TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 26, 2017

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
| |

Virtualization, Clients
and Servers

Fully Comnected

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

OBJECTIVES

= Assignment 1
= Feedback from 10/24

= Ch. 3 - Processes and threads
= Virtualization
= Clients
= Servers

PG P TCsS558: Applied Distributed Computing [Fall 2017] | o2 |

Institute of Technology, University of Washington - Tacoma

VIRTUALIZATION

VIRTUALIZATION

= |nitially introduced in the 1970s

on IBM mainframe computers

= Legacy operating systems run in mainframe-based VMs

= Legacy software could be sustained by virtualizing legacy OSes

= 1970s virtualization went away as desktop/rack-based
hardware became inexpensive

= Virtualization reappears in 2000s to leverage multi-core,
multi-CPU processor systems

= VM-Ware virtual machines enable companies to host many
virtual servers with mixed OSes on private clusters

= Cloud computing: Amazon offers VMs as-a-service (laa$S)

TCs5558: Applied Distributed Computing [Fall 2017] | ox |

October 26, 2017 Institute of Technology, University of Washington - Tacoma

TYPES OF VIRTUALIZATION

= Levels of INStructlons: Liraryfunctions __| APPication

= Hardware: CPU System calls

Operating system

= Privileged instructions Privileged General

KERNEL MODE

= General instructions
USER MODE

= Operating system: system calls
= Library: programming APls: e.g. C/C++,C#, Java libraries

= Applicatlon:

= Goal of virtuallzation:
mimic these interface to provide a virtual computer

TCSS558: Applied Distributed Computing [Fall 2017)

i 2 20 Institute of Technology/Universitylof Washingtons Tacomal

TYPES OF VIRTUALIZATION - 2

Application/Libraries

= Process virtual machine T I

. : . Runtime system
= Interpret instructions: (interpreters) e

(JavaVM) byte code > HW instructions Operating system

T B — |

= Emulate instructions: (emulators) Haniware

(Wine) windows code - Linux code

= Native virtual machine monitor (VMM) 2opkcatopl hiefes
= Hypervisor (XEN): small OS with its own kernel Operating system
= Provides an interface for multiple guest OSes Rl mahing Toorkir

T 8

= Facilitates sharing/scheduling of Hardware

CPU, device I/0 among many guests
= Guest OSes require special kernel to interface with VMM
= Paravirtuallzation

TCS5558: Applied Distributed Computing [Fall 2017)

(i et 20i) [nsetite ot Technolo sy Uniersityof Washinstoneacoma! | 108 |

Slides by Wes J. Lloyd

L9.1

TCSS 558: Applied Distributed Computing [Fall 2017]

Institute of Technology, UW-Tacoma

October 26, 2017

TYPES OF VIRTUALIZATION - 3

Application/Libraries

= Hosted virtual machine monlitor (VMM)
= Runs atop of hosted operating system ?Pe'a""g“ff'" i
= Uses host OS facilities for CPU scheduling, I/0 Virtual machine monitor

= Full virtualization Operating system
= Virtualbox . - i

Hardware

= Text - note 3.5 -good explanation of full vs. paravirtualization

= GOAL: run all user mode instructions directly on the CPU

= x86 instruction set has ~17 privileged user mode instructions

= Full virtualization: scan the EXE, insert code around privileged
instructions to divert control to the VMM

= Paravirtualization: special OS kernel eliminates side effects of
privileged instructions

TCsS558: Applied Distributed Computing [Fall 2017]
i A2, 205 R e T e e G T e e 07

CH. 3.3: CLIENTS

TYPES OF CLIENTS

= Thick clients
=Web browsers
Client-side scripting
= Mobile apps
= Multi-tier MVC apps

= Thin clients
= Remote desktops/GUIs (very thin)

TC55558: Applied Distributed Computing [Fall 2017] | oo ‘

i A2, 2 Inttute of Technoloay/Universitylof Washinstone Tacomal

CLIENTS
= Application specific protocol Sl e erver machin
= Thick clients opleaton [@
= Clients maintain local data Middleware :ge«:cﬁg» Middleware
= Middleware (APIs) Local OS le,os

= Clients synchronize data with remote nodes
= Example: shared calendar application

