
TCSS 558: Applied Distributed Computing [Fall 2017]  
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.1

Architectures, 
Processes, Virtualization,
and Clients

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558: 
APPLIED DISTRIBUTED COMPUTING

 Feedback from 10/17

 Assignment 0 – questions

 Assignment 1 – posted soon

 Ch. 2 – System architectures
 Decentralized peer-to-peer: unstructured, hierarchical 

 Hybrid

 Ch. 3 – Processes and threads

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.2

OBJECTIVES

 What are the implications of vertical vs. horizontal 
distributions?

 How components of a multitiered architecture are deployed

 For vertical distribution each tier has at most one server

 Servers can be powerful !

 x1.32xlarge instance: 128 vCPUs, 1952 GB RAM, 4 TB SSD

 Example: centralized relational database (no replication)

 For horizontal distribution we “scale out” each tier using 
multiple servers

 Load balance client requests across the server pool

 Example: Assignment 0 application server 3 VM configuration

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.3

FEEDBACK – 10/17

 Ver tical distribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers
 M – The application server

 D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.4

MULTITIERED RESOURCE SCALING

 Horizontal distribution cont’d

 Sharding: portions of a database map” to a specific server

 Distributed hash table

 Or replica servers

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.5

MULTITIERED RESOURCE SCALING - 2

SYSTEM 
ARCHITECTURES

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L10.6



TCSS 558: Applied Distributed Computing [Fall 2017]  
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.2

 Centralized system architectures

 Client-server

 Multitiered

 Decentralized peer-to-peer architectures

 Structured 

 Unstructured

 Hierarchically organized

 Hybrid architectures

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.7

SYSTEM ARCHITECTURES - 2

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed
 Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible
 How would you calculate the route algorithmically?

 Routes must be discovered

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.8

UNSTRUCTURED PEER-TO-PEER

 Flooding
 [Node u] sends request for data item to all neighbors
 [Node v]

 Searches locally, responds to u (or forwarder) if having data

 Forwards request to all neighbors

 Ignores repeated requests

 Features
 High network traffic

 Fast search results via saturated the network with requests

 Variable # of hops

 Max number of hops or time-to-live (TTL) often specified

 Requests can “retry” by gradually increasing TTL/max hops until 
data is found

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.9

SEARCHING FOR DATA:
UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]
 If [node v] does not have data, forwards request to a 

random neighbor
 Features

 Low network traffic
 Akin to sequential search
 Longer search time
 [node u] can perform parallel random walks to reduce 

search time
 As few as 16..64 random walks effective to reduce search time
 Timeout required - need to coordinate stopping network-wide 

walk when data is found…

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.10

SEARCHING FOR DATA - 2

 Policy-based search methods

 Incorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of 
queries



 Nodes maintain lists of preferred neighbors which often 
succeed at resolving queries

 Favor neighbors having highest number of neighbors

 Can help minimize hops

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.11

SEARCHING FOR DATA - 3

 Problem:
Adhoc system search performance does not scale well as 
system grows

 Allow nodes to assume roles to improve search

 Content delivery networks (CDNs)   (video streaming)

 Store (cache) data at nodes local to the requester (client)

 Broker node – tracks resource usage and node availability
 Track where data is needed

 Track which nodes have capacity (disk/CPU resources) to host data

 Node roles

 Super peer –Broker node, routes client requests to storage 
nodes

 Weak peer – Store data

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.12

HIERARCHICAL
PEER-TO-PEER NETWORKS



TCSS 558: Applied Distributed Computing [Fall 2017]  
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.3

 Super peers
 Head node of local centralized network
 Interconnected via overlay network with other super peers
 May have replicas for fault tolerance

 Weak peers
 Rely on super peers to find data

 Leader-election problem:
 Who can become a

super peer?
 What requirements 

must be met to become 
a super peer?

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.13

HIERARCHICAL 
PEER-TO-PEER NETWORKS - 2

 Combine centralized server concepts with decentralized
peer-to-peer models

 Edge-server systems:

 Adhoc peer-to-peer devices connect to the internet through an 
edge server (origin server) 

 Edge servers (provided by an ISP) can optimize content and 
application distribution by storing assets near the edge

 Example:

 AWS Release Lambda@Edge: Enabling Node.js Functions to 
Execute at the Edge Alongside CloudFront CDN

 https://www.infoq.com/news/2017/07/aws-lambda-at-edge

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.14

HYBRID 
ARCHITECTURES

Fog computing:

Extend the scope of managed resources beyond 
the cloud to leverage compute and storage 
capacity of end-user devices  

End-user devices become part of the overall 
system 

Middleware extends to incorporate managing edge 
devices as participants in the distributed system  

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.15

HYBRID 
ARCHITECTURES - 2

 BitTorrent Example:
File sharing system – users must contribute as a file host to 
be eligible to download file resources 

 Original implementation features hybrid architecture

 Leverages idle client network capacity in the background

 User joins the system by interacting with a central server

 Client accesses global directory from a tracker server at well 
known address to access torrent file

 Torrent file tracks nodes having chunks of requested file

 Client begins downloading file chunks and immediately then 
participates to reserve downloaded content or network 
bandwidth is  reduced!!

