
Page 1 of 12

TCSS 558: Applied Distributed Computing School of Engineering and Technology
Winter 2021 University of Washington – Tacoma
http://faculty.washington.edu/wlloyd/courses/tcss558 Instructor: Wes Lloyd

Assignment 1
Version 0.12

Key Value Store – Client/Server

Due Date: Tuesday February 16th, 2021 @ 11:59 pm, tentative

Objective
The purpose of assignment 1 is to build socket-based and/or remote-object based clients and servers.
For assignment 1 produce a program called “GenericNode”. GenericNode will receive command
arguments and then take on the role of a client or server for a basic Key-Value store. The following
operations should be supported:

Operation Description

put put <key> <value>

Put a value to the key-value store. The key uniquely identifies the object
to store. A unique key maps to only one object which has a unique
value. If multiple clients write to the same key, writes should be
synchronized.

get get <key>

Returns the value stored at <key>.

del del <key>

Deletes the value stored at <key> from the key value store.

store store

Prints the contents of the entire key-value store. You may optionally
truncate the output after returning 65,000 characters. If the contents of
the key value store exceed 65,000 bytes, the return should start with
“TRIMMED:” followed by the content.

exit Exit

When the exit command is sent by the client, the server is shutdown.

For the GenericNode program, the goal is to first implement a TCP client and server. Then the
GenericNode program should be expanded to implement a client/server using additional protocols: UDP
(connection-less), and remote objects (Java RMI).

The end goal is to perform a performance comparison of the transaction execution time for at least two
of the three protocols: TCP, UDP, and RMI.

Page 2 of 12

Students who submit a working GenericNode and performance comparison using all three protocols
(TCP, UDP, and RMI) without significant errors will be eligible for up to 20% extra credit.

The preferred implementation for assignment #1 is in Java 8 or 11. Students can implement assignment
#1 in Python if needed. No other languages are accepted in Winter 2021. Assignments in other
languages will be returned ungraded.

Submissions in Python

Solutions in Python must include detailed documentation describing how to deploy and operate the
client and server. All operations including setup must be explained. If the operation of any client or
server functions (put, get, del, store, exit) is unclear, no credit will be granted for these operations.
Solutions with insufficient documentation will be returned with no grade. For extra credit, distributed
objects in Python can use Pyro remote objects (4.x) available here:
https://pyro4.readthedocs.io/en/stable/. Python implementations using Pyro must include
documentation to explain precisely how to deploy and test the system.

Docker for Assignment #1

Dockerfiles should be provided for clients and servers to aid in testing the project. The project
submission should include a docker_client and docker_server directory that includes all of the required
files to build a client and server docker container. Optionally, these files may be used to help test the
project.

Clients and servers must be able to communicate on the local subnetwork shared among containers of a
single Docker host. The client container will use the docker container private network IP address to
facilitate communication with the server.

To support working with Docker containers, Dockerfiles for the client and server have been provided.
Sample docker_client and docker_server files have been added to the GenericNode.tar.gz file that is
downloaded on page 8. Feel free to use these, or develop new Dockerfiles...

When downloading GenericNode.tar.gz, “cd” into the individual docker_server or docker_client
directories to build the docker images.

The sample dockerfiles includes a placeholder indicating where the GenericNode.jar Java archive file
created using Maven should be copied. For assignment #1, compile the GenericNode.jar using Maven,
and copy the file to the docker_client and docker_server directories.

Inside the docker_server directory, a runserver.sh script has been provided.
This script includes a command to start a server for each of the given types.