= Application independent Client mactin Server madhing

= Thin clients

. . Appiication-
= Client acts as a remote terminal
" . Middleware protocol Middleware
= Provides interface to user (GUI / Ul) Taiics Toice
= Server houses entire application stack | 5
Network
TCSS558: Applied Distributed Computing [Fall 2017]
(s et 201 [eete et Tachnclo U ety orWas hinsfoneacomel | L0 |

X WINDOWS

= Layered architecture to transport Ul over network
= Remote desktop functionality for Linux/Unix systems
= X kernel acts as a server

= Provides the X protocol: application level protocol

= Xlib instances (client applications) exchange data and
events with X kernels (servers)

= Clients and servers on single machine = Linux GUI

= Client and server communication transported over the
network - remote Linux GUI

TCsS558: Applied Distributed Computing [Fall 2017]
i 2 20 Institute of Technology/Universitylof Washingtons Tacomal

X WINDOWS - 2

= Window manager:
= Application running .
atop of X-windows -
which provides flair
= Many variants

= Without X windows is
quite bland
TCSS558: Applied Distributed Computing [Fall 2017)
(i et 20i) [nsetite ot Technolo sy Uniersityof Washinstoneacoma! Lz

Slides by Wes J. Lloyd

L9.2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 26, 2017

= Layered archltecture

= X-kernel: low level
interface/APls for
controlling screen,
capturing keyboard
and mouse events

(X window Server)

Desktop Environment - Application and
File: Mana%emem
Gnome/KDE panels, desktop icon managers

g{lindnw and C;?\positlin m’ar\?’ge, - Toolkits
lacement and Controls 0f Windows
Compiz, Metacity, kwin GTK, Qt, Mo, Xaw

Session Manager
- B gnome-session, ksmserver
= Provided on Linux

as Xlib
DisslayManage« ocal X Server Startup
) and User Authentication

= Provides network gdm,

enabled GUI

)}} Window Server - Display Hardware Management
(org

Network Transports - Client -Server Connections
TCP/IR, Unix domain sockets

TCSS558: Applied Distributed Computing [Fall 2017)

Octobere 121 Institute of Technology, University of Washington - Tacoma 1913

EXAMPLE: VNC SERVER

= How to Install VNC server on Ubuntu 16.04 EC2 Instance
® sudo apt-get update

® sudo apt-get install ubuntu-desktop
® sudo apt-get install tightvncserver

® sudo apt-get install gnome-panel gnome-settings-
daemon metacity nautilus gnome-terminal

Start VNC server to create initial config file
vncserver :1

PG P TCs5558: Applied Distributed Computing [Fall 2017] | o |

Institute of Technology, University of Washington - Tacoma

EXAMPLE: VNC SERVER - 2

= Edit config file: nano ~/.vnc/xstartup
= Replace contents:
#1/bin/sh

export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey

vncconfig -iconic &
gnome-panel &
gnome-settings-daemon &
metacity &

nautilus &
gnome-terminal &

TCS5558: Applied Distributed Computing [Fall 2017]

i A2, 2 Inttute of Technoloay/Universitylof Washinstone Tacomal

1015

EXAMPLE: VNC SERVER - 3

= Reload config by restarting server
®" vncserver -kill :1
® vncserver :1

= Open port 22 & 5901 in security group:

Editinbound rules x

Type § Protocol (1 Port Range (i Source (i

Anywhere v 00000

[x]
< v 00000 o

Gusiom TCP Rue v TR 5501 An

A PG, P TCs5558: Applied Distributed Computing [Fall 2017] | 016 |

Institute of Technology, University of Washington - Tacoma

EXAMPLE: VNC CLIENT

= Create SSH connection to securely forward port 5901 on the
EC2 instance to your localhost port 5901
= This way your VNC client doesn’t need an SSH key

ssh -i <ssh-keyfile> -L 5901:127.0.0.1:5901 -N
-f -1 <username> <EC2-instance ip_address>

= For example:
ssh -i mykey.pem -L 5901:127.0.0.1:5901 -N -f -
1l ubuntu 52.111.202.44

TCS5558: Applied Distributed Computing [Fall 2017]

i 2 20 Institute of Technology/Universitylof Washingtons Tacomal

1017

EXAMPLE: VNC CLIENT - 2

Use a VNC Client to connect

= Remmina is provided by default on Ubuntu 16.04
= Can “google” for many others

= Remmina login:

= Chose “VNC” protocol

= Log into “localhost:5901"

Remmina Remote Desktop Client

Ney

§ UnC ~ |[localhost:5901 Connect!

jName~ Group Server

October 26, 2017

TCS5558: Applied Distributed Computing [Fall 2017) o8
Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L9.3

TCSS 558: Applied Distributed Computing [Fall 2017] October 26, 2017
Institute of Technology, UW-Tacoma

REMOTE COMPUTER IN THE CLOUD THIN CLIENTS

= Yes, your EC2 instance j° it e = Thin clients
can have a GUI. . .!

