
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.1

Architectures,
Processes, Virtualization,
and Clients

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Feedback from 10/17

 Assignment 0 – questions

 Assignment 1 – posted soon

 Ch. 2 – System architectures
 Decentralized peer-to-peer: unstructured, hierarchical

 Hybrid

 Ch. 3 – Processes and threads

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.2

 What are the implications of vertical vs. horizontal
distributions?

 How components of a multitiered architecture are deployed

 For ver tical distr ibution each tier has at most one server

 Servers can be powerful !

 x1.32xlarge instance: 128 vCPUs, 1952 GB RAM, 4 TB SSD

 Example: centralized relational database (no replication)

 For horizontal distribution we “scale out” each tier using
multiple servers

 Load balance client requests across the server pool

 Example: Assignment 0 application server 3 VM configuration

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.3

FEEDBACK – 10/17

 Vertical distribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers
 M – The application server

 D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distr ibute load

 Load balancing

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.4

MULTITIERED RESOURCE SCALING

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.3

 Horizontal distribution cont’d

 Sharding: portions of a database map” to a specific server

 Distributed hash table

 Or replica servers

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.5

MULTITIERED RESOURCE SCALING - 2

SYSTEM
ARCHITECTURES

October 19, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L10.6

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.4

 Centralized system architectures

 Client-server

 Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.7

SYSTEM ARCHITECTURES - 2

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facil itates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor l ists constantly refreshed
 Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible
 How would you calculate the route algorithmically?

 Routes must be discovered

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.8

UNSTRUCTURED PEER-TO-PEER

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.5

 Flooding
 [Node u] sends request for data item to all neighbors
 [Node v]

 Searches locally, responds to u (or forwarder) if having data

 Forwards request to all neighbors

 Ignores repeated requests

 Features
 High network traffic

 Fast search results via saturated the network with requests

 Variable # of hops

 Max number of hops or time-to-live (TTL) often specified

 Requests can “retry” by gradually increasing TTL/max hops until
data is found

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.9

SEARCHING FOR DATA:
UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]
 If [node v] does not have data, forwards request to a

random neighbor
 Features

 Low network traffic
 Akin to sequential search
 Longer search time
 [node u] can perform parallel random walks to reduce

search time
 As few as 16..64 random walks effective to reduce search time
 Timeout required - need to coordinate stopping network-wide

walk when data is found…

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.10

SEARCHING FOR DATA - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.6

 Policy-based search methods

 Incorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of
queries



 Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

 Favor neighbors having highest number of neighbors

 Can help minimize hops

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.11

SEARCHING FOR DATA - 3

 Problem:
Adhoc system search per formance does not scale well as
system grows

 Allow nodes to assume roles to improve search

 Content delivery networks (CDNs) (video streaming)

 Store (cache) data at nodes local to the requester (client)

 Broker node – tracks resource usage and node availability
 Track where data is needed

 Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

 Super peer –Broker node, routes client requests to storage
nodes

 Weak peer – Store data

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.12

HIERARCHICAL
PEER-TO-PEER NETWORKS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.7

 Super peers
 Head node of local centralized network
 Interconnected via overlay network with other super peers
 May have replicas for fault tolerance

 Weak peers
 Rely on super peers to find data

 Leader-election problem:
 Who can become a

super peer?
 What requirements

must be met to become
a super peer?

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.13

HIERARCHICAL
PEER-TO-PEER NETWORKS - 2

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:

 Adhoc peer-to-peer devices connect to the internet through an
edge server (origin server)

 Edge servers (provided by an ISP) can optimize content and
application distribution by storing assets near the edge

 Example:

 AWS Release Lambda@Edge: Enabling Node.js Functions to
Execute at the Edge Alongside CloudFront CDN

 https://www.infoq.com/news/2017/07/aws-lambda-at-edge

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.14

HYBRID
ARCHITECTURES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.8

 Fog computing:

Extend the scope of managed resources beyond
the cloud to leverage compute and storage
capacity of end-user devices

End-user devices become part of the overall
system

Middleware extends to incorporate managing edge
devices as participants in the distributed system

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.15

HYBRID
ARCHITECTURES - 2

 BitTorrent Example:
File sharing system – users must contribute as a fi le host to
be eligible to download fi le resources

 Original implementation features hybrid architecture

 Leverages idle cl ient network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well
known address to access torrent fi le

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading fi le chunks and immediately then
participates to reserve downloaded content or network
bandwidth is reduced!!

