TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
||

Virtualization, Clients
and Servers

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

OBJECTIVES

® Assignment 1
® Feedback from 10/24

® Ch. 3 - Processes and threads
= Virtualization
= Clients
= Servers

TCSS558: Applied Distributed Computing [Fall 2017]

October 26, 2017 Institute of Technology, University of Washington - Tacoma

9.2

Slides by Wes J. Lloyd

October 26, 2017

L9.1

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

VIRTUALIZATION

VIRTUALIZATION

= |nitially introduced in the 1970s

on IBM mainframe computers S
m | egacy operating systems run in mainframe-based VMs

= | egacy software could be sustained by virtualizing legacy OSes

®m 1970s virtualization went away as desktop/rack-based

hardware became inexpensive

= Virtualization reappears in 2000s to leverage multi-core,

multi-CPU processor systems

= VM-Ware virtual machines enable companies to host many
virtual servers with mixed OSes on private clusters

® Cloud computing: Amazon offers VMs as-a-service (laaS)

October 26, 2017

TCSS558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma

L9.4

Slides by Wes J. Lloyd

October 26, 2017

L9.2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

TYPES OF VIRTUALIZATION

= Levels of instructions: |iyaryfunctions Application

= I
= Hardware: CPU System calls __| Library
= Privileged instructions Privileged jcm_‘
KERNEL MODE instructions ™3 I =
‘ Hardware

= General instructions

USER MODE

= Operating system: system calls

® Library: programming APIs: e.g. C/C++,C#, Java libraries

= Application:

® Goal of virtualization:
mimic these interface to provide a virtual computer

General
instructions

TCSS558: Applied Distributed Computing [Fall 2017]

October 26, 2017 Institute of Technology, University of Washington - Tacoma

TYPES OF VIRTUALIZATION - 2

‘ Application/Libraries

® Process virtual machine I

Runtime system

= |[nterpret instructions: (interpreters)

(JavaVM) byte code > HW instructions Operating system

= Emulate instructions: (emulators)

Hardware

(Wine) windows code - Linux code

= Native virtual machine monitor (VMM)

Application/Libraries

= Hypervisor (XEN): small OS with its own kernel Operating system

= Provides an interface for multiple guest OSes Virtual machine monitar

= Facilitates sharing/scheduling of

Hardware

CPU, device I/0 among many guests
= Guest OSes require special kernel to interface with VMM
= Paravirtualization

TCSS558: Applied Distributed Computing [Fall 2017]

October 26, 2017 Institute of Technology, University of Washington - Tacoma

L9.6

Slides by Wes J. Lloyd

October 26, 2017

L9.3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

TYPES OF VIRTUALIZATION - 3

= Hosted virtual machine monitor (VMM)

‘ Application/Libraries

= Runs atop of hosted operating system

= Uses host OS facilities for CPU scheduling, I/0
= Full virtualization

= Virtualbox

Operating system

Virtual machine monitor

Operating system

Hardware

m Text - note 3.5 -good explanation of full vs. paravirtualization
® GOAL: run all user mode instructions directly on the CPU
m x86 instruction set has ~17 privileged user mode instructions
= Full virtualization: scan the EXE, insert code around privileged

instructions to divert control to the VMM
= Paravirtualization: special OS kernel eliminates side effects of

privileged instructions

October 26, 2017

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

CH. 3.3: CLIENTS

Slides by Wes J. Lloyd

October 26, 2017

L9.4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

TYPES OF CLIENTS

®Thick clients
=Web browsers
Client-side scripting
= Mobile apps
= Multi-tier MVC apps

®Thin clients
= Remote desktops/GUIs (very thin)

TCSS558: Applied Distributed Computing [Fall 2017]
October 26, 2017 Institute of Technology, University of Washington - Tacoma

