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OBJECTIVES

® Feedback from 10/12

B Assignment O - questions

B Ch. 2 - System architectures
= Centralized: Single client, multi-tier

= Decentralized peer-to-peer: structured, unstructured,
hierarchical

= Hybrid

B Ch. 3 - Processes and threads
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FEEDBACK - 10/12

® Why is the event-based architecture generally “more
scalable”, as compared to a layered architecture?

® Event-based systems are considered “sessionless”
® Creating and destroying TCP sessions incurs overhead

® When a client “subscribes” to a feed, server(s) can simply
publish content to the subscriber(s) (by sending msgs to
their IP address) without establishing a TCP session

® Client(s) monitor a port for messages
® Clients and servers are referentially decoupled

= Client(s) are not bound by name (TCP connection) to any
particular server
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EVENT-BASED PUBLISH & SUBSCRIBE - 2

m Server pool participating in publishing content to subscribers
is inherently scalable because additional nodes can
participate without client reconfiguration

®m Because the server name is decoupled, in theory...

Every message could originate from a different server !!!

= Disadvantage:
® Message delivery is not guaranteed with connectionless
protocols

® Play-it-again Sam...?
" No!

® Messages are not replayed. Subscribers (clients) must be up-
and-running when messages are sent. (temporal coupling)
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EVENT-BASED PUBLISH & SUBSCRIBE - 3

® Managing the subscription system may be tedious when there
are many subscriptions

m Agreed

= Advantage:
Due to referential decoupling and distribution transparency,

the scale and scope of the implementation used can be
entirely abstracted from clients

® While achieving large scale maybe complex and expensive, it
is generally reasonable to achieve with access to sufficient
resources (e.g. cloud)
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EVENT-BASED PUBLISH & SUBSCRIBE - 4

® Consider design problem(s):

®= How do we coordinate multiple servers to publish subscription
content to clients?

® Do individual nodes provide specific types of content to
subscribers? (content centric)

= Enables cache / memory advantages

® Do individual nodes service related clients (geospatially
centric)?

= Network latency advantages

®= How do we manage and update a shared subscription
database?
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FEEDBACK 10/12 -5

® What does ‘notification only’ or ‘notification plus data’
depend on?

® For the shared data-space architecture, notification only
provides:

= Referential decoupling
= Temporal decoupling

®m Subscribers receive notifications that new data is available,
not the data itself

® Subscribers explicitly fetch data if interested after notification
® Temporal decoupling defers or eliminates network traffic

= Temporally coupled shared data-space systems send
“notification plus data” to clients immediately for “events”.
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FEEDBACK 10/12 - 6

® Can Windows OS update messages be related to “Notification
only”, and when the system actually updates to “Notification +
Data”?

® |n a sense, it could be thought of this way, but ...

® Imagine if all MS Windows clients elected for notification +
data simultaneously.

® What implications would result for the Internet?

® |n reality, updates are rolling

TCSS558: Applied Distributed Computing [Fall 2017]

L6.8
Institute of Technology, University of Washington - Tacoma

October 17, 2017

Slides by Wes J. Lloyd

October 17, 2017

L6.4



TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

FEEDBACK 10/12 - 7

® Wrappers and interceptors are a bit unclear

® These are similar !

= Wrapper:
A client callable interface which provides functionality

® Functionality may be provided directly by the server code
(same program as wrapper), or outsourced to legacy code (engine)

= “Wrappers” decouple client interface from backend
implementation

= Backend implementation may change without modifying the client
= Allows specifics of implementation (i.e. business logic) to change
= For example: version upgrades (1.0 to 1.2 ...)