When building your docker_server container, uncomment the specific server you’d like to run: TCP,
UDP, or RMI. Remove the “#”:
Dummy jar file
java -jar GenericNode.jar

Page 3 of 12

#TCP Server
#java -jar GenericNode.jar ts 1234

#UDP Server
#java -jar GenericNode.jar us 1234

#RMI Server
#rmiregistry -J-Djava.class.path=GenericNode.jar &
#java -Djava.rmi.server.codebase=file:GenericNode.jar -cp GenericNode.jar genericnode.GenericNode
rmis

Once running, to discover the internal IP address of your server running on a Docker host, use the
following sequence:

First, build the docker_server container:

$ cd docker_server
$ sudo docker build -t tcss558server .
Sending build context to Docker daemon 5.12kB
Step 1/7 : FROM ubuntu
 ---> ccc7a11d65b1
Step 2/7 : RUN apt-get update
 ---> Using cache
 ---> 1413c1a1f91b
Step 3/7 : RUN apt-get install -y default-jre
 ---> Using cache
 ---> b23e154d7af3
Step 4/7 : RUN apt-get install -y net-tools
 ---> Using cache
 ---> 1d81d5652fc2
Step 5/7 : COPY GenericNode.jar /
 ---> Using cache
 ---> f74d73c86c5c
Step 6/7 : COPY runserver.sh /
 ---> Using cache
 ---> f23167bd7d09
Step 7/7 : ENTRYPOINT /runserver.sh
 ---> Using cache
 ---> e921fbb5db7a
Successfully built e921fbb5db7a
Successfully tagged tcss558server:latest

Then, run the docker container:

$ sudo docker run -d --rm tcss558server
1ad8abcb16cae530322464099487d028154a2452072e5e20f6007ff3e5f1a66d

Page 4 of 12

Now, grab (copy and paste) your unique CONTAINER ID. The Name can also be used (here distracted
hodgkin):

Next, execute bash interactively on this container

$ sudo docker exec -it 1ad8abcb16ca bash

Then, use the “ifconfig” command inside the container to query the local IP address:

root@1ad8abcb16ca:/# ifconfig
eth0 Link encap:Ethernet HWaddr 02:42:ac:11:00:02
 inet addr:172.17.0.2 Bcast:0.0.0.0 Mask:255.255.0.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:48 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:6527 (6.5 KB) TX bytes:0 (0.0 B)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

It is recommended to develop clients and servers on a local machine, and then TEST your program
using deployments to Docker containers before submitting.

Running the servers

Servers should support the following syntax:

#TCP Server (ts for TCP server)
java -jar GenericNode.jar ts <server port number>

#Example:
java -jar GenericNode.jar ts 1234

#UDP Server (us for UDP server)
java -jar GenericNode.jar us <server port number>

#Example:
java -jar GenericNode.jar us 1234

#RMI Server (rmis for RMI server)

Page 5 of 12

rmiregistry -J-Djava.class.path=GenericNode.jar &
java -Djava.rmi.server.codebase=file:GenericNode.jar -cp GenericNode.jar
genericnode.GenericNode rmis

For Assignment #1, you may optionally have your servers output debugging information. But there are
no formal output requirements for servers to generate output either to the console, or to logfile(s).

Help Output

When GenericNode is run without parameters, produce a help message as below that identifies
available client/server functionality. For example, if only TCP and UDP are implemented, then RMI
messages are not shown.

GenericNode Usage:

Client:
uc/tc <address> <port> put <key> <msg> UDP/TCP CLIENT: Put an object into
store
uc/tc <address> <port> get <key> UDP/TCP CLIENT: Get an object from store by
key
uc/tc <address> <port> del <key> UDP/TCP CLIENT: Delete an object from store
by key
uc/tc <address> <port> store UDP/TCP CLIENT: Display object store
uc/tc <address> <port> exit UDP/TCP CLIENT: Shutdown server
rmic <address> put <key> <msg> RMI CLIENT: Put an object into store
rmic <address> get <key> RMI CLIENT: Get an object from store by key
rmic <address> del <key> RMI CLIENT: Delete an object from store by key
rmic <address> store RMI CLIENT: Display object store
rmic <address> exit RMI CLIENT: Shutdown server

Server:
us/ts <port> UDP/TCP: run udp or tcp server on <port>.
rmis run the RMI Server.
tus <tcpport> <udpport> TCP-and-UDP SERVER: run TCP server on <tcpport> and
UDP server on <udpport> sharing the same key-value store.
alls <tcpport> <udpport> TCP, UDP, and RMI SERVER: run TCP server on
<tcpport>, UDP server on <udpport>, and RMI server sharing the same KV store.