 Chunks can be downloaded in parallel from distributed nodes

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.16

COLLABORATIVE DISTRIBUTED SYSTEMS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.9

Centralized: Client-server, Multitiered

Decentralized peer-to-peer: Structured, Unstructured, Hierarchical

Hybrid

 Take 5-minutes:

1. Write down an example of a distributed system

2. Identify the architecture used

3. Answer: How does the architecture help the system
meet one or more design goals of distributed systems:

Accessibility (resource sharing), availability (9s), distribution
transparency, scalability, openness, fault tolerance

4. After 5 mins: share example and answers with another

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.17

SYSTEM ARCHITECTURES EXERCISE

CH. 3: PROCESSES

L7.18

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.10

 Chapter 3 titled processes

 Covers variety of distributed system implementation
details

 “Grab bag” of topics

 Processes/threads

 Virtualization

 Clients

 Servers

 Code migration

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.19

CHAPTER 3

 For implementing a server (or cl ient) threads offer many
advantages vs. heavy weight processes

 What is the difference between a process and a thread?
 Review from Operating Systems

 Key dif ference : what do threads share amongst each other
that processes do not…. ?

 What are the three segments of a program stored in memory?
 Heap segment (global memory)

 Code segment

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.20

THREADS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.11

 Do several processes on an operating system share…
 Heap segment?

 Stack segment?

 Code segment?

 Can we run multiple copies of the same code?

 These may be managed as shared pages (across processes) in
memory

 Processes are isolated from each other by the OS
 Each has a separate heap, stack, code segment

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.21

THREADS - 2

 Threads avoid the overhead of process creation

 No new heap or code segments required

 What is a context switch?

 Context switching among threads is considered to be more
efficient than context switching processes

 Less elements to swap-in and swap-out

 Unikernels, example OSv

 Single process operating system with many threads

 Developed for the cloud to run only one application at a t ime

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.22

THREADS - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.12

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.23

OSV: JUST THREADS

 Important implications with threads:

 (1) multi-threading should lead to performance gains

 (2) thread programming requires additional effort when
threads share memory

 Known as thread synchronization, or enabling concurrency

 Access to critical sections of code which modify shared
variables must be mutually exclusive

 No more than one thread can execute at any given time

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.24

THREADS - 4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.13

 Example: spreadsheet with formula to compute sum of column

 User modifies values in column

 Threads

1. Supports interaction (UI) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

 Single core CPU
 Tasks appear as if they are performed simultaneously

 Multi core CPU
 Tasks execute simultaneously

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.25

BLOCKING THREADS

 IPC – mechanism using pipes, message queues, and shared
memory segments

 IPC mechanisms incur context switching
 Process I/O must execute in kernel mode

 For CPU context switching which is preferable?
(A) user space threads or (B) kernel space processes ?

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.26

INTERPROCESS COMMUNICATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.14

 Direct overhead
 Time spent not executing program code (user or kernel)

 Time spent executing interrupt routines to swap memory segments
of different processes (or threads) in the CPU

 Stack, code, heap, registers, code pointers, stack pointers

 Memory page cache invalidation

 Indirect overhead
 Overhead not directly attributed to the physical actions of the

context switch

 Captures performance degradation related to the side effects of
context switching

 Primarily cache perturbation

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.27

CONTEXT SWITCHING

 Refers to cache reorganization that occurs as a result of
context switch

 Cache is not clear, but elements from cache are removed as a
result of another program running in the CPU

 80% performance overhead from context switching results
from this “cache perturbation”

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.28

CONTEXT SWITCH –
CACHE PERTURBATION

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.15

 Many-to-one threading: multiple user-level threads per process

 Thread operations (create, delete, locks) run in user mode

 Multithreaded process mapped to single schedulable entity

 Only run thread per process runs at any given time

 What are some advantages of many-to-one threading?

 What are some disadvantages?

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.29

THREADING MODELS

 One-to-one threading: multiple kernel-level threads per process

 Thread operations (create, delete, locks) run in kernel mode

 Threads scheduled individually by the OS

 System calls required, context switches as expensive as
process context switching

 Linux uses this model…

 What are some advantages of one-to-one threading?

