TCSS 558: Applied Distributed Computing [Fall 2017] October 17, 2017
Institute of Technology, UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
| |

OBJECTIVES

= Feedback from 10/12

= Assignment O - questions

System Architectures

= Ch. 2 - System architectures
= Centralized: Single client, multi-tier
Wes J. Lond ‘ = Decentralized peer-to-peer: structured, unstructured,

Institute of Technology hierarchical

= Hybrid
University of Washington - Tacoma
= Ch. 3 - Processes and threads

TCSS558: Applied Distributed Computing [Fall 2017]
(i 20 T e et e e et S 162

FEEDBACK - 10/12 EVENT-BASED PUBLISH & SUBSCRIBE - 2
= Why Is the event-based archltecture generally “more = Server pool participating in publishing content to subscribers
scalable”, as compared to a layered architecture? is inherently scalable because additional nodes can
participate without client reconfiguration
= Event-based systems are considered “sessionless” = Because the server name is decoupled, in theory...
= Creating and destroying TCP sessions incurs overhead Every message could originate from a different server !!!

= When a client “subscribes” to a feed, server(s) can simply
publish content to the subscriber(s) (by sending msgs to
their IP address) without establishing a TCP session

= Client(s) monitor a port for messages

= Disadvantage:
= Message delivery is not guaranteed with connectionless
protocols

= Play-it-again Sam...?

Institute of Technology, University of Washington - Tacoma

= Cllents and servers are referentlally decoupled = Nol

= Client(s) are not bound by name (TCP connection) to any = Messages are not replayed. Subscribers (clients) must be up-
particular server and-running when messages are sent. (temporal coupling)
October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017] | 63 ‘ October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017] | 164 |

Institute of Technology, University of Washington - Tacoma

EVENT-BASED PUBLISH & SUBSCRIBE - 3 EVENT-BASED PUBLISH & SUBSCRIBE - 4

= Managing the subscription system may be tedious when there = Conslder deslgn problem(s):

are many subscriptions
= How do we coordinate multiple servers to publish subscription
= Agreed content to clients?

= Do individual nodes provide specific types of content to
subscribers? (content centric)

= Enables cache / memory advantages

= Advantage:
Due to referential decoupling and distribution transparency,
the scale and scope of the implementation used can be o ik i i
iy Aostimeied (e dHems = Do |tn¢.1|;/;dual nodes service related clients (geospatially
centric)?

= While achieving large scale maybe complex and expensive, it gleteciilatencviedian gees

is generally reasonable to achieve with access to sufficient

= How do we manage and update a shared subscription
resources (e.g. cloud)

database?

Institute of Technology, University of Washington - Tacoma Institute of Technology, University of Washington - Tacoma

October 17, 2017 TCS5558: Applied Distributed Computing [Fall 2017] | s ‘ October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017) | 66 |

Slides by Wes J. Lloyd L6.1

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

FEEDBACK 10/12 - 5

= What does ‘notiflcation only’ or ‘notificatlon plus data’
depend on?

= For the shared data-space architecture, notification only
provides:

= Referential decoupling
= Temporal decoupling
= Subscribers receive notifications that new data is available,
not the data itself
= Subscribers explicitly fetch data if interested after notification
= Temporal decoupling defers or eliminates network traffic

= Temporally coupled shared data-space systems send
“notification plus data” to clients immediately for “events”.

TCsS558: Applied Distributed Computing [Fall 2017]
(i,) R e T e e G T e e 167

October 17, 2017

FEEDBACK 10/12 - 6

= Can Windows OS update messages be related to “Notification
only”, and when the system actually updates to “Notification +
Data”?

" [n a sense, it could be thought of this way, but ...

= Imagine if all MS Windows clients elected for notification +
data simultaneously.

= What implications would result for the Internet?

= |n reality, updates are rolling

S P TCsS558: Applied Distributed Computing [Fall 2017] | s |

Institute of Technology, University of Washington - Tacoma

FEEDBACK 10/12 - 7

= Wrappers and interceptors are a bit unclear

" These are similar !
= Wrapper:
A client callable interface which provides functionality
= Functionality may be provided directly by the server code
(same program as wrapper), or outsourced to legacy code (engine)
= “Wrappers” decouple client interface from backend
implementation
= Backend implementation may change without modifying the client
= Allows specifics of implementation (i.e. business logic) to change
= For example: version upgrades (1.0 to 1.2 ...)
= New backend relational database: SQL Server > PostgreSQL
= Key: cllent doesn’t need to know

TCsS558: Applied Distributed Computing [Fall 2017]
(i, 205 Inttute of Technoloay/Universitylof Washinstone Tacomal 169

FEEDBACK 10/12 - 8

= |nterceptor:
An interface which “routes” client requests somewhere
else

= For example, interface stub(s) route calls to remote
objects

= Conceptually similar to wrappers, as the implementation
is decoupled

= Enables geospatial decoupling
= Location of the implementation may change

=Through routing (to different providers) the details of the
implementation may change...

e TCsS558: Applied Distributed Computing [Fall 2017] | o1 |

Institute of Technology, University of Washington - Tacoma

Clont spplcation
Intrceptod cal a

\ [,
—

Aopicaton sub
v
L

S—

SYSTEM

ARCHITECTURES

TCSS558; Applied Distributed Computing [Fall 2017
(i 1 200 Institute of Technology, University of Washington - Tacoma

SYSTEM ARCHITECTURES

= Architectural styles (or patterns)
= General, reusable solutions to commonly occurring
system design problems

= Expressed as a logical organization of components
and connectors

= Deciding on the system components, their
interactions, and placement is a realization of a
system archltecture

= System architectures represent designs used in
practice

A P TCSS558: Applied Distributed Computing [Fall 2017] | o |

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L6.2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