A nice feature to support in your GenericNode server jar is the ability to launch multiple types of servers
(TCP, UDP, RMI) to operate at-the-same-time against the same back-end data store. This feature is nice,
not required, and there is no extra credit available for implementing it, but should be easy to do. For
this “tus” will launch a TCP and UDP server at the same time, and “alls” will launch a TCP, UDP, and RMI
server all at the same time.

RMI registry

For distributed objects in Java, clients discover what remote objects are available by communicating
with a central RMI registry server. The RMI registry allows servers to publish their list of hosted objects
for discovery. RMI in Java uses a hybrid architecture where a centralized repository is used to track the
available distributed objects, and which servers they reside on.

IMPORTANT:
For assignment #1, run only one instance of the RMI registry.

Page 6 of 12

Once the RMI registry is started, a second instance cannot be started on the same network interface (i.e.
eth0, network card). The RMI registry locks down a PORT which cannot be shared amongst multiple
registry server instances.)

For this reason, check first if an RMI registry is running:

$ ps aux | grep rmi
wlloyd 2017 0.0 0.0 14224 976 pts/24 S+ 16:46 0:00 grep --
color=auto rmi
wlloyd 3912 0.0 0.2 11480904 79920 pts/19 Sl Oct21 0:17 rmiregistry -J-
Djava.class.path=GenericNode.jar
wlloyd 29988 0.1 0.1 685408 55120 ? Sl Oct21 2:04
/usr/lib/gnome-terminal/gnome-terminal-server

Kill the existing RMI registry server, by specifying the PID of the
existing server to terminate:
$ sudo kill 3912

When deploying new versions of the RMI server for testing, it is necessary to terminate and restart the
RMI registry each time.

Testing the servers

Once the IP address of the server is discovered, point your client to this IP address and include the port
number for TCP and UDP to support client/server interaction. RMI by default does not require a port to
be specified.

Get, put, delete, store, and exit commands should be supported using each protocol developed.

Please follow as closely as possible the output format shown below.

Note that regardless of protocol the CLIENT output is essentially the same.

TCP CLIENT TO SERVER INTERACTION

The first parameter is “tc” for TCP client.
The second parameter is the server IP address.
The third parameter is the server port.

Replace localhost with your server IP address.
“1234” represents the service port. The client and server allow the port number to be specified.
Replace with the port used.

$ java -jar GenericNode.jar tc localhost 1234 put a 123
server response:put key=a

$ java -jar GenericNode.jar tc localhost 1234 put b 456
server response:put key=b

$ java -jar GenericNode.jar tc localhost 1234 get a
server response:get key=a get val=123

Page 7 of 12

$ java -jar GenericNode.jar tc localhost 1234 del a
server response:delete key=a

$ java -jar GenericNode.jar tc localhost 1234 store
server response:
key:b:value:456:

$ java -jar GenericNode.jar tc localhost 1234 exit
<the server then exits>

UDP CLIENT TO SERVER INTERACTION

The first parameter is “uc” for UDP client.
The second parameter is the server IP address.
The third parameter is the server port.

UDP SERVERS LISTEN ON PORT A, SHOULD SEND ON PORT A+1
For example, if the UDP server listens on port 1234, it should respond on port 1235.

$ java -jar GenericNode.jar uc localhost 1234 put a 123
server response:put key=a

$ java -jar GenericNode.jar uc localhost 1234 put b 456
server response:put key=b

$ java -jar GenericNode.jar uc localhost 1234 get a
server response:get key=a get val=123

$ java -jar GenericNode.jar uc localhost 1234 del a
server response:delete key=a

$ java -jar GenericNode.jar uc localhost 1234 store
server response:
key:b:value:456:

$ java -jar GenericNode.jar uc localhost 1234 exit
<the server then exits>

RMI CLIENT TO SERVER INTERACTION

$ java -jar GenericNode.jar rmic localhost put a 123
server response:put key=a

$ java -jar GenericNode.jar rmic localhost put b 456
server response:put key=b

$ java -jar GenericNode.jar rmic localhost get a
server response:get key=a get val=123

Page 8 of 12

$ java -jar GenericNode.jar rmic localhost del a
server response:delete key=a

$ java -jar GenericNode.jar rmic localhost store
server response:
key:b:value:456:

$ java -jar GenericNode.jar rmic localhost exit
Closing client...