CLIENTS

Client machine

® Application specific protocol

Server machine|

. . Application
= Thick clients |: Application-

specific

= Clients maintain local data Middleware | protocol

= Middleware (APIs) Local 0S

= Clients synchronize data with remote nodes J—

= Example: shared calendar application

Application

Middleware

Local 0S

® Application independent

Client machine Server machine|
= Thin clients -AppEEcalion -Appiication
A . A Application- A
= Client acts as a remote terminal independent
A o Middleware protocol Middleware
= Provides interface to user (GUI / Ul) T e

= Server houses entire application stack | X

Network

TCSS558: Applied Distributed Computing [Fall 2017]

October 26, 2017 Institute of Technology, University of Washington - Tacoma

L9.10

Slides by Wes J. Lloyd

October 26, 2017

L9.5

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

X WINDOWS

® Layered architecture to transport Ul over network
= Remote desktop functionality for Linux/Unix systems

® X kernel acts as a server

= Provides the X protocol: application level protocol

= Xlib instances (client applications) exchange data and
events with X kernels (servers)

= Clients and servers on single machine - Linux GUI

= Client and server communication transported over the
network 2 remote Linux GUI

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

October 26, 2017

19.11

X WINDOWS - 2

= Window manager:

= Application running
atop of X-windows
which provides flair

= Many variants

HSET(1) ASET(1)

|
xeet - user preference utility for X

xset |-display display] [-b] [b on/off] [b [voluse lpizch [durationl]

Ti-the] [e) o onsete] (o Ivoluel] 1+-Tdpnol [dms sty | suspend

[]]] [dpns standby/suspead/o H m] (- up[=]
[toger|

= Without X windows is panired, i ety G
: Sk ot T T
q u Ite bla nd onfott] [s default] [o activate] [o reset] gl
DESCRIPTION

This progesm 1s used to set various user preference options of the dis-
play

aPTIONS
- display display
This aption specifies the secver to use; see 577
b The b optien cantrols bell volms, piteh snd durstion. his
Gption accepts up to thiee umerical parameters, a preceding

daah[) oF " ran/oft

{ Elaq e Dannev.axs are given. of
11 dIf

1111111

charact cs. The % ALl racteristics o
the bell 35 closely 35 it can £o the nser's specifications

be The be option contiols dug conpatibility node in the secver. it

TCSS558: Applled Distributed Computmg [Fall 2017]

October 26, 2017 Institute of Technology, University of Washington - Tacoma

L9.12

Slides by Wes J. Lloyd

October 26, 2017

L9.6

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

= Layered architecture

Application Clients - User Productivity
(OpenOffice.org, Firefox, Gimp

= X-kernel: low level
interface/APls for
controlling screen,
capturing keyboard
and mouse events
(X window Server)

Desktop Environment - Application and
File Management
Gnome/KDE panels, desktop icon managers

Window and Compositing Manager -
Placement and Controls Of Windows
Compiz, Metacity, kwin

Toolkits
GTK, Qt, Moif, Xaw

® Provided on Linux

as Xlib

® Provides network

enabled GUI

October 26, 2017

Session Manager
gnome-session, ksmserver

and User Authentication
gdm, kdm, xdm

Display Manager - Local X Server Startup I

X Window Server - Display Hardware Management
Korg

Network Transports - Client -Server Connections
TCP/IP, Unix domain sockets

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L9.13

EXAMPLE: VNC SERVER

= How to Install VNC server on Ubuntu 16.04 EC2 instance

® sudo apt-get

® sudo apt-get
® sudo apt-get

® sudo apt-get

update

install ubuntu-desktop

install tightvncserver

install gnome-panel gnome-settings-

daemon metacity nautilus gnome-terminal

m Start VNC server to create initial config file

B yncserver :1

October 26, 2017

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L9.14

Slides by Wes J. Lloyd

October 26, 2017

L9.7

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

EXAMPLE: VNC SERVER - 2

® Edit config file: nano ~/.vnc/xstartup
= Replace contents:

#!/bin/sh

export XKL XMODMAP DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r $SHOME/ .Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &

nautilus &
gnome-terminal &

TCSS558: Applied Distributed Computing [Fall 2017]

October 26, 2017 Institute of Technology, University of Washington - Tacoma

19.15

EXAMPLE: VNC SERVER - 3

® Reload config by restarting server
® yncserver -kill :1

B yncserver :1

® Open port 22 & 5901 in security group:

Ada Rule cance [

Edit inbound rules X
Type | Protocol (i Port Range (i Source i
SSH v TCP a2 Anywhare * 00000 []
Custom TCP Rule = TCP | 5801 ; Anywhere v 0.0.0.0/0 Q

TCSS558: Applied Distributed Computing [Fall 2017]

October 26, 2017 Institute of Technology, University of Washington - Tacoma

L9.16

Slides by Wes J. Lloyd

October 26, 2017

L9.8

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

EXAMPLE: VNC CLIENT

m Create SSH connection to securely forward port 5901 on the
EC2 instance to your localhost port 5901

® This way your VNC client doesn’t need an SSH key

ssh -i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
-f -1 <username> <EC2-instance ip_address>

= For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
1 ubuntu 52.111.202.44

TCSS558: Applied Distributed Computing [Fall 2017]

19.17
Institute of Technology, University of Washington - Tacoma

October 26, 2017

EXAMPLE: VNC CLIENT - 2

® Use a VNC Client to connect

B Remmina is provided by default on Ubuntu 16.04
= Can “google” for many others

® Remmina login:

® Chose “VNC” protocol

® Log into “localhost:5901"

Remmina Remote Desktop Client

B new

f VNC~ | localhost:5901 Connect!

)
jName <« Group Server

TCSS558: Applied Distributed Computing [Fall 2017]

19.18
Institute of Technology, University of Washington - Tacoma

October 26, 2017

Slides by Wes J. Lloyd

October 26, 2017

L9.9

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

REMOTE COMPUTER IN THE CLOUD

> B =@ &

= Yes, your EC2 instance = ° *
can have a GUI- . .! @ Applications Places

o ubuntu@Iip-172-31-58-89: ~
File Edit View Search Terminal Help
ubuntu@ip 89:

Downloads

Templates

1 ubuntu@ip-172-31-5

TCSS558: Applied Distributed Computing [Fall 2017]

October 26, 2017 Institute of Technology, University of Washington - Tacoma

19.19

THIN CLIENTS

® Thin clients
= X windows protocol
= A variety of other remote desktop protocols exist:

Remote desktop protocols include the following:

+ Apple Remote Desktop Pratocol (ARD) — Original protocol for Apple Remote Desktop en macOS machines.

« Appliance Link Protocol (ALP) — a Sun Microsystems-specific protocol featuring audio (play and record), remote printing, remote USB, accelerated video

+ HP Remote Graphics Software (RGS) — a proprietary protocol designed by Hewlett-Packard specifically for high end workstation remoting and collaboration.

« Independent Computing Architecture (ICA) — a proprietary protocol designed by Citrix Systems

» NX technology (NoMachine NX) — Cross platform protocol featuring audio, video, remote printing, remote USB, H264-enabled.

» PC-over-IP (PColP) — a proprietary protocol used by VMware (licensed from Teradici)?!

« Remote Desktop Pratocol (RDP) — a Windows-specific protocol featuring audio and remote printing

« Remote Frame Buffer Protocol (RFB) — A framebuffer level cross-platform protocol that VNC is based on.

« SPICE (Simple Protocol for Independent Computing Environments) — remote-display system built for virtual environments by Qumranet, now Red Hat

« Splashtop — a high performance remote desktop protocol developed by Splashtop, fully optimized for hardware (H.264) including Intel / AMD chipsets, NVIDIA
of media codecs, Splashtop can deliver high frame rates with low latency, and also low power consumption.