 Chunks can be downloaded in parallel from distributed nodes

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.16

COLLABORATIVE DISTRIBUTED SYSTEMS

Centralized: Client-server, Multitiered

Decentralized peer-to-peer: Structured, Unstructured, Hierarchical

Hybrid

 Take 5-minutes: 

1. Write down an example of a distributed system

2. Identify the architecture used 

3. Answer: How does the architecture help the system 
meet one or more design goals of distributed systems:

Accessibility (resource sharing), availability (9s), distribution 
transparency, scalability, openness, fault tolerance

4. After 5 mins: share example and answers with another

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.17

SYSTEM ARCHITECTURES EXERCISE

CH. 3: PROCESSES

L7.18



TCSS 558: Applied Distributed Computing [Fall 2017]  
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.4

 Chapter 3 titled processes

 Covers variety of distributed system implementation 
details

 “Grab bag” of topics

 Processes/threads

 Virtualization

 Clients

 Servers

 Code migration

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.19

CHAPTER 3

 For implementing a server (or client) threads offer many 
advantages vs. heavy weight processes

 What is  the dif ference between a process and a thread?
 Review from Operating Systems

 Key dif ference : what do threads share amongst each other 
that processes do not…. ?

 What are the three segments of  a program stored in memory?
 Heap segment (global memory)

 Code segment

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.20

THREADS

 Do several processes on an operating system share…
 Heap segment?

 Stack segment?

 Code segment?

 Can we run multiple copies of  the same code?

 These may be managed as shared pages (across processes) in 
memory

 Processes are isolated from each other by the OS
 Each has a separate heap, stack, code segment

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.21

THREADS - 2

 Threads avoid the overhead of process creation

 No new heap or code segments required

 What is  a context switch? 

 Context switching among threads is considered to be more 
efficient than context switching processes

 Less elements to swap-in and swap-out

 Unikernels, example OSv

 Single process operating system with many threads

 Developed for the cloud to run only one application at a time

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.22

THREADS - 3

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.23

OSV: JUST THREADS

 Important implications with threads:

 (1) multi-threading should lead to performance gains

 (2) thread programming requires additional effort when 
threads share memory

 Known as thread synchronization, or enabling concurrency

 Access to critical sections of code which modify shared 
variables must be mutually exclusive

 No more than one thread can execute at any given time

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.24

THREADS - 4



TCSS 558: Applied Distributed Computing [Fall 2017]  
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.5

 Example: spreadsheet with formula to compute sum of column

 User modifies values in column

 Threads

1. Supports interaction (UI) activity with user

2. Updates spreadsheet calculations in parallel

3. Continually backs up spreadsheet changes to disk

 Single core CPU
 Tasks appear as if they are performed simultaneously

 Multi core CPU
 Tasks execute simultaneously 

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.25

BLOCKING THREADS

 IPC – mechanism using pipes, message queues, and shared 
memory segments

 IPC mechanisms incur context switching
 Process I/O must execute in kernel mode

 For CPU context switching which is  preferable?
(A) user space threads or (B) kernel space processes ?

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.26

INTERPROCESS COMMUNICATION

 Direct overhead
 Time spent not executing program code (user or kernel)

 Time spent executing interrupt routines to swap memory segments 
of different processes (or threads) in the CPU

 Stack, code, heap, registers, code pointers, stack pointers

 Memory page cache invalidation

 Indirect overhead
 Overhead not directly attributed to the physical actions of the 

context switch

 Captures performance degradation related to the side effects of 
context switching

 Primarily cache perturbation 

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.27

CONTEXT SWITCHING

 Refers to cache reorganization that occurs as a result of 
context switch

 Cache is not clear, but elements from cache are removed as a 
result of another program running in the CPU

 80% performance overhead from context switching results 
from this “cache perturbation”

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.28

CONTEXT SWITCH –
CACHE PERTURBATION

 Many-to-one threading: multiple user-level threads per process

 Thread operations (create, delete, locks) run in user mode 

 Multithreaded process mapped to single schedulable entity

 Only run thread per process runs at any given time

 What are some advantages of  many-to-one threading?

 What are some disadvantages?

