TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

TCSS 558:

APPLIED DISTRIBUTED COMPUTING
||

Virtualization, Clients E‘ < ko

and Servers @ e

Bus

fully Connected

Wes J. Lloyd el

Institute of Technology
University of Washington - Tacoma

Slides by Wes J. Lloyd

Don’t Forget to Terminate (Shutdown)
all EC2 instances for Assighment #0

Auction based instances:
3 x m4.large instances @ ~3 cents / hour

$2.16 / day
$15.12 / week
$64.80 / month

October 24, 2017

L8.1

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

OBJECTIVES

® |[n class Quiz. . .

= Assignment O

= Assignment 1

® Feedback from 10/19

® Midterm exam on Thursday Nov. 2nd

October 24, 2017

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

FEEDBACK - 10/19

= What are the advantages and disadvantages of the many-
to-one threading model?

» Operating system schedules only processes

Threads are created and managed with user code (not OS code)
User controls which threads have context (run) at any given time
Operating system schedules the entire process to run or wait

Thread context switching doesn’t enter kernel (protected) mode

= Generally considered faster

Application execution is all-or-nothing
= Either all or no threads of an application can run

= Contrast to one-to-one programming model: Fine grained elements of a
process (a few threads) run while OS timeshares with many other apps

= How many processes can the OS run at any given time ?

October 24, 2017

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L8.4

Slides by Wes J. Lloyd

October 24, 2017

L8.2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

FEEDBACK - 2

= What are the advantages and disadvantages of the one-
to-one threading model?

» Operating system schedules processes and threads

® Threads are created and managed with kernel code (OS code)

= Kernel controls which threads have context (run) at any given time
® 0S schedules individual threads and processes to run or wait

Thread context switching enters kernel (protected) mode
= Generally considered slower...

Application execution can be fine-grained
= Any number of threads of an application can run at any time

= Contrast to many-to-one programming model: All-or-nothing process
execution - OS may timeshare with fewer total apps top - 01:34:46 up 4

* How many processes/threads can the OS schedule? QUGS CERMITE

TCSS558: Applied Distributed Computing [Fall 2017]

October 24, 2017 Institute of Technology, University of Washington - Tacoma

FEEDBACK - 3

= What are super peers?

= A node in a peer-to-peer network that operates as a server to a set of
clients, and as an equal in a network of super-peers.

= Super-peer networks strike a balance between the efficiency of
centralized search, and the autonomy, load balancing and
robustness to attacks provided by distributed search.

= Super-peer networks take advantage of the heterogeneity of
capabilities (e.g., bandwidth, processing power) across peers.

= Super-peer networks paper:

= http://faculty.washington.edu/wlloyd/courses/tcss558/papers/Desi
gning%20a%20Super-Peer%20Network.pdf

TCSS558: Applied Distributed Computing [Fall 2017]

L8.6
Institute of Technology, University of Washington - Tacoma

October 24, 2017

Slides by Wes J. Lloyd

October 24, 2017

L8.3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

FEEDBACK - 4

= What are examples of super peers?

= Dashed lines are the # é*.V _ 'r";'r

circles... ERRRY So) S 1

(a) (B

Figure 1. Illustration of a super-peer network (a) with
no redundancy, (b) with 2-redundancy. Black nodes repre-
sent super-peers, white nodes represent clients. Clusters are
marked by the dashed lines.

TCSS558: Applied Distributed Computing [Fall 2017]

October 24, 2017 Institute of Technology, University of Washington - Tacoma

FEEDBACK - 5

® |n policy based search methods, where we create (store)
history of our searches, what happens if a nhode (or nodes) is
added to the adhoc network or removed from the network?

= New nodes have no initial knowledge about neighbors
= Discovery takes time
= Nodes start accumulating history when they join
= History could be acquired from neighbors

= When nodes join/leave the network, will the history (at the
nodes) be adjusted for policy-based search implementations?

= And if so, wouldn’t that be time consuming?

= Accumulating new history is slow
= Deleting should be fast

TCSS558: Applied Distributed Computing [Fall 2017]

October 24, 2017 Institute of Technology, University of Washington - Tacoma

L8.8

Slides by Wes J. Lloyd

October 24, 2017

L8.4

TCSS 558: Applied Distributed Computing [Fall 2017] October 24, 2017
Institute of Technology, UW-Tacoma

UPDATE

® Assighment O Questions

= |[ntroduction of Assignment 1

® Due to the in class quiz and introduction of Assignment 1,
lecture coverage was limited on October 24, 2017

® The midterm exam will be inclusive of all course content
covered through October 31.

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

October 24, 2017

QUESTIONS

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

October 24, 2017

Slides by Wes J. Lloyd L8.5

TCSS 558: Applied Distributed Computing [Fall 2017]

Institute of Technology, UW-Tacoma

EXTRA SLIDES

Slides by Wes J. Lloyd

October 24, 2017

L8.6