= X Window System (X11) — a well-established cross-platform protocol mainly used for displaying local applications; X11 is network transparent

TCSS558: Applied Distributed Computing [Fall 2017]

October 26, 2017 Institute of Technology, University of Washington - Tacoma

L9.20

Slides by Wes J. Lloyd

October 26, 2017

L9.10

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

THIN CLIENTS - 2

® Applications should separate application logic from Ul

® When application logic and Ul interaction are tightly coupled
many requests get sent to X kernel

® Client must wait for response

® Synchronous behavior and app-to-Ul coupling adverselt affects
performance of WAN / Internet

= Protocol optimizations: reduce bandwidth by shrinking size of
X protocol messages

®m Send only differences between messages with same identifier
® Optimizations enable connections with 9600 kbps

TCSS558: Applied Distributed Computing [Fall 2017]

19.21
Institute of Technology, University of Washington - Tacoma

October 26, 2017

THIN CLIENTS - 3

® Virtual network computing (VNC)

®m Send display over the network at the pixel level
(instead of X lib events)

® Reduce pixel encodings to save bandwidth - fewer colors
= Pixel-based approaches loose application semantics
® Can transport any GUI this way

= THINC- hybrid approach

® Send video device driver commands over network
® More powerful than pixel based operations

® Less powerful compared to protocols such as X

TCSS558: Applied Distributed Computing [Fall 2017]

19.22
Institute of Technology, University of Washington - Tacoma

October 26, 2017

Slides by Wes J. Lloyd

October 26, 2017

L9.11

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

® Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics lib
VNC |'| X11
< |.| >

TCSS558: Applied Distributed Computing [Fall 2017]

19.23
Institute of Technology, University of Washington - Tacoma

October 26, 2017

TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS

® Tradeoff space: abstraction level of remote display protocols

Pixel-level Graphics lib
VNC |'| X11
< 1 >
e Generic - no app context e Application context
e Graphics data is available
e Higher network bandwidth e Ul data/operations
e Fewer colors e Lower network bandwidth
e Utilize graphics compression e More colors
e More network traffic

TCSS558: Applied Distributed Computing [Fall 2017]

L9.24
Institute of Technology, University of Washington - Tacoma

October 26, 2017

Slides by Wes J. Lloyd

October 26, 2017

L9.12

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY

® Clients help enable distribution transparency of servers

® Replication transparency
= Client aggregates responses from multiple servers
= Only the client knows of replicas

Client machine Server 1 Server 2 Server 3
Client Server Server Server
app! appl appl appl
|
hd

Client side handles
request replication

TCSS558: Applied Distributed Computing [Fall 2017]

October 26, 2017 Institute of Technology, University of Washington - Tacoma

19.25

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY - 2

® | ocation/relocation/migration transparency

= Harness convenient naming system to allow client to infer new
locations

= Server inform client of moves / Client reconnects to new endpoint
= Client hides network address of server, and reconnects as needed
= May involve temporary loss in performance

®m Replication transparency
= Client aggregates responses from multiple servers

® Failure transparency
= Client retries, or maps to another server, or uses cached data

= Concurrency transparency
= Transaction servers abstract coordination of multithreading

TCSS558: Applied Distributed Computing [Fall 2017]

October 26, 2017 Institute of Technology, University of Washington - Tacoma

L9.26

Slides by Wes J. Lloyd

October 26, 2017

L9.13

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

~ CH. 3.4: SERVERS

i

SERVERS

® Cloud & Distributed Systems - rely on Linux

= http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

= |IT is moving to the cloud. And, what powers the cloud?
= Linux

= Uptime Institute survey - 1,000 IT executives (2016)

= 50% of IT executives - plan to migrate majority of IT workloads to
off-premise to cloud or colocation sites

= 23% expect the shift in 2017, 70% by 2020...
® Docker on Windows / Mac 0S X

= Based on Linux

= Mac: Hyperkit Linux VM

= Windows: Hyper-V Linux VM

TCSS558: Applied Distributed Computing [Fall 2017]

