
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 17, 2017

Slides by Wes J. Lloyd L6.1

System Architectures

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Feedback from 10/12

 Assignment 0 – questions

 Ch. 2 – System architectures
 Centralized: Single client, multi-tier

 Decentralized peer-to-peer: structured, unstructured,
hierarchical

 Hybrid

 Ch. 3 – Processes and threads

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.2

OBJECTIVES

 Why is the event-based architecture generally “more
scalable”, as compared to a layered architecture?

 Event-based systems are considered “sessionless”

 Creating and destroying TCP sessions incurs overhead

 When a client “subscribes” to a feed, server(s) can simply
publish content to the subscriber(s) (by sending msgs to
their IP address) without establishing a TCP session

 Client(s) monitor a port for messages

 Clients and servers are referentially decoupled

 Client(s) are not bound by name (TCP connection) to any
particular server

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.3

FEEDBACK – 10/12

 Server pool participating in publishing content to subscribers
is inherently scalable because additional nodes can
participate without client reconfiguration

 Because the server name is decoupled, in theory…
Every message could originate from a different server ! ! !

 Disadvantage:

 Message delivery is not guaranteed with connectionless
protocols

 Play-it-again Sam…?

 No!

 Messages are not replayed. Subscribers (clients) must be up-
and-running when messages are sent. (temporal coupling)

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.4

EVENT-BASED PUBLISH & SUBSCRIBE - 2

 Managing the subscription system may be tedious when there
are many subscriptions

 Agreed

 Advantage:
Due to referential decoupling and distribution transparency,
the scale and scope of the implementation used can be
entirely abstracted from clients

 While achieving large scale maybe complex and expensive, it
is generally reasonable to achieve with access to sufficient
resources (e.g. cloud)

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.5

EVENT-BASED PUBLISH & SUBSCRIBE - 3

 Consider design problem(s):

 How do we coordinate multiple servers to publish subscription
content to clients?

 Do individual nodes provide specific types of content to
subscribers? (content centric)

 Enables cache / memory advantages

 Do individual nodes service related clients (geospatially
centric)?

 Network latency advantages

 How do we manage and update a shared subscription
database?

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.6

EVENT-BASED PUBLISH & SUBSCRIBE - 4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 17, 2017

Slides by Wes J. Lloyd L6.2

 What does ‘notification only’ or ‘notification plus data’
depend on?

 For the shared data-space architecture, notification only
provides:

 Referential decoupling

 Temporal decoupling

 Subscribers receive notifications that new data is available,
not the data itself

 Subscribers explicitly fetch data if interested after notification

 Temporal decoupling defers or eliminates network traffic

 Temporally coupled shared data-space systems send
“notification plus data” to clients immediately for “events”.

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.7

FEEDBACK 10/12 - 5

 Can Windows OS update messages be related to “Notification
only”, and when the system actually updates to “Notification +
Data”?

 In a sense, it could be thought of this way, but …

 Imagine if all MS Windows clients elected for notification +
data simultaneously.

 What implications would result for the Internet?

 In reality, updates are rolling

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.8

FEEDBACK 10/12 - 6

 Wrappers and interceptors are a bit unclear

 These are similar !

 Wrapper:
A client callable inter face which provides functionality

 Functionality may be provided directly by the server code
(same program as wrapper), or outsourced to legacy code (engine)

 “Wrappers” decouple client inter face from backend
implementation

 Backend implementation may change without modifying the client

 Allows specifics of implementation (i.e. business logic) to change

 For example: version upgrades (1.0 to 1.2 …)

 New backend relational database: SQL Server PostgreSQL

 Key: c l ient doesn’t need to know

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.9

FEEDBACK 10/12 - 7

 Interceptor:
An interface which “routes” client requests somewhere
else

 For example, interface stub(s) route calls to remote
objects

 Conceptually similar to wrappers, as the implementation
is decoupled

 Enables geospatial decoupling
 Location of the implementation may change
 Through routing (to different providers) the details of the

implementation may change…

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.10

FEEDBACK 10/12 - 8

SYSTEM
ARCHITECTURES

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L10.11

 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring
system design problems

 Expressed as a logical organization of components
and connectors

 Deciding on the system components, their
interactions, and placement is a realization of a
system architecture

 System architectures represent designs used in
practice

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.12

SYSTEM ARCHITECTURES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 17, 2017

Slides by Wes J. Lloyd L6.3

 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured

 Unstructured

 Hierarchically organized

 Hybrid architectures

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.13

SYSTEM ARCHITECTURES - 2

 Clients request services
 Servers provide services
 Request-reply behavior

 Connectionless protocols (UDP)
 Assume stable network communication with no failures
 Best effort communication: No guarantee of message

arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received
 But what is the server doing?

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.14

CENTRALIZED:
SIMPLE CLIENT-SERVER ARCHITECTURE

 Connectionless cont’d

 Is resending the client request a good idea?

 Examples:
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide-area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.15

CLIENT-SERVER PROTOCOLS

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections
 Example: database connections often retained

 Ongoing debate:

 How do you differentiate between a client and server?

 Roles are blurred

 Example: Distributed databases

 Nodes must service client requests and initiate them to other
database nodes for replication, synchronization, etc.