= X windows protocol
= A variety of other remote desktop protocols exist:

Remote deskicp protocols include the followng:

« Apple Remote Desktop Protocol (ARD) - Original protocol for Apple Remots Deskiop on macOS mectines.

« Appliance Link Protocol (ALP) - a Sun Microsystems specific prorocol feattring audio (play znd record), reiate printing, remote USB, acoeerated viceo

« HP Remote Graphics Software (RGS) ~ a propristary protocol designed by Hewlett-Packard specfically for high end workstaiion remoting and collzboration,

« Independent Computing Arcritecturs (ICA) ~ a propristary protocol designed by Citrx Systems

« NX technology (NaMachire \X) - Cross platform protocol featuring audio, vido, remote frintirg, remote USE, H254-enabled.

* PC-over-IP (PCoIP) - a pioprietary protocal used by Vhware (iicensed from Teradici)?

« Remore Deskiop Protocol (RDP) — a Windows-specifc prctocol featuring audio and remote prirting

« Remore Frame Buffer Frotocol (RFB) - A framebufter level cross-platform prorocol that UNC is based on,

« SPICE (Simple Protocol for Indeperdent Computing Environments) — remote-display system builtfor vrtual environmenis by Qurrranet, now Red Hat

« Splashtop - a high performancs remote deskiop protocol developed by Splashtap, fuly optimized for hardware (+.264) including Intel / AVD chipsets, NVIDIA
of media cadecs, Splashtop can deliver figh frame rates vith low latency, and also low power consumption

« X Window System (XL1) - awellestablished cross-platfor protecal mainly used for displaying local applications; XL1 is network transparent

TCSS558: Applied Distributed Computing [Fall 2017)
i A2, 205 R e T e e G T e e

TCSS558: Applied Distributed Computing [Fall 2017]
(i et 201 T e et e e et S .20

THIN CLIENTS - 2 THIN CLIENTS - 3

= Applications should separate application logic from Ul = Virtual network computing (VNC)
= When application logic and Ul interaction are tightly coupled = Send display over the network at the pixel level
many requests get sent to X kernel (instead of X lib events)
= Client must wait for response = Reduce pixel encodings to save bandwidth - fewer colors
= Synchronous behavior and app-to-Ul coupling adverselt affects = Pixel-based approaches loose application semantics

performance of WAN / Internet = Can transport any GUI this way

= Protocol optimizations: reduce bandwidth by shrinking size of = THINC- hybrid approach
X protocol messages

= Send only differences between messages with same identifier
= Optimizations enable connections with 9600 kbps

= Send video device driver commands over network
= More powerful than pixel based operations
= Less powerful compared to protocols such as X

October 26, 2017 TCS5558: Applied Distributed Computing [Fall 2017]

w2
Institute of Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Fall 2017]
(s et 201 [eete et Tachnclo U ety orWas hinsfoneacomel L2z

TRADEOFFS: ABSTRACTION OF REMOTE TRADEOFFS: ABSTRACTION OF REMOTE

DISPLAY PROTOCOLS DISPLAY PROTOCOLS

= Tradeoff space: abstraction level of remote display protocols = Tradeoff space: abstraction level of remote display protocols
Plxel-level Graphlcs IIb Pixel-level Graphics Iib
VNC I-I X11 VNC P |'| XE.1
< 1 > < U >
® Generic - no app context e Application context
e Graphics data is available
o Higher network bandwidth e Ul data/operations
e Fewer colors e Lower network bandwidth
o Utilize graphics compression o More colors
e More network traffic

October 26, 2017 TCS5558: Applied Distributed Computing [Fall 2017]