October 26, 2017 Institute of Technology, University of Washington - Tacoma

L9.28

Slides by Wes J. Lloyd

October 26, 2017

L9.14

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

® Servers implement a
m Servers wait for inco

m Server types
® [terative: immediate

SERVERS - 2

specific service for a collection of clients
ming requests, and respond accordingly

ly handle client requests

® Concurrent: Pass client request to separate thread

® Multithreaded servers are concurrent servers

= E.g. Apache Tomcat

m Alternative: fork a new process for each incoming request

® Hybrid: mix multiple

processes with thread pools

October 26, 2017 TCSS558: Ap

Institute of Technology, University of Washington - Tacoma

plied Distributed Computing [Fall 2017] 1929

END POINTS

E Clients connect to servers via:

IP Address and Por

t Number

® How do ports get assigned?

= Many protocols su

pport “default” port numbers

= Client must find IP address(es) of servers

= A single server often hosts multiple end points

(servers/services)

October 26, 2017 TCSS558: Ap

Institute of Technology, University of Washington - Tacoma

plied Distributed Computing [Fall 2017] 19.30

Slides by Wes J. Lloyd

October 26, 2017

L9.15

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

7 Echo
19 Chargen
20-21 FTP
2 SSHECHI
23 Telnet
25 SMTP
42 WINS Replication
43 WHOIS
49 TACACS
53 DNS
67-68 DHCP/BOOTP
69 TFTP
70 Gopher
79 Finger
80 HTTP
88 Kerberos
102 MS Exchange
110 POP3
113 Ident
119 NNTP (Usenet)
123 NTP
135 Microsoft RPC
137-139 NetBIOS
143 IMAP4
161-162 SNMP
177 XDMCP
179 BGP

CoMMON PORTS packetlife.net

TCP/UDP Port Numbers

554 RTSP 2745 EEEE 6891-6901 WifdeWSILVENIN
546-547 DHCPv6 2967 Symantec AV 6970 Quicktime

560 rmonitor 3050 Interbase DB 7212 GhostSurf

587 SMTP 3124 HTTP Proxy 8000 Internet Radio

591 FileMaker 3127 [ESST 8080 HTTP Proxy

593 Microsoft DCOM 3128 HTTP Proxy 8086-8087 Kaspersky AV

631 Internet Printing 3222 GLBP 8118 Privoxy

636 [[DAPGUEFSSENN 3260 iSCSI Target 8200 VMware Server

639 MSDP (PIM) 3306 MySQL 8500 Adobe ColdFusion

646 LDP (MPLS) 3389 Terminal Server 8767 [feamspeaci]

691 MS Exchange 3689 iTunes 8566 ERGICE

860 iSCSI 3690 Subversion 9100 HP JetDirect

873 rsync 3724 World of Warcraft | 9101-9103 Bacula

902 VMware Server 3784-3785 Ventrilo 9119 [FXENNN
989-990 FiEEErss 4333 msQL 9800 WebDAV

995 POP3 overssL | 4664 Google Desktop LEEEY

1025 Microsoft RPC 4672 eMule 9999 Urchin

1026-1029 Windows Messenger 4899 Radmin 10000 Webmin

1080 SOCKS Proxy 5000 UPnP 10000 BackupExec

1080 SR 5001 Slingbox 10113-10116 NetlQ

1194 OpenVPN 5001 iperf 11371 OpenPGP

1214 (SZE| 5004-5005 RTP 12035-12036 SEEERGLEIINN

1241 Nessus 5050 [YaRGeTiessengery 12345 [(EEENN

1311 Dell OpenManage 5060 SIP 13720-13721 NetBackup

1337 WASTENUNN 5100 AICONNNNNNNN =~ 14567 ESCASONNNNNN |

®Daemon server
= Example: NTP server

mSuperserver

= Stateless server
= Example: Apache server

= Stateful server
= Object servers

mEJB servers

TYPES OF SERVERS

October 26, 2017

TCSS558: Applied Distributed Computing [Fall 2017]