= New backend relational database: SQL Server > PostgreSQL

= Key: client doesn’t need to know
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FEEDBACK 10/12 - 8

= |[nterceptor:
An interface which “routes” client requests somewhere
else

® For example, interface stub(s) route calls to remote
objects

®m Conceptually similar to wrappers, as the implementation
is decoupled

® Enables geospatial decoupling
= Location of the implementation may change

= Through routing (to different providers) the details of the
implementation may change...
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Client application
Intercepted call

Application stub

Request-evel interceptor

To object B

SYSTEM
ARCHITECTURES
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SYSTEM ARCHITECTURES

® Architectural styles (or patterns)

® General, reusable solutions to commonly occurring
system design problems

®m Expressed as a logical organization of components
and connectors

® Deciding on the system components, their
interactions, and placement is a realization of a
system architecture

®m System architectures represent designs used in
practice
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SYSTEM ARCHITECTURES - 2

® Centralized system architectures
= Client-server
= Multitiered
® Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized
®= Hybrid architectures
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CENTRALIZED:

SIMPLE CLIENT-SERVER ARCHITECTURE

Client Server

m Clients request services | ey |

m Servers provide services ;
= Request-reply behavior ait | Provitia sandes

® Connectionless protocols (UDP)
B Assume stable network communication with no failures

m Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

= Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

® Clients can resend the request when no reply is received
= But what is the server doing?
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CLIENT-SERVER PROTOCOLS

= Connectionless cont’d
® |s resending the client request a good idea?

= Examples:
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money | have left”

= |[dempotent - repeating requests is safe

= Connection-oriented (TCP)

® Client/server communication over wide-area networks (WANS)
® When communication is inherently reliable

m Leverage “reliable” TCP/IP connections
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CLIENT-SERVER PROTOCOLS - 2

= Connection-oriented cont’'d
m Set up and tear down of connections is relatively expensive
® Overhead can be amortized with longer lived connections

= Example: database connections often retained

® Ongoing debate:
® How do you differentiate between a client and server?
® Roles are blurred

= Example: Distributed databases

® Nodes must service client requests and initiate them to other
database nodes for replication, synchronization, etc.
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TCP/UDP

TCP UDP

Reliable Unreliable.
Connection-oriented Connectionless
Segment retransmission w we
and flow control through g ol
Segment sequencing No sequencing
Acknowledge segments No acknowledgement
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Advantages

Disadvantages

CONNECTIONLESS VS
CONNECTION ORIENTED

Connectionless (UDP) Connection-oriented (TCP)

stateless stateful

October 17, 2017
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CONNECTIONLESS VS
CONNECTION ORIENTED

Advantages

Disadvantages

Connectionless (UDP)

stateless

Fast to communicate (no .
connection overhead) J
Broadcast to an audience ©
Network bandwidth savings

Cannot tell difference of .
request vs. response failure
Requires idempotence J
Clients must be online and
ready to receive messages

Connection-oriented (TCP)

stateful

Message delivery confirmation
Idempotence not required
Messages automatically resent
- if client (or network) is
temporarily unavailable
Message sequences
guaranteed

Connection setup is time-
consuming

More bandwidth is required
(protocol, retries, multinode-
communication)

October 17, 2017
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MULTITIERED ARCHITECTURES

® Where should functionality be distributed?
= At the client?
= At the server?

Client machine

‘User inter@ge_\‘ | Userinterface| | User interface | | Userinterface| | User interface |
- -1 ‘ Application_| | Application ‘ ‘ Application |
,_,_$__Z"_ e _i o N = Databa’si
\Usds;r’interface /i/,-—‘ “L”__i_i ““““ ’-\:—_-“-“3__7_7
| Application ‘ | Application | ‘\“.&[;;Iication ‘ . _,_/"
| Database | | Database | | Database | | Database | Database ‘
Server machine

= Why should we consider component composition?
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SC5
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SC11

: Tomcat ApplicationServer
Postgresql DB
nginx file server
Logging server (high O/H)

rno=

SC1 SC2 SC4
M D MD L MD F L
FL F

SC5 SC6 Cc7

: Component Composition Example

* An application with 4 components has 15 compositions
3+ One or more component(s) deployed to each VM
* Each VM launched to separate physical machine

m_/

: Tomcat ApplicationServer
Postgresql DB
nginx file server
Logging server (high O/H)

rmo=
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SC1

MD
FL

SC3
MD

?