2
Institute of Technology, University of Washington - Tacoma

Institute of Technology, University of Washington - Tacoma

A PG, P TCs5558: Applied Distributed Computing [Fall 2017] | oas |

Slides by Wes J. Lloyd L9.4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

CLIENT ROLES IN PROVIDING

DISTRIBUTION TRANSPARENCY

= Clients help enable distribution transparency of servers

= Replication transparency
= Client aggregates responses from multiple servers
= Only the client knows of replicas

Client machine erver 1 erver Server 3
Client Server Server Server
appl appl appl appl
Y
N . A A

lient sidé handles
request replication

Replicated request

TCSS558: Applied Distributed Computing [Fall 2017)

i A2, 205 R e T e e G T e e

October 26, 2017

CLIENT ROLES IN PROVIDING
DISTRIBUTION TRANSPARENCY - 2

= Location/relocation/migration transparency

= Harness convenient naming system to allow client to infer new
locations

= Server inform client of moves / Client reconnects to new endpoint
= Client hides network address of server, and reconnects as needed
= May involve temporary loss in performance

= Replication transparency
= Client aggregates responses from multiple servers
= Failure transparency

= Client retries, or maps to another server, or uses cached data

= Concurrency transparency
= Transaction servers abstract coordination of multithreading

TCS5558: Applied Distributed Computing [Fall 2017)

el Al Institute of Technology, University of Washington - Tacoma

i |
SERVERS

SERVERS

= Cloud & Distributed Systems - rely on Linux
= http://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/
= |IT is moving to the cloud. And, what powers the cloud?
=Linux
= Uptime Institute survey - 1,000 IT executives (2016)
= 50% of IT executives - plan to migrate majority of IT workloads to
off-premise to cloud or colocation sites
= 23% expect the shift in 2017, 70% by 2020...
= Docker on Windows / Mac 0S X
= Based on Linux
= Mac: Hyperkit Linux VM
= Windows: Hyper-V Linux VM

October 26, 2017 TCSS558: Applied Distributed Computing [Fall 2017)

Institute of Technology, University of Washington - Tacoma | 128

SERVERS - 2

= Servers implement a specific service for a collection of clients
= Servers wait for incoming requests, and respond accordingly

= Server types
= |teratlve: immediately handle client requests
= Concurrent: Pass client request to separate thread

= Multithreaded servers are concurrent servers
= E.g. Apache Tomcat

= Alternative: fork a new process for each incoming request
= Hybrid: mix multiple processes with thread pools

TCSS558: Applied Distributed Computing [Fall 2017)

i 2 20 Institute of Technology/Universitylof Washingtons Tacomal

END POINTS

= Clients connect to servers via:
IP Address and Port Number

= How do ports get assigned?
= Many protocols support “default” port numbers
= Client must find IP address(es) of servers

= A single server often hosts multiple end points
(servers/services)

TCS5558: Applied Distributed Computing [Fall 2017)

@iyl Al Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L9.5

TCSS 558: Applied Distributed Computing [Fall 2017]

Institute of Technology, UW-Tacoma

October 26, 2017

CoMMON PORTS packetlife.net
TCP/UDP Port Numbers
7 Echo 554 RTSP 2745 6891-6901
19 Chargen 546-547 DHCPV6 2967 Symantec AV 6970 Quicktime
20-21 FTP 560 rmonitor 3050 Interbase DB 7212 Ghostsurf
22 SSHECEN 563 3074 ECKEVENIIN 7648-7649
23 Telnet 587 SMTP 3124 HTTP Proxy 8000 Internet Radio
25 SMTP 591 FileMaker 3127 S 8080 HTTP Proxy
42 WINS Replication 593 Microsoft DCOM 3128 HTTP Proxy 8086-8087 Kaspersky AV
43 wHois 631 Internet Printing 3222 GLep 8118 Privoxy
49 TaCACS 636 3260 iSCsi Target 8200 VMware Server
53 DNS 639 MSDP (PIM) 3306 MySQL 8500 Adobe ColdFusion
67-68 DHCP/BOOTP 646 LDP (MPLS) 3389 Terminal Server 8767 EamGEERI
69 TFTP 691 MS Exchange 3689 iTunes 8866 [EEGEEINN
70 Gopher 860 iSCS! 3690 Subversion 9100 HP JetDirect
79 Finger 873 rsync 3724 9101-9103 Bacula
80 HTTP 902 VMware Server 37843785 Ventrio o110 FRENII
88 Kerberos 989-990 [FEIOVERSSENN 4333 msQL 9800 WebDAV
102 Ms Exchange 993 iMAPA over SSL aaaa o800 FEESEHN
110 PoP3 995 4664 Google Deskiop 9985 [EGUSHBOMN
113 Ident 1025 Microsoft RPC 4672 EMGEEIIN 9999 Urchin
119 NNTP (Usenet) 1026-1029 Windows Messenger 4899 Radmin 10000 Webmin
123 NTP 1080 SOCKS Proxy 5000 UPnP 10000 Backupéxec
135 Microsoft RPC 1080 [EESHI 5001 Slingbox 10113-10116 NetiQ
137-139 NetBios 1194 OpenvPN 5001 iperf 11371 OpenPGP
143 ivaPs 1214 50045005 RTP 12035-1203¢ [EESTATENIN
161-162 SNMP 1241 Nessus 5050 {aRgoliessengen) 12345 SIS
177 xoMCP 1311 Dell OpenManage 5060 SIP 13720-13721 NetBackup
179 8Ge 1337 190