19.32
Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

October 26, 2017

L9.16

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

NTP EXAMPLE

® Daemon servers
= Run locally on Linux
= Track current server end points (outside servers)

= Example: network time protocol (ntp) daemon
Listen locally on specific port (ntp is 123)

Daemons routes local client traffic to the configured
endpoint servers

University of Washington: time.u.washington.edu
Example “ntpgq -p”
= Queries local ntp daemon, routes traffic to configured server(s)

TCSS558: Applied Distributed Computing [Fall 2017]

19.33
Institute of Technology, University of Washington - Tacoma

October 26, 2017

SUPERSERVER

E Linux inetd / xinetd
= Single superserver
= Extended internet service daemon
= Not installed by default on Ubuntu
= Intended for use on server machines

= Used to configure box as a server for multiple internet services
E.g. ftp, pop, telnet

= inetd daemon responds to multiple endpoints for multiple
services

= Requests fork a process to run required executable program

® Check what ports you're listening on:
" sudo netstat -tap | grep LISTEN

TCSS558: Applied Distributed Computing [Fall 2017]

L9.34
Institute of Technology, University of Washington - Tacoma

October 26, 2017

Slides by Wes J. Lloyd

October 26, 2017

L9.17

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

INTERRUPTING A SERVER

® Server design issue:
= Active client/server communication is taking place over a port
= How can the server / data transfer protocol support interruption?

® Consider transferring a 1 GB image, how do you pass a
unrelated message in this stream?

1. Out-of-band data: special messages sent in-stream to support
interrupting the server (TCP urgent data)

2. Use a separate connection (different port) for admin control info

®m Example: sftp secure file transfer protocol
= Once a file transfer is started, can’t be stopped easily
= Must kill the client and/or server

TCSS558: Applied Distributed Computing [Fall 2017]

19.35
Institute of Technology, University of Washington - Tacoma

October 26, 2017

STATELESS SERVERS

®m Data about state of clients is not stored
= Example: web servers are typically stateless

® Many servers maintain information on clients (e.g. log files)

m Loss of stateless data doesn’t disrupt server availability
= Loosing log files typically has minimal consequences

m Soft state: server maintains state on the client for a limited
time (to support sessions)

m Soft state information expires and is deleted

TCSS558: Applied Distributed Computing [Fall 2017]

L9.36
Institute of Technology, University of Washington - Tacoma

October 26, 2017

Slides by Wes J. Lloyd

October 26, 2017

L9.18

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

STATEFUL SERVERS

® Maintain persistent information about clients
® Information must be explicitly deleted by the server

= Example:
File server - allows clients to keep local file copies for RW

m Server tracks client file permissions and most recent versions
= Table of (client, file) entries

® |f server crashes data must be recovered
® Entire state before a crash must be restored
® Fault tolerance - Ch. 8

TCSS558: Applied Distributed Computing [Fall 2017]

19.37
Institute of Technology, University of Washington - Tacoma

October 26, 2017

STATEFUL SERVERS - 2

m Session state
= Tracks series of operations by a single user
= Maintained temporarily, not indefinitely
= Often retained for multi-tier client server applications
= Minimal consequence if session state is lost
= Clients must start over, reinitialize sessions

® Permanent state
= Customer information, software keys

® Client-side cookies

= When servers don’t maintain client state, clients can store state
locally in “cookies”

= Cookies are not executable, simply client-side data

TCSS558: Applied Distributed Computing [Fall 2017]

19.38
Institute of Technology, University of Washington - Tacoma

October 26, 2017

Slides by Wes J. Lloyd

October 26, 2017

L9.19

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

OBJECT SERVERS

Host objects and enable remote client access
Do not provide a specific service

= Do nothing if there are no objects to host

® Support adding/removing hosted objects
Provide a home where objects live

Objects, themselves, provide “services”

Object parts
= State data
= Code (methods, etc.)

