
9898
2988
9999 Urchin
10000 Webmin
10000 BackupExec

10113-10116 NetiQ

11371 OpenPGP

12345

13720-13721 NetBackup

14567

February 9, 2021

L10.21

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

TYPES OF SERVERS

= Daemon server
= Example: NTP server

mSuperserver

= Stateless server
= Example: Apache server

m Stateful server

= Object servers

mEJB servers

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

110.43

NTP EXAMPLE

®E Daemon servers

= Run locally on Linux

= Track current server end points (outside servers)

= Example: network time protocol (ntp) daemon
Listen locally on specific port (ntp is 123)

Daemons routes local client traffic to the configured

endpoint servers

University of Washington: time.u.washington.edu

Example “ntpg -p”’

= Queries local ntp daemon, routes traffic to configured server(s)

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.44

Slides by Wes J. Lloyd

February 9, 2021

L10.22

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

SUPERSERVER

® Linux inetd / xinetd
= Single superserver
= Extended internet service daemon
= Not installed by default on Ubuntu
= Intended for use on server machines

= Used to configure box as a server for multiple internet services
E.g. ftp, pop, telnet

= inetd daemon responds to multiple endpoints for multiple
services

= Requests fork a process to run required executable program

® Check what ports you’'re listening on:
" sudo netstat -tap | grep LISTEN

TCSS558: Applied Distributed Computing [Winter 2021]

110.45
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

INTERRUPTING A SERVER

m Server design issue:
= Active client/server communication is taking place over a port
= How can the server / data transfer protocol support interruption?

® Consider transferring a 1 GB image, how do you pass a
unrelated message in this stream?

1. Out-of-band data: special messages sent in-stream to support
interrupting the server (TCP urgent data)

2. Use a separate connection (different port) for admin control info

® Example: sftp secure file transfer protocol
= Once a file transfer is started, can’t be stopped easily
= Must kill the client and/or server

TCSS558: Applied Distributed Computing [Winter 2021]

L10.46
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

Slides by Wes J. Lloyd

February 9, 2021

L10.23

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

STATELESS SERVERS

®m Data about state of clients is not stored
= Example: web application servers are typically stateless
= Also function-as-a-service (FaaS) platforms

® Many servers maintain information on clients (e.g. log files)

® | oss of stateless data doesn’t disrupt server availability
= Loosing log files typically has minimal consequences

m Soft state: server maintains state on the client for a limited
time (to support sessions)

m Soft state information expires and is deleted

TCSS558: Applied Distributed Computing [Winter 2021]

110.47
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

STATEFUL SERVERS

® Maintain persistent information about clients
® Information must be explicitly deleted by the server

= Example:
File server - allows clients to keep local file copies for RW

m Server tracks client file permissions and most recent versions
= Table of (client, file) entries

® |f server crashes data must be recovered
® Entire state before a crash must be restored
® Fault tolerance - Ch. 8

TCSS558: Applied Distributed Computing [Winter 2021]

110.48
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

Slides by Wes J. Lloyd

February 9, 2021

L10.24

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

STATEFUL SERVERS - 2

= Session state
= Tracks series of operations by a single user
= Maintained temporarily, not indefinitely
= Often retained for multi-tier client server applications
= Minimal consequence if session state is lost
= Clients must start over, reinitialize sessions

® Permanent state
= Customer information, software keys

® Client-side cookies

= When servers don’t maintain client state, clients can store state
locally in “cookies”

= Cookies are not executable, simply client-side data

TCSS558: Applied Distributed Computing [Winter 2021]

February's, 2021 School of Engineering and Technology, University of Washington - Tacoma

110.49

OBJECT SERVERS

OBJECTIVE: Host objects and enable remote client access
Do not provide a specific service

= Do nothing if there are no objects to host

Support adding/removing hosted objects

® Provide a home where objects live

Objects, themselves, provide “services”

Object parts
= State data
= Code (methods, etc.)

Transient object(s)
= Objects with limited lifetime (< server)

= Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”).