TYPES OF SERVERS

= Daemon server
= Example: NTP server

=Superserver

= Stateless server
= Example: Apache server

= Stateful server
= QObject servers

= EJB servers

TCS5558: Applied Distributed Computing [Fall 2017) | 1032

October 26, 2017 Institute of Technology, University of Washington - Tacoma

NTP EXAMPLE

= Daemon servers
= Run locally on Linux
=Track current server end points (outside servers)

= Example: network time protocol (ntp) daemon
Listen locally on specific port (ntp is 123)
Daemons routes local client traffic to the configured
endpoint servers
University of Washington: time.u.washington.edu
Example “ntpg -p”

= Queries local ntp daemon, routes traffic to configured server(s)

TCS5558: Applied Distributed Computing [Fall 2017]

i A2, 2 Inttute of Technoloay/Universitylof Washinstone Tacomal

SUPERSERVER

= Linux inetd / xinetd
= Single superserver
= Extended internet service daemon
= Not installed by default on Ubuntu
= Intended for use on server machines
= Used to configure box as a server for multiple internet services
E.g. ftp, pop, telnet
= inetd daemon responds to multiple endpoints for multiple
services
= Requests fork a process to run required executable program

= Check what ports you’'re listening on:
®" sudo netstat -tap | grep LISTEN

October 26, 2017 TCSS558: Applied Distributed Computing [Fall 2017) | oz

Institute of Technology, University of Washington - Tacoma

INTERRUPTING A SERVER

= Server design issue:

= Active client/server communication is taking place over a port
= How can the server / data transfer protocol support interruption?

= Consider transferring a 1 GB image, how do you pass a
unrelated message in this stream?

1. Out-of-band data: special messages sent in-stream to support
interrupting the server (TCP urgent data)
2. Use a separate connection (different port) for admin control info

= Example: sftp secure file transfer protocol
= Once a file transfer is started, can’t be stopped easily
= Must kill the client and/or server

TCSS558: Applied Distributed Computing [Fall 2017)
Institute of Technology, University of Washington - Tacoma

October 26, 2017 1935 ‘

STATELESS SERVERS

= Data about state of clients is not stored
= Example: web servers are typically stateless

= Many servers maintain information on clients (e.g. log files)

= Loss of stateless data doesn’t disrupt server availability
= Loosing log files typically has minimal consequences

= Soft state: server maintains state on the client for a limited
time (to support sessions)
= Soft state information expires and is deleted

TCS5558: Applied Distributed Computing [Fall 2017) | 1936

October 26, 2017 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L9.6

TCSS 558: Applied Distributed Computing [Fall 2017] October 26, 2017
Institute of Technology, UW-Tacoma

STATEFUL SERVERS STATEFUL SERVERS - 2

= Maintain persistent information about clients = Session state
= Information must be explicitly deleted by the server = Tracks series of operations by a single user
= Example: = Maintained temporarily, not indefinitely
File server - allows clients to keep local file copies for RW = Often retained for multi-tier client server applications
= Server tracks client file permissions and most recent versions * Minimal consequence if session state is lost
= Table of (client, file) entries = Clients must start over, reinitialize sessions

= Permanent state

= |f server crashes data must be recovered = Customer information, software keys

= Entire state before a crash must be restored

= Client-side cookies
= Fault tolerance - Ch. 8

= When servers don’t maintain client state, clients can store state
locally in “cookies”