= Transient object
= Objects with limited lifetime (< server)

= Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”).

= Disadvantage: initialization may be expensive
= Alternative: preinitialize and retain objects on server start-up

TCSS558: Applied Distributed Computing [Fall 2017]

19.39
Institute of Technology, University of Washington - Tacoma

October 26, 2017

OBJECT SERVERS - 2

Should object servers isolate memory for object instances?
= Share neither code nor data
= May be necessary if objects couple data and implementation

® Object server threading designs:
= Single thread of control for object server
= One thread for each object
= Servers use separate thread for client requests

® Threads created on demand vs.
Server maintains pool of threads

What are the tradeoffs for creating server threads on demand vs.
using a thread pool?

TCSS558: Applied Distributed Computing [Fall 2017]

L9.40
Institute of Technology, University of Washington - Tacoma

October 26, 2017

Slides by Wes J. Lloyd

October 26, 2017

L9.20

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

EJB - ENTERPRISE JAVA BEANS

EJB- specialized Java object hosted by a EJB web container
4 types: stateless, stateful, entity, and message-driven beans

Provides “middleware” standard (framework) for implementing
back-ends of enterprise applications

EJB web application containers integrate support for:
= Transaction processing

= Persistence

= Concurrency

= Event-driven programming

= Asynchronous method invocation

= Job scheduling

= Naming and discovery services (JNDI)

= Interprocess communication

= Security

= Software component deployment to an application server

TCSS558: Applied Distributed Computing [Fall 2017]

October 26, 2017 Institute of Technology, University of Washington - Tacoma

19.41

APACHE WEB SERVER

Highly configurable, extensible, platform independent
Supports TCP HTTP protocol communication
Uses hooks - placeholders for group of functions
Requests processed in phases by hooks

Many hooks: Modue Module

= Translate a URL

= Write info to log

= Check client ID

= Check access rights

Hooks processed in order

enforcing flow-of-control -
Apache core
Functions in replaceable inctions caled et hook

m0du|eS RequestT

Function

00, pA. m

"Hooks point to functions in

Response

Link between
function and hool

modules

TCSS558: Applied Distributed Computing [Fall 2017]

October 26, 2017 Institute of Technology, University of Washington - Tacoma

19.42

Slides by Wes J. Lloyd

October 26, 2017

L9.21

TCSS 558: Applied Distributed Computing [Fall 2017] October 26, 2017
Institute of Technology, UW-Tacoma

SERVER CLUSTERS

® Hosted across an LAN or WAN
® Collection of interconnected machines
® Can be organized in tiers:

= Web server > app server > DB server

= App and DB server sometimes integrated

Logical switch Application/compute servers Distributed
(possibly multiple) file/database
system

Dispatched / @
: request
Client requests .
e ——
= s
\\

First tier Second tier Third tier

TCSS558: Applied Distributed Computing [Fall 2017] 19.43

October 26, 2017 Institute of Technology, University of Washington - Tacoma

LAN REQUEST DISPATCHING

® Front end of three tier architecture (logical switch) provides
distribution transparency - hides multiple servers

® Transport-layer switches: switch accepts TCP connection
requests, hands off to a server

= Network-address-translation (NAT) approach:

= All requests pass through switch
= Switch sits in the middle of the client/server TCP connection

= Maps (rewrites) source and destination addresses

® Connection hand-off approach:
= TCP Handoff: switch hands of connection to a selected server

TCSS558: Applied Distributed Computing [Fall 2017] 19.44

October 26, 2017 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L9.22

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

LAN REQUEST DISPATCHING - 2

® Who is the best server to handle the request?