= Disadvantage: initialization may be expensive
= Alternative: preinitialize and retain objects on server start-up

TCSS558: Applied Distributed Computing [Winter 2021]

February 9, 2021 School of Engineering and Technology, University of Washington - Tacoma

L10.50

Slides by Wes J. Lloyd

February 9, 2021

L10.25

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

OBJECT SERVERS - 2

Should object servers isolate memory for object instances?
= Share neither code nor data
= May be necessary if objects couple data and implementation

Object server threading designs:
= Single thread of control for object server
= One thread for each object
= Servers use separate thread for client requests

Threads created on demand vs.
Server maintains pool of threads

What are the tradeoffs for creating server threads on demand vs.
using a thread pool?

TCSS558: Applied Distributed Computing [Winter 2021]

110.51
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

EJB - ENTERPRISE JAVA BEANS

EJB- specialized Java object hosted by a EJB web container
4 types: stateless, stateful, entity, and message-driven beans

Provides “middleware” standard (framework) for implementing
back-ends of enterprise applications

EJB web application containers integrate support for:
= Transaction processing

= Persistence

= Concurrency

= Event-driven programming

= Asynchronous method invocation

= Job scheduling

= Naming and discovery services (JNDI)

= [nterprocess communication

= Security

= Software component deployment to an application server

TCSS558: Applied Distributed Computing [Winter 2021]

110.52
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

Slides by Wes J. Lloyd

February 9, 2021

L10.26

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

APACHE WEB SERVER

®m Highly configurable, extensible, platform independent
® Supports TCP HTTP protocol communication
® Uses hooks - placeholders for group of functions
® Requests processed in phases by hooks
u Many hooks_ Module Module Function Medule
= Translate a URL
= Write info to log s
= Check client ID i
= Check access rights DDB T lll
" Hooks processed in order “Hooks point to functions-in modules
enforcing flow-of-control -
Apache core
® Functions in replaceable it oo jorhook
m Od u I eS Request T Response
TCSS558: Applied Distributed Computing [Winter 2021] 110,53

February 9, 2021

School of Engineering and Technology, University of Washington - Tacoma

SERVER CLUSTERS

® Hosted across an LAN or WAN
® Collection of interconnected machines
®m Can be organized in tiers:

= Web server > app server > DB server
= App and DB server sometimes integrated

Logical switch Application/compute servers
(possibly multiple)
Dispatched
request /
>

Client requests Ry

First tier Second tier

Distributed
file/database
system

=
=
—

Third tier

February 9, 2021

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.54

Slides by Wes J. Lloyd

February 9, 2021

L10.27

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

LAN REQUEST DISPATCHING

® Front end of three tier architecture (logical switch) provides
distribution transparency - hides multiple servers

= Transport-layer switches: switch accepts TCP connection
requests, hands off to a server
= Example: hardware load balancer (F5 networks - Seattle)
= HW Load balancer - OSI layers 4-7

® Network-address-translation (NAT) approach:
= All requests pass through switch
= Switch sits in the middle of the client/server TCP connection
= Maps (rewrites) source and destination addresses
® Connection hand-off approach:
= TCP Handoff: switch hands of connection to a selected server

TCSS558: Applied Distributed Computing [Winter 2021]

110.55
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

LAN REQUEST DISPATCHING - 2

® Who is the best server to handle the request?

®m Switch plays important role in

C it Response
distributing requests il TP e | OO
= Implements load balancing // / .
= Round-robin - routes client Client “Roquet Ly Suicn | (handod om) :
requests to servers in a looping .
fashion

Server

® Transport-level - route client

requests based on TCP port number

= Content-aware request distribution - route requests based on
inspecting data payload and determining which server node
should process the request

TCSS558: Applied Distributed Computing [Winter 2021]

L10.56
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

Slides by Wes J. Lloyd

February 9, 2021

L10.28

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

WIDE AREA CLUSTERS

® Deployed across the internet

® Leverage resource/infrastructure from Internet Service
Providers (ISPs)

® Cloud computing simplifies building WAN clusters

®m Resource from a single cloud provider can be combined to
form a cluster

= For deploying a cloud-based cluster (WAN), what are the
implications of deploying nodes to:

® (1) a single availability zone (e.g. us-east-1e)?
® (2) across multiple availability zones?