= Cookies are not executable, simply client-side data

TCS5558: Applied Distributed Computing [Fall 2017]

i A2, 205 R e T e e G T e e

oy ‘ PG P TCs5558: Applied Distributed Computing [Fall 2017] | 038 |

Institute of Technology, University of Washington - Tacoma

OBJECT SERVERS OBJECT SERVERS - 2

= Host objects and enable remote client access = Should object servers Isolate memory for object Instances?
= Do not provide a specific service = Share neither code nor data

= Do nothing if there are no objects to host
= Support adding/removing hosted objects
= Provide a home where objects live
= Objects, themselves, provide “services”

= May be necessary if objects couple data and implementation

= Object server threading designs:
= Single thread of control for object server

= Object parts = One thread for each object
= State data = Servers use separate thread for client requests
= Code (methods, etc.)
= Translent obJect = Threads created on demand vs.
= Objects with limited lifetime (< server) Server maintains pool of threads
= Created at first invocation, destroyed when no longer used
(i.e. no clients remain “bound”). = What are the tradeoffs for creating server threads on demand vs.
= Disadvantage: initialization may be expensive using a thread pool?

= Alternative: preinitialize and retain objects on server start-up

TCS5558: Applied Distributed Computing [Fall 2017]

i A2, 2 Inttute of Technoloay/Universitylof Washinstone Tacomal

o ‘ A PG, P TCs5558: Applied Distributed Computing [Fall 2017] | oa0 |

Institute of Technology, University of Washington - Tacoma

EJB - ENTERPRISE JAVA BEANS APACHE WEB SERVER

= EJB- specialized Java object hosted by a EJB web container = Highly configurable, extensible, platform independent
= 4 types: stateless, stateful, entity, and message-driven beans = Supports TCP HTTP protocol communication
= Provides “middleware” standard (framework) for implementing

back-ends of enterprise applications = Uses hooks - placeholders for group of functions
= EJB web application containers integrate support for: = Requests processed in phases by hooks
= Transaction processing = Many hooks: Module Module Funclon __ Module
P FeEEReeEs = Translate a URL ‘Du' ‘DD!M /EBEE‘
" CEREICE) = Write info to log) T g
= Event-driven programming . i o bz
= Asynchronous method invocation ® Check client ID -
= Job scheduling = Check access rights
; ; . _ 0g fn mm
= Naming and discovery services (JNDI) " Hooks processed in order ===! "Hooks point to functions in modules
= Interprocess communication i -of- /
. p_ enforcing flow-of-control m
ecurity = Functions in replaceable Functions called per hook
= Software component deployment to an application server TS oot R

TCS5558: Applied Distributed Computing [Fall 2017]

TCsS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

October 26, 2017 Institute of Technology, University of Washington - Tacoma

1041 ‘ October 26, 2017 | 1942 |

Slides by Wes J. Lloyd L9.7

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 26, 2017

SERVER CLUSTERS

= Hosted across an LAN or WAN
= Collection of interconnected machines
= Can be organized in tiers:

= Web server > app server > DB server

= App and DB server sometimes integrated

Logical switch
(possibly multiple)

Application/compute servers Distributed
fle/database.
system

-
-
O +-w

First fier Second tier Third tier

Dispatched
request

Client requests
— O

TCS5558: Applied Distributed Computing [Fall 2017]

Institute of Technology, University of Washington - Tacoma 43

October 26, 2017

LAN REQUEST DISPATCHING

= Front end of three tier architecture (logical switch) provides
distribution transparency - hides multiple servers

= Transport-layer switches: switch accepts TCP connection
requests, hands off to a server

= Network-address-translation (NAT) approach:
= All requests pass through switch
= Switch sits in the middle of the client/server TCP connection
= Maps (rewrites) source and destination addresses
= Connection hand-off approach:
= TCP Handoff: switch hands of connection to a selected server

TCs5558: Applied Distributed Computing [Fall 2017] | o |

el Al Institute of Technology, University of Washington - Tacoma

LAN REQUEST DISPATCHING - 2

= Who is the best server to handle the request?