® Switch plays important role in e

distributing requests singe TOP ———zone . "] Server
* Implements load balancing e / .
= Round-robin - routes client o L Rewest |] e nangeson :
requests to servers in a looping .

fashion
= Transport-level - route client

Server

requests based on TCP port number

= Content-aware request distribution - route requests based on
inspecting data payload and determining which server node
should process the request

TCSS558: Applied Distributed Computing [Fall 2017]

19.45
Institute of Technology, University of Washington - Tacoma

October 26, 2017

WIDE AREA CLUSTERS

® Deployed across the internet

® Leverage resource/infrastructure from Internet Service
Providers (ISPs)

B Cloud computing simplifies building WAN clusters

® Resource from a single cloud provider can be combined to
form a cluster

= For deploying a cloud-based cluster (WAN), what are the
implications of deploying nodes to:

® (1) a single availability zone (e.g. us-east-1e)?
® (2) across multiple availability zones?

TCSS558: Applied Distributed Computing [Fall 2017]

L9.46
Institute of Technology, University of Washington - Tacoma

October 26, 2017

Slides by Wes J. Lloyd

October 26, 2017

L9.23

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

WAN REQUEST DISPATCHING

® Goal: minimize network latency using WANs (e.g. Internet)
® Send requests to nearby servers

® Request dispatcher: routes requests to nearby server

= Example: Domain Name System
= Hierarchical decentralized nhaming system

® Linux: find your DNS servers:

Find you device name of interest
nmcli dev
Show device configuration

nmcli device show <device name>

TCSS558: Applied Distributed Computing [Fall 2017]

19.47
Institute of Technology, University of Washington - Tacoma

October 26, 2017

DNS LOOKUP

® First query local server(s) for address

® Typically there are (2) local DNS servers
= One is backup

® Hostname may be cached at local DNS server
=" E.g. www.google.com

® If not found, local DNS server routes to other servers
® Routing based on components of the hostname

® DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

= Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

TCSS558: Applied Distributed Computing [Fall 2017]

19.48
Institute of Technology, University of Washington - Tacoma

October 26, 2017

Slides by Wes J. Lloyd

October 26, 2017

L9.24

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

Local Name Server
5. Iterative Query to root o
4. Check > > (root)
Cache 6. Name Server for .edu
Somme. [
e, Upaate, - C—— Root Name Server
T
Cache _
Servel o= 7. iterative | |
3 Recirsive Query to .edu il
Que
4 “?P?Am:d 8. Name Server for
googleplex.edu
.edu Name Server
9. Iterative Query
to googleplex.edu e
10. Name Server for googleplex
.googleplex.edu
googleplex.edu
Name Server
11. Iterative Query to -
compsci.googleplex.edu 5
s | compsci I

12. IP Address for

www.net.compsci.googleplex.edu compsci.googleplex.

User & Browser to Resolved Address
dAAAERR . oo U] v
Client

edu
Name Server Elg m

DNS EXAMPLE - WAN DISPATCHING

® Ping www.google.com in WA from wireless network:

= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

= Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)
" Ping www.google.com in VA (us-east-1) from EC2 instance:

= nslookup: 1 address returned, choose 172.217.9.196

= Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

From VA EC2 instance, ping WA www.google server
Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)
Pinging the WA-local server is ~60x slower from VA

From local wireless network, ping VA us-east-1 google :
Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCSS558: Applied Distributed Computing [Fall 2017] 19.50

October 26, 2017 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

October 26, 2017

L9.25

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:
= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

WA client: local-google 22.458ms to VA-google 81.637ms

VA client: local-google 1.278ms to WA-google 62.349!

Latency to ping VA server in WA: ~3.63x

Latency to ping WA server in VA: ~48.7x

® From local wireless network, ping VA us-east-1 google :

B Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCSS558: Applied Distributed Computing [Fall 2017]

October 26, 2017 Institute of Technology, University of Washington - Tacoma

L9.51

QUESTIONS

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

October 26, 2017

Slides by Wes J. Lloyd

October 26, 2017

L9.26

TCSS 558: Applied Distributed Computing [Fall 2017]

Institute of Technology, UW-Tacoma

EXTRA SLIDES

Slides by Wes J. Lloyd

October 26, 2017

L9.27