TCSS558: Applied Distributed Computing [Winter 2021]

110.57
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

WAN REQUEST DISPATCHING

B Goal: minimize network latency using WANs (e.g. Internet)
®m Send requests to nearby servers

® Request dispatcher: routes requests to nearby server
= Example: Domain Name System
= Hierarchical decentralized haming system

® Linux: find your DNS servers:

Find you device name of interest
nmcli dev
Show device configuration

nmcli device show <device name>

TCSS558: Applied Distributed Computing [Winter 2021]

110.58
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

Slides by Wes J. Lloyd

February 9, 2021

L10.29

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

DNS LOOKUP

® First query local server(s) for address
m Typically there are (2) local DNS servers
= One is backup

® Hostname may be cached at local DNS server
= E.g. www.google.com

® If not found, local DNS server routes to other servers

® Routing based on components of the hostname

B DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

®m Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

TCSS558: Applied Distributed Computing [Winter 2021]
(RefiitEyy) 2Pl School of Engineering and Technology, University of Washington - Tacoma 11039

Local Name Server

5. iterative Query to root (rOOt)

A J

4. Check

6. Name Server for .edu

Root Name Server

7. iterative
Query to .edu

edu

8. Name Server for
googleplex.edu

.edu Name Server

9. Herative Query
to googleplex.edu

L 4

10. Name Server for googleplex

Cache Resolver compsci.googleplex.edu
googleplex.edu

* Ren sohilon Name Server
= 16. Requested 11. Iterative Query to 4
IP Address compsci.googleplex.edu =
‘ l] - | com@
. m 12.1P Address for []
—_—

5 =

www.net.compsci.googleplex.edy comnce; opiex.

edu
Name Server Elg m

User & Browser to Resolved Address
dAddress U B i
Client

Slides by Wes J. Lloyd

February 9, 2021

L10.30

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

DNS: LINUX COMMANDS

" nslookup <ip addr / hostname>
= Name server lookup - translates hostname or IP to the inverse

® traceroute <ip addr / hostname>
= Traces network path to destination
® By default, output is limited to 30 hops, can be increased

TCSS558: Applied Distributed Computing [Winter 2021]

110.61
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

DNS EXAMPLE - WAN DISPATCHING

® Ping www.google.com in WA from wireless network:

= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

= Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)
" Ping www.google.com in VA (us-east-1) from EC2 instance:

= nslookup: 1 address returned, choose 172.217.9.196

= Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

® From VA EC2 instance, ping WA www.google server
® Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)
® Pinging the WA-local server is ~60x slower from VA

® From local wireless network, ping VA us-east-1 google :
® Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCSS558: Applied Distributed Computing [Winter 2021]

110.62
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

Slides by Wes J. Lloyd

February 9, 2021

L10.31

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:
= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

Latency to ping VA server in WA: ~3.63x

WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x

VA client: local-google 1.278ms to WA-google 62.349!

= From local wireless network, ping VA us-east-1 google :

B Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCSS558: Applied Distributed Computing [Winter 2021]

February's, 2021 School of Engineering and Technology, University of Washington - Tacoma

110.63

OBJECTIVES - 2/9

= Questions from 2/4

® Assignment 1: Key/Value Store
= Java Maven project template files posted
® Midterm Thursday February 11
® Chapter 3: Processes
= Chapter 3.3: Clients
= Chapter 3.4: Servers
® Midterm Thursday February 11

= 2"d hour - Tuesday February 9 - practice midterm questions |

TCSS558: Applied Distributed Computing [Winter 2021]

February 9, 2021 School of Engineering and Technology, University of Washington - Tacoma

L10.64

Slides by Wes J. Lloyd

February 9, 2021

L10.32

TCSS 558: Applied Distributed Computing
[Winter 2021] School of Engineering and Technology,

UW-Tacoma

PRACTICE MIDTERM

= Envisioned as a class activity

® Form groups using Zoom breakout rooms

= Each group works on 2 assigned questions

® Group submits PDF solution by end of day today
= Late submission accepted through 5pm Wednesday

B |[nstructor shares best solutions provided from the class
submission via Canvas by Wednesday morning

= Subject to updates for late submissions

m All students have access to solutions for review and practice
= Follow link:

https://bit.ly/3p8alzH

TCSS558: Applied Distributed Computing [Winter 2021]

110.65
School of Engineering and Technology, University of Washington - Tacoma

February 9, 2021

QUESTIONS

TCSS558: Applied Distributed Computing [Winter 2021]
School of Engineering and Technology, University of Washington -

February 9, 2021

Slides by Wes J. Lloyd

February 9, 2021

L10.33