= Switch plays important role in Logoalia
W b e e T =
distributing requests e 10 ooy

= Implements load balancing

" Round-robln - routes client
requests to servers in a looping
fashion

= Transport-level - route client
requests based on TCP port number

= Content-aware request distribution - route requests based on
inspecting data payload and determining which server node
should process the request

TCS5558: Applied Distributed Computing [Fall 2017]

1945
Institute of Technology, University of Washington - Tacoma

October 26, 2017

WIDE AREA CLUSTERS

= Deployed across the internet

= Leverage resource/infrastructure from Internet Service
Providers (ISPs)

= Cloud computing simplifies building WAN clusters

= Resource from a single cloud provider can be combined to
form a cluster

= For deploylng a cloud-based cluster (WAN), what are the
implications of deploying nodes to:

= (1) a single availability zone (e.g. us-east-1e)?

® (2) across multiple availability zones?

A PG, P TCs5558: Applied Distributed Computing [Fall 2017] | oas |

Institute of Technology, University of Washington - Tacoma

WAN REQUEST DISPATCHING

= Goal: minimize network latency using WANs (e.g. Internet)
= Send requests to nearby servers

= Request dispatcher: routes requests to nearby server

= Example: Domain Name System
= Hierarchical decentralized naming system

= Linux: find your DNS servers:

Find you device name of interest
nmcli dev

Show device configuration

nmcli device show <device name>

TCSS558: Applied Distributed Computing [Fall 2017)
Institute of Technology, University of Washington - Tacoma

October 26, 2017 19.47

DNS LOOKUP

= First query local server(s) for address

= Typically there are (2) local DNS servers
= One is backup

= Hostname may be cached at local DNS server

= E.g. www.google.com
= |f not found, local DNS server routes to other servers
= Routing based on components of the hostname

= DNS servers down the chain mask the client IP, and use the
originating DNS server IP to identify a local host

= Weakness: client may be far from DNS server used.
Resolved hostname is close to DNS server, but not
necessarily close to the client

TCs5558: Applied Distributed Computing [Fall 2017] | loas |

October 26, 2017 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L9.8

TCSS 558: Applied Distributed Computing [Fall 2017]

Institute of Technology, UW-Tacoma

October 26, 2017

Local Name Server
5. lterative Query to root

ook (root)
B 6. Name Server for .edu
@ | C— 2
A —
_ Root Name Server
13. umm
Server | 7. lterative
3. Recursive | Queyto.edu
Query 14, edu
W hadrass 8. Name Server for
googleplex.edu
2.Check edu Name Server
Cache e :
«—p 9. terative Query
* to googleplex.edu
: —
15. — &=
M 10. Name Server for googleplex
Resolver compsei.googleplex.edu
googleplex.edu
i “‘m Name Server
16. Requested 14, Iterative Query to .
w Address compsci.googleplex.edu

= =
12.1P Address for

17.HTTP Request
User & Browser to Resolved Address

DNS EXAMPLE - WAN DISPATCHING

Ping www.google.com in WA from wireless network:

= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

= Ping 74.125.28.147: Average RTT = 22.458 ms (11 attempts, 22 hops)
Ping www.google.com in VA (us-east-1) from EC2 instance:

= nslookup: 1 address returned, choose 172.217.9.196

= Ping 172.217.9.196: Average RTT = 1.278 ms (11 attempts, 13 hops)

From VA EC2 instance, ping WA www.google server
Ping 74.125.28.147: Average RTT 62.349ms (11 attempts, 27 hops)
Pinging the WA-local server is ~60x slower from VA

From local wireless network, ping VA us-east-1 google :
Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

PG P TCsS558: Applied Distributed Computing [Fall 2017] | o5 |

Institute of Technology, University of Washington - Tacoma

DNS EXAMPLE - WAN DISPATCHING

= Ping www.google.com in WA from wireless network:
= nslookup: 6 alternate addresses returned, choose (74.125.28.147)

Latency to ping VA server in WA: ~3.63x

WA client: local-google 22.458ms to VA-google 81.637ms

Latency to ping WA server in VA: ~48.7x

VA client: local-google 1.278ms to WA-google 62.349!

= From local wireless network, ping VA us-east-1 google :
= Ping 172.217.9.196: Average RTT=81.637ms (11 attempts, 15 hops)

TCSS558: Applied Distributed Computing [Fall 2017)

i A2, 2 InSETute o Technelo sylUnersity of WashinetonTacoma

QUESTIONS

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

October 26, 2017

EXTRA SLIDES

Slides by Wes J. Lloyd

L9.9