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.29

THREADING MODELS

 One-to-one threading: multiple kernel- level threads per process

 Thread operations (create, delete, locks) run in kernel mode

 Threads scheduled individually by the OS

 System calls required, context switches as expensive as 
process context switching

 Linux uses this model…

 What are some advantages of  one-to-one threading?

 What are some disadvantages?

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.30

THREADING MODELS - 2



TCSS 558: Applied Distributed Computing [Fall 2017]  
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.6

 Google chrome: processes

 Apache tomcat webserver: threads

 Multiprocess programming avoids synchronization of 
concurrent access to shared data, by providing coordination 
and data sharing via interprocess communication (IPC) 

 Each process maintains its own private memory

 Do distributed objects share memory?

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.31

APPLICATION EXAMPLES

 Web browser
 Uses threads to load and render portions of a web page to the 

user in parallel
 A client could have dozens of concurrent connections all 

loading in parallel

 testFibPar.sh
 Assignment 0 client script  (GNU parallel)

 Important benefits:
 Several connections can be opened simultaneously
 Client: dozens of concurrent connections to the webserver all 

loading data in parallel

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.32

MULTITHREADED CLIENTS

 In Linux, threads also receive a process ID (PID)

 To display threads of a process in Linux:

 Identify parent process explicitly:

 top –H –p <pid>

 htop –p <pid>

 ps –iT <pid>

 Virtualbox process ~ 44 threads

 No mapping to guest # of processes/threads

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.33

MULTIPLE THREADS PROCESS METRICS

CPU
- cpuUsr: CPU time in user mode
- cpuKrn: CPU time in kernel mode 
- cpuIdle: CPU idle time 
- cpuIoWait: CPU time waiting for I/O
- cpuIntSrvc:CPU time serving interrupts
- cpuSftIntSrvc: CPU time serving soft interrupts
- cpuNice: CPU time executing prioritized

processes
- cpuSteal: CPU ticks lost to virtualized guests
- contextsw: # of context switches 
- loadavg: (avg # proc / 60 secs)

Disk
- dsr: disk sector reads 
- dsreads: disk sector reads completed 
- drm: merged adjacent disk reads 
- readtime: time spent reading from 
disk 
- dsw: disk sector writes 
- dswrites: disk sector writes completed
- dwm: merged adjacent disk writes 
- writetime: time spent writing to disk 

Network
- nbs: network bytes sent 
- nbr: network bytes received 

 Reported by: top, htop, w, uptime, and /proc/loadavg

 Updated every 5 seconds

 Average number of processes using or waiting for the CPU

 Three numbers show exponentially decaying usage
for 1 minute, 5 minutes, and 15 minutes

 One minute average: exponentially decaying average
 Load average = 1 ▪ (avg last minute load) – 1/e ▪ (avg load since boot)

 1.0 = 1-CPU core fully loaded

 2.0 = 2-CPU cores

 3.0 = 3-CPU cores . . .

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.35

LOAD AVERAGE

 Metric – measures degree of parallelism realized by running 
system, by calculating average utilization:

 Ci – fraction of time that exactly I threads are executed

 N – maximum threads that can execute at any one time

 Web browsers found to have TLP from 1.5 to 2.5

 Clients for web browsing can utilize from 2 to 3 CPU cores

 Any more cores are redundant, and potentially wasteful

 Measure TLP to understand how many CPUs to provision

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.36

THREAD-LEVEL PARALLELISM



TCSS 558: Applied Distributed Computing [Fall 2017]  
Institute of Technology, UW-Tacoma

October 19, 2017

Slides by Wes J. Lloyd L7.7

 Multiple threads essential for servers in distributed systems

 Even on single-core machines greatly improves performance

 Take advantage of idle/blocking time

 Two designs:
 Generate new thread for every request

 Thread pool – pre-initialize block of threads to service requests

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.37

MULTITHREADED SERVERS

 Single thread server

 A single thread handles all client requests

 BLOCKS for I/O

 All waiting requests are queued until thread is available

 Finite state machine

 Server has a single thread of execution

 I/O performing asynchronously (non-BLOCKing) 

 Server handles other requests while waiting for I/O

 Interrupt fired with I/O completes

 Single thread “jumps” back into context to finish request

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.38

SINGLE THREAD & FSM SERVERS

 A blocking system call implies that a thread servicing a 
request synchronously performs I/O 

 The thread BLOCKS to wait on disk/network I/O before 
proceeding with request processing

 Consider the implications of these designs for responsiveness, 
availability, scalability. . .

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L7.39

SERVER DESIGN ALTERNATIVES

Model Characteristics
Multithreading Parallelism, blocking I/O 
Single-thread No parallelism, blocking I/O
Finite-state machine Parallelism, non-blocking I/O

QUESTIONS

October 19, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L7.40

EXTRA SLIDES

41