RMI References

These RMI references may be helpful:
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/codebase.html
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/hello/hello-world.html
https://docs.oracle.com/javase/tutorial/rmi/running.html

TCP / UDP References

These may be helpful:
https://systembash.com/a-simple-java-tcp-server-and-tcp-client/
https://docs.oracle.com/javase/tutorial/networking/sockets/index.html
https://docs.oracle.com/javase/tutorial/networking/datagrams/clientServer.html

Project Submission –Java Maven Project Template

All Java submissions are required to provide a maven project build file (pom.xml). The build file should
support two targets “clean” to purge binary files, and “verify” to build all project files. To support
Maven project submissions, a Java 11 LTS maven project template has been posted that includes a
skeleton structure for implementing the project as a Maven project using Java 11.

For Java submissions, use of the Maven template is strongly recommended. If the template is not used,
groups should submit a functionally equivalent maven project that responds to the same targets:
“clean” and “verify”.

to download the maven template project
wget http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/GenericNode.tar.gz

extract maven template project
tar xzf GenericNode.tar.gz

clean compilation files – should be performed before build
mvn clean

compile maven project
mvn verify

run maven project without any command line arguments – provides the help text
cd target
java -jar GenericNode.jar

For more information about maven, visit: https://maven.apache.org/

Page 9 of 12

The recommended IDE for Java development is Apache Netbeans 11 LTS or Apache Netbeans 12 LTS:
Download Apache Netbeans 11 LTS: https://netbeans.apache.org/download/nb110/nb110.html
Download Apache Netbeans 12 LTS: https://netbeans.apache.org/download/nb120/nb120.html

Visual Studio Code can also build Java maven projects: https://code.visualstudio.com/download

No other Java IDE is recommended. If a working maven build file (pom.xml) is not provided, then
detailed documentation is required that describes how to build the project executables from scratch.
Failure to provide a project with a working maven build file (pom.xml) may result in the project being
returned ungraded.

Testing Function and Performance

TCP, UDP, and RMI test scripts have been posted online at:

TCP:
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/bigtest_tc.sh

UDP:
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/bigtest_uc.sh

RMI:
http://faculty.washington.edu/wlloyd/courses/tcss558/assignments/a1/bigtest_rc.sh

These test files are only samples. To run these scripts, adjust the server and port BASH variables as
needed to test your deployments.

You can check that your server has worked on the script by counting the number of resulting lines in the
key value store at the conclusion of the test script as follows:

$java -jar GenericNode.jar rmic localhost store | wc -l

$java -jar GenericNode.jar tc localhost 1234 store | wc -l

$java -jar GenericNode.jar uc localhost 1234 store | wc -l

Assuming no blank lines, the count should be 70.

To obtain performance numbers of TCP, UDP, and/or RMI, run the scripts as follows:

#TCP
time ../bigtest_tc.sh > /dev/null

#UDP
time ../bigtest_uc.sh > /dev/null

#RMI
time ../bigtest_rc.sh > /dev/null

These are not the actual test files that will be used to grade projects. They are simple and basic. Please
modify the test files to make more interesting and complex tests.

Page 10 of 12

With your submission, please create a PDF file using Google Docs, MS Word, or another program.
Include in the file performance numbers obtained using the above tests as follows:

Assignment 1 Performance Comparison TCP, UDP, RMI
TCP 17.513s
UDP 53.112s
RMI 14.843s

Note the example times here are not actual performance times. These are random numbers.

Teams (optional)
It is strongly encouraged to complete this assignment in three person teams. One and two person
teams are acceptable as well.