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.16

CLIENT-SERVER PROTOCOLS - 2

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.17

TCP/UDP

Connectionless (UDP)
stateless

Connection-oriented (TCP)
stateful

Advantages

Disadvantages

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.18

CONNECTIONLESS VS
CONNECTION ORIENTED

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 17, 2017

Slides by Wes J. Lloyd L6.4

Connectionless (UDP)
stateless

Connection-oriented (TCP)
stateful

Advantages • Fast to communicate (no
connection overhead)

• Broadcast to an audience
• Network bandwidth savings

• Message delivery confirmation
• Idempotence not required
• Messages automatically resent

- if client (or network) is
temporarily unavailable

• Message sequences
guaranteed

Disadvantages • Cannot tell difference of
request vs. response failure

• Requires idempotence
• Clients must be online and

ready to receive messages

• Connection setup is time-
consuming

• More bandwidth is required
(protocol, retries, multinode-
communication)

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.19

CONNECTIONLESS VS
CONNECTION ORIENTED

 Where should functionality be distributed?
 At the client?
 At the server?

 Why should we consider component composition?

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.20

MULTITIERED ARCHITECTURES

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

SC2

M D
F

L

SC4

M D F L

SC7

LM D F

SC3

M D F L

SC5

M D
F L

SC6

M D F L

SC8

M D F L

SC9

M D L F

SC10

M F D L

SC11

M F D L

SC12

M L D F

SC13

M L D F

SC14

M D
L

F

SC15

M L
F

D

SC1

M D
F L

Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways
n components can be
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14
7

n . . .

SC15
SC14
SC13
SC12
SC11
SC10
SC9
SC8
SC7
SC6
SC5
SC4
SC3
SC2
SC1

CPU time disk reads disk writes network reads network writes

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 17, 2017

Slides by Wes J. Lloyd L6.5

SC15
SC14
SC13
SC12
SC11
SC10
SC9
SC8
SC7
SC6
SC5
SC4
SC3
SC2
SC1

CPU time disk reads disk writes network reads network writes

Resource utilization profile changes
from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean
• Shows relative magnitude of performance variance

Two application variants tested
• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

SC15
SC14
SC13
SC12
SC11
SC10
SC9
SC8
SC7
SC6
SC5
SC4
SC3
SC2
SC1

CPU time disk reads disk writes network reads network writes

∆ Resource Utilization Change
Min to Max Utilization

m-bound d-bound

CPU time: 6.5% 5.5%
Disk sector reads: 14.8% 819.6%
Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

27

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

28

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆ Performance Change:
Min to max performance

M-bound: 14%
D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D),
fileserver (F), and logging server (L)

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.29

MULTITIERED ARCHITECTURES - 2

M

D F L

client Server as a client

 Ver tical distribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers
 M – The application server

 D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.30

MULTITIERED RESOURCE SCALING

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 17, 2017

Slides by Wes J. Lloyd L6.6

 Horizontal distribution cont’d

 Sharding: portions of a database map” to a specific server

 Distributed hash table

 Or replica servers

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.31

MULTITIERED RESOURCE SCALING - 2

 Client/server:

 Nodes have specific roles

 Peer-to-peer:

 Nodes are seen as all equal…

 How should nodes be organized for communication?

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.32

DECENTRALIZED PEER-TO-PEER
ARCHITECTURES

 Nodes organized using specific topology
(e.g. ring, binary-tree, grid, etc.)

 Organization assists in data lookups

 Data indexed using “semantic-free” indexing

 Key / value storage systems

 Key used to look-up data

 Nodes store data associated with a subset of keys

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.33

STRUCTURED PEER-TO-PEER

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.34

DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs are 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number
of varying bits between neighboring nodes and destination

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.35

FIXED HYPERCUBE EXAMPLE

 Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.36

FIXED HYPERCUBE EXAMPLE - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 17, 2017

Slides by Wes J. Lloyd L6.7

 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.37

WHICH CONNECTOR LEADS TO THE
SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit different than 1110)

0110 (1 bit different than 1110)

0011 (3 bits different– bad path)

0101 (3 bits different– bad path)

 Fixed hypercube requires static topology

 Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

 Dynamic topology

 Nodes organized in ring

 Every node has unique ID

 Each node connected with other nodes (shortcuts)

 Shortest path between any pair of nodes is ~ order O(log N)

 N is the total number of nodes

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.38

DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains finger table of successor nodes

 Client sends key/value
lookup to any node

 Node forwards client
request to node with
m-bit ID closest to, but
not greater than key k

 Nodes must continually
refresh finger tables by
communicating with
adjacent nodes to
incorporate node
joins/departures

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.39

CHORD SYSTEM

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed
 Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible
 How would you calculate the route algorithmically?

 Routes must be discovered

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.40

UNSTRUCTURED PEER-TO-PEER

 Flooding
 [Node u] sends request for data item to all neighbors
 [Node v]

 Searches locally, responds to u (or forwarder) if having data

 Forwards request to all neighbors

 Ignores repeated requests

 Features
 High network traffic

 Fast search results via saturated the network with requests

 Variable # of hops

 Max number of hops or time-to-live (TTL) often specified

 Requests can “retry” by gradually increasing TTL/max hops until
data is found

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.41

SEARCHING FOR DATA:
UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]
 If [node v] does not have data, forwards request to a

random neighbor
 Features
 Low network traffic
 Akin to sequential search
 Longer search time
 [node u] can perform parallel random walks to reduce

search time
 As few as 16..64 random walks effective to reduce search time
 Timeout required - need to coordinate stopping network-wide

walk when data is found…

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.42

SEARCHING FOR DATA - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 17, 2017

Slides by Wes J. Lloyd L6.8

 Policy-based search methods

 Incorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of
queries

 Nodes maintain lists of preferred neighbors which often
succeed at resolving queries

 Favor neighbors having highest number of neighbors

 Can help minimize hops

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.43

SEARCHING FOR DATA - 3 QUESTIONS

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L6.44

EXTRA SLIDES

45