k:

Bell’s Number:

number of ways
n components can be

FL

distributed across containers

SC4

D

5 52

6 203
7 877
8 4,140
9

21,14

=]

_/

rno=

Postgresql DB
nginx file server

: Tomcat ApplicationServer

Logging server (high O/H)

100%

Resource footprint

CPU time diskreads  disk writes

networkreads network writes

[0SC15
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/~ Resource utilization profile changes N\
from component composition
M-bound RUSLE2 - Soil Erosion Model Webservice

* Box size shows absolute deviation (+/-) from mean
* Shows relative magnitude of performance variance

5
4

= Two application variants tested P
8 * M-bound: Standard service, M is compute bound ig
o * D-bound: Modified service, D is compute bound [
§ E IR W SC7
[ SC6
& — H -
| msca
0O sc3
= sc2
| msct

—

CPU time I disk reads disk writes network reads network writes

A Resource Utilization Change
Min to Max Utilization

g' m-bound d-bound ﬁ
£ CPU time: 6.5%  55% (o
5 Disk sector reads: 14.8% 819.6% =
& Disk sector writes: 21.8% 111.1% &

Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

=1 R

CPU time disk reads disk writes networkreads network writes
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PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

15

mb d4GBVM 20dff sembl (100 )
d-bound 4GB VMs 20 diff ensembles (100 runs) C—3
_ 1ot
E
£
) s 0
2
Slower deployments : o |
| Iroy
£
Faster deployments 2
= -10 |
-15

| | I | I | | I | I | | I |
scl sc2 sc3 sc4 sc5 schb sc7 sc8 sc9 sclOscllscl?scl3scl4scld
Service Configurations

27

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

4 A Performance Change N

Min to max performance

Sl¢

M-bound: 14%
D-bound: 25.7%

1 P

[UU

15 . . 1 . 1 . . I . 1 . . 1 . .
scl sc2 sc3 scd sc5 scb sc7 scB sc9 scl0scllscl?scl3scldscld

Service Configurations
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MULTITIERED ARCHITECTURES - 2

"= MDFL architecture
® M - is the application server

= M - is also a client to the database (D),
fileserver (F), and logging server (L)

Server as a client

Cllent Client Application Database|
server server
Request |
L operation |
Y ! Request !
M ! data
Wait for | Wait for
replyi data |
! -
i Return
o Ir | W
Return I
reply !

TCSS558: Applied Distributed Computing [Fall 2017]

October 17, 2017 Institute of Technology, University of Washington - Tacoma

MULTITIERED RESOURCE SCALING

= Vertical distribution

® The distribution of “M D F L”

®m Application is scaled by placing “tiers” on separate servers
= M - The application server
= D - The database server

m Vertical distribution impacts “network footprint” of application
m Service isolation: each component is isolated on its own HW

= Horizontal distribution ﬁ
® Scaling an individual tier

= Add multiple machines and distribute load
® Load balancing
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MULTITIERED RESOURCE SCALING - 2

= Horizontal distribution cont’d
= Sharding: portions of a database map” to a specific server
= Distributed hash table
= Or replica servers
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DECENTRALIZED PEER-TO-PEER

ARCHITECTURES

m Client/server:
= Nodes have specific roles

® Peer-to-peer:
= Nodes are seen as all equal...