If choosing to work in teams, only one person should submit the team’s tar gzip project source archive
file and the performance report PDF file to Canvas.

Additionally, EACH member of a team should submit a confidential effort report describing team
member participation. Effort reports are submitted INDEPENDENTLY and in confidence (i.e. not shared)
by each team member.

Effort reports are not used to directly numerically weight assignment grades.

Effort reports should be submitted as a PDF file named: “effort_report.pdf”. Use Google Docs, MS
Word, or Open/Libre Office to create and export a document in PDF format.
For assignment 0, the effort report should consist of a one-third to one-half page narrative description
describing how the team members worked together to complete the assignment.

Effort Report Narrative - address the following points:

1. Describe the key contributions made by each team member.
2. Describe how working together was beneficial for completing the assignment. This may include

how the learning objectives of using EC2, Docker, Docker-machine, and haproxy were supported
by the team effort.

3. Comment on disadvantages and/or challenges for working together on the assignment. This
could be anything from group dynamics, to commute challenges, to faulty technology.

4. At the bottom of the write-up provide an effort ranking from 0 to 100 for each team member.
Distribute a total of 100 points among both team members. Identify team members using first
and last name. For example:

John Doe
 Research 25
 Design 40
 Coding 30
 Testing 45

On Li
Research 40
Design 35
Coding 40
Testing 25

Page 11 of 12

 Jane Smith
 Research 35
 Design 25
 Coding 30
 Testing 30

Please do not simply put equal scores for all team members. It is very unlikely every team member
contributed exactly the same effort on all aspects. Please provide realistic rankings.
Team members may not share their effort reports, but should submit them independently in Canvas as
a PDF file. Failure of team members to submit the effort reports will result in the assignment receiving
NO GRADE…

Disclaimer regarding pair programming:
The purpose of TCSS 558 is for everyone to gain experience developing and working with distributed systems
and requisite compute infrastructure. Group/pair programming is provided as an opportunity to harness
teamwork to tackle programming challenges. But this does not mean that teams consist of one champion
programmer, and a other observers that simply watch the champion! The tasks and challenges should be
shared as equally as possible.

What to Submit
To submit the assignment, teams should build a single tar gzip archive file that contains all project
source code in a main project directory. This could be the Netbeans project folder. In the project
directory there should be two directories for the Docker containers: docker_server and docker_client.
The folders must be updated to include your GenericNode.jar file and they must support building a
functioning TCP, UDP, and/or RMI server container.

PDF files with performance results should be submitted as a separate file in Canvas.

Grading Rubric
This assignment will be scored out of 100 points, while as many as 123 points are possible.

Functionality 63 points
5 points TCP client/server put
5 points TCP client/server get
5 points TCP client/server del
5 points TCP client/server store
1 point TCP client/server exit
5 points UDP client/server put
5 points UDP client/server get
5 points UDP client/server del
5 points UDP client/server store
1 point UDP client/server exit
5 points RMI client/server put
5 points RMI client/server get
5 points RMI client/server del
5 points RMI client/server store
1 point RMI client/server exit

Page 12 of 12

Miscellaneous 60 points
10 points Use of multiple server threads
10 points Key-value store synchronization
10 points Performance comparison using at least two protocols
10 points Working docker containers
10 points Client/server interaction matches specification
5 points Coding style, code reuse among clients and servers
5 points Program compiles, instructions provided or Netbeans used

List of Common Docker Commands

Docker build
sudo docker build -t tcss558server .
sudo docker build -t tcss558client .

Run docker container in the background
sudo docker run -d --rm tcss558server
sudo docker run -d --rm tcss558client

Docker “shell” to a container
sudo docker exec -it <container-id> bash

To display all containers running on a given docker node:
docker ps -a

To stop a container:
docker stop <container-id>
For example:
docker stop cd5a89bb7a98

Also docker kill will kill a running container and docker rm will remove a container which has
exited but is no longer running.

Document History:
v.10 Initial version
v.11 Added maven project build files
v.12 GenericNode.tar.gz file updated to include the docker_client and docker_server files