SYSTEM ARCHITECTURES - 2

= Centralized system architectures
= Client-server
= Multitiered
= Decentralized peer-to-peer architectures
= Structured
= Unstructured
= Hierarchically organized
= Hybrid architectures

TCS5558: Applied Distributed Computing [Fall 2017]

(i,) R e T e e G T e e

October 17, 2017

CENTRALIZED:
SIMPLE CLIENT-SERVER ARCHITECTURE

B . Client Server
= Clients request services
= Servers provide services
= Request-reply behavior

Request

Wait Provide service
Reply

= Connectionless protocols (UDP)
= Assume stable network communication with no failures

= Best effort communication: No guarantee of message
arrival without errors, duplication, delays, or in sequence.
No acknowledgment of arrival or retransmission

= Problem: How to detect whether the client request
message is lost, or the server reply transmission has failed

= Clients can resend the request when no reply is received
= But what Is the server doing?

TCSS558: Applied Distributed Computing [Fall 2017)

October 17, 2017 Institute of Technology, University of Washington - Tacoma

CLIENT-SERVER PROTOCOLS

= Connectlonless cont’d
= |s resending the client request a good idea?
= Examples:
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money | have left”

= |dempotent - repeating requests is safe

= Connection-oriented (TCP)

= Client/server communication over wide-area networks (WANs)
= When communication is inherently reliable

= Leverage “reliable” TCP/IP connections

TCS5558: Applied Distributed Computing [Fall 2017]

(i, 205 Inttute of Technoloay/Universitylof Washinstone Tacomal

CLIENT-SERVER PROTOCOLS - 2

= Connectlon-orlented cont’d
= Set up and tear down of connections is relatively expensive
= Overhead can be amortized with longer lived connections

= Example: database connections often retained

= Ongoing debate:
= How do you differentiate between a client and server?
= Roles are blurred

= Example: Distributed databases

= Nodes must service client requests and initiate them to other
database nodes for replication, synchronization, etc.

TCSS558: Applied Distributed Computing [Fall 2017)

October 17, 2017 Institute of Technology, University of Washington - Tacoma

TCP/UDP
TCP UDP
Reliable Unreliable
f:mlum;»l@ Vu No windowing or
3 ol v g
i 'gh retransmission
Acknowledge segments No acknowledgement

TCS5558: Applied Distributed Computing [Fall 2017]

L) Institute of Technology/Universitylof Washingtons Tacomal

1617

Slides by Wes J. Lloyd

CONNECTIONLESS VS
CONNECTION ORIENTED

Connectlonless (UDP) Connectlon-orlented (TCP)
stateless stateful

Advantages

Disadvantages

TCS$558: Applied Distributed Computing [Fall 2017]

October 17, 2017 Institute of Technology, University of Washington - Tacoma

L6.3

TCSS 558: Applied Distributed Computing [Fall 2017] October 17, 2017
Institute of Technology, UW-Tacoma

Sl oL E 20 06 MULTITIERED ARCHITECTURES

CONNECTION ORIENTED

Connectlonless (UDP) Connectlon-orlented (TCP) = Where should functionality be distributed?
stateless stateful = At the client?

Advantages * Fast to communicate (no + Message delivery confirmation * At the server?

connection overhead) + ldempotence not required Client machine
* Broad to an audi < M ically resent
" . . . N User interface User interface User interface User interface User interface
* Network bandwidth savings - if client (or network) is] ‘ ‘ - ‘ S ‘ il
temporarily unavailable 1 ‘ PPl \ PPl

* Message sequences Da!ab’azsfr‘

guaranteed
n n . . User interface
Disadvantages ° Cannot tell difference of * Connection setup is time- — ‘

request vs. response failure consuming e oP T’ ‘
« Requires idempotence « More bandwidth is required Databiase [Database | [Database [Database | Database
* Clients must be online and (protocol, retries, multinode- erver machine

ready to receive r communication) A Ao

= Why should we consider component composition?
TCS$558: Applied Distributed Computing [Fall 2017] 619 ‘ October 17, 2017 ;rn?ﬁs(islzzuﬁzgf‘: ;S;‘r{ila.lr(‘ievde f;.’{?ﬁmi E\::I:;tzfan s | e |

(i,) R e T e e G T e e

Component Composition Example

* An application with 4 components has 15 compositions
* One or more component(s) deployed to each VM
* Each VM launched to separate physical machine

i : Tomcat ApplicationServer

M: Tomcat ApplicationServer M

D: Postgresql DB
E:
L

D: Postgresql DB MD
F: nginxfile server L
L: Logging server (high O/H)

nginx file server
Logging server (high O/H)

oscis
ESC14
ESC13
ESsc12
ESCc11
Zsc10
H SC9
O sc8
| SC7
O SC6
H sC5
SC4
O sc3
E sc2
H sca

Bell's Number: 4 15

5
k: number of ways
n components can be 6
distributed across containers 7 877
8
9

Resource footprint

4,140

21,14
7

0 { ooe /

: Tomcat ApplicationServer
: Postgresql DB

nginx file server

Logging server (high O/H)

CPUtime diskreads ' diskwrites networkreads networkwrites

rmos=s

Slides by Wes J. Lloyd L6.4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

Resource utilization profile changes
from component composition
M-bound RUSLE2 - Soil Erosion Model Webservice

* Box size shows absolute deviation (+/-) from mean
* Shows relative magnitude of performance variance

Two applicatlon varlants tested

* D-bound: Modified service, D is compute bound co

Resource footprint

diskreads diskwrites networkreads networkwrites

October 17, 2017

* M-bound: Standard service, M is compute bound 1

100%

N B N i

A Resource Utilization Change

B Min to Max Utilization eis
é‘ m-bound d-bound EE
= CPU