®" How should nodes be organized for communication?
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STRUCTURED PEER-TO-PEER

= Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)
= Organization assists in data lookups

®= Data indexed using “semantic-free” indexing
= Key / value storage systems

= Key used to look-up data

® Nodes store data associated with a subset of keys
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DISTRIBUTED HASH TABLE (DHT)

® Distributed hash table (DHT) (ch. 5)
® Hash function

key (data item) = hash(data item’s wvalue)

® Hash function “generates” a unique key based on the data
® No two data elements will have the same key (hash)

®m System supports data lookup via key

® Any node can receive and resolve the request

® Lookup function determines which node stores the key

existing node = lookup (key)

® Node forwards request to node with the data
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FIXED HYPERCUBE EXAMPLE

= Example where topology helps route data lookup request

® Statically sized 4-D hypercube, every node has 4 connectors
®m 2 x 3-D cubes, 8 vertices, 12 edges

® Node IDs are 4-bit code (0000 to 1111)

® Hash data items to 4-bit key (1 of 16 slots)

® Distance (humber of hops) determined by identifying nhumber

of varying bits between neighboring nodes and destination
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FIXED HYPERCUBE EXAMPLE - 2

= Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

® Node 1110 is not a neighbor to 0111

® Which connector leads to the shortest path?
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WHICH CONNECTOR LEADS TO THE

SHORTEST PATH?

= Example: node 0111 (7) retrieves data from node 1110 (14)
® Node 1110 is not a neighbor to 0111

[0111] Neighbors:

1111 (1 bit different than 1110) 0011 (3 bits different- bad pa
0110 (1 bit different than 1110) 0101 (3 bits different- bad pa

th)
th)
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DYNAMIC TOPOLOGY

® Fixed hypercube requires static topology
= Nodes cannot join or leave

® Relies on symmetry of number of nodes

m Can force the DHT to a certain size

® Chord system - DHT (again in ch.5)
= Dynamic topology
= Nodes organized in ring
= Every node has unique ID
= Each node connected with other nodes (shortcuts)
= Shortest path between any pair of nodes is ~ order O(log N)
= N is the total number of nodes

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

October 17, 2017

L6.38

Slides by Wes J. Lloyd

October 17, 2017

L6.19



TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

= Node forwards client

= Nodes must continually

CHORD SYSTEM

= Data items have m-bit key

= Data item is stored at closest “successor” nhode with ID 2 key k
® Each node maintains finger table of successor nodes

= Client sends key/value

lookup to any node

request to node with
m-bit ID closest to, but
not greater than key k

5 Node responsible for]
keys {5,6,7,8,9}

refresh finger tables by
communicating with
adjacent nodes to
incorporate node

joins/departures
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UNSTRUCTURED PEER-TO-PEER

= No topology: How do nodes find out about each other?
®m Each node maintains adhoc list of neighbors
® Facilitates nodes frequently joining, leaving, adhoc systems

= Neighbor: node reachable from another via a network path

®m Neighbor lists constantly refreshed

= Nodes query each other, remove unresponsive neighbors
® Forms a “random graph”
®m Predetermining network routes not possible

= How would you calculate the route algorithmically?

® Routes must be discovered
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SEARCHING FOR DATA:

UNSTRUCTURED PEER-TO-PEER SYSTEMS

= Flooding
B [Node u] sends request for data item to all neighbors
® [Node v]
= Searches locally, responds to u (or forwarder) if having data
= Forwards request to all neighbors
= I[gnores repeated requests
= Features
= High network traffic
= Fast search results via saturated the network with requests
= Variable # of hops
= Max number of hops or time-to-live (TTL) often specified

= Requests can “retry” by gradually increasing TTL/max hops until
data is found
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SEARCHING FOR DATA - 2

= Random walks
B [Node u] asks a randomly chosen neighbor [node v]

® |f [node v] does not have data, forwards request to a
random neighbor

® Features
= Low network traffic
= AKin to sequential search
= Longer search time

= [node u] can perform parallel random walks to reduce
search time

= As few as 16..64 random walks effective to reduce search time

= Timeout required - need to coordinate stopping network-wide
walk when data is found...
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SEARCHING FOR DATA -3

® Policy-based search methods

® [ncorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of
queries

® Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

= Favor neighbors having highest number of neighbors
= Can help minimize hops
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QUESTIONS
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