 What are some disadvantages?

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.30

THREADING MODELS - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.16

 Google chrome: processes

 Apache tomcat webserver: threads

 Multiprocess programming avoids synchronization of
concurrent access to shared data, by providing coordination
and data sharing via interprocess communication (IPC)

 Each process maintains its own private memory

 Do distributed objects share memory?

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.31

APPLICATION EXAMPLES

 Web browser
 Uses threads to load and render portions of a web page to the

user in parallel
 A client could have dozens of concurrent connections all

loading in parallel

 testFibPar.sh
 Assignment 0 cl ient script (GNU parallel)

 Important benefits:
 Several connections can be opened simultaneously
 Client: dozens of concurrent connections to the webserver all

loading data in parallel

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.32

MULTITHREADED CLIENTS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.17

 In Linux, threads also receive a process ID (PID)

 To display threads of a process in Linux:

 Identify parent process explicitly:

 top –H –p <pid>

 htop –p <pid>

 ps –iT <pid>

 Virtualbox process ~ 44 threads

 No mapping to guest # of processes/threads

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.33

MULTIPLE THREADS

PROCESS METRICS

CPU
- cpuUsr: CPU time in user mode
- cpuKrn: CPU time in kernel mode
- cpuIdle: CPU idle time
- cpuIoWait: CPU time waiting for I/O
- cpuIntSrvc:CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts
- cpuNice: CPU time executing prioritized

processes
- cpuSteal: CPU ticks lost to virtualized guests
- contextsw: # of context switches
- loadavg: (avg # proc / 60 secs)

Disk
- dsr: disk sector reads
- dsreads: disk sector reads completed
- drm: merged adjacent disk reads
- readtime: time spent reading from
disk
- dsw: disk sector writes
- dswrites: disk sector writes completed
- dwm: merged adjacent disk writes
- writetime: time spent writing to disk

Network
- nbs: network bytes sent
- nbr: network bytes received

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.18

 Reported by: top, htop , w , uptime , and /proc/loadavg

 Updated every 5 seconds

 Average number of processes using or waiting for the CPU

 Three numbers show exponentially decaying usage
for 1 minute, 5 minutes, and 15 minutes

 One minute average: exponentially decaying average
 Load average = 1 ▪ (avg last minute load) – 1/e ▪ (avg load since boot)

 1.0 = 1-CPU core fully loaded

 2.0 = 2-CPU cores

 3.0 = 3-CPU cores . . .

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.35

LOAD AVERAGE

 Metric – measures degree of parallelism realized by running
system, by calculating average uti lization:

 Ci – fraction of t ime that exactly I threads are executed

 N – maximum threads that can execute at any one time

 Web browsers found to have TLP from 1.5 to 2.5

 Clients for web browsing can uti lize from 2 to 3 CPU cores

 Any more cores are redundant, and potentially wasteful

 Measure TLP to understand how many CPUs to provision

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.36

THREAD-LEVEL PARALLELISM

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.19

 Multiple threads essential for servers in distr ibuted systems

 Even on single-core machines greatly improves per formance

 Take advantage of idle/blocking time

 Two designs:
 Generate new thread for every request

 Thread pool – pre-initialize block of threads to service requests

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.37

MULTITHREADED SERVERS

 Single thread server

 A single thread handles all client requests

 BLOCKS for I/O

 All waiting requests are queued until thread is available

 Finite state machine

 Server has a single thread of execution

 I/O performing asynchronously (non-BLOCKing)

 Server handles other requests while waiting for I/O

 Interrupt fired with I/O completes

 Single thread “jumps” back into context to finish request

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.38

SINGLE THREAD & FSM SERVERS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.20

 A blocking system call implies that a thread servicing a
request synchronously performs I/O

 The thread BLOCKS to wait on disk/network I/O before
proceeding with request processing

 Consider the implications of these designs for responsiveness,
availabil ity, scalability. . .

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.39

SERVER DESIGN ALTERNATIVES

Model Characteristics
Multithreading Parallelism, blocking I/O

Single-thread No parallelism, blocking I/O

Finite-state machine Parallelism, non-blocking I/O

QUESTIONS

October 19, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L7.40

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.21

EXTRA SLIDES

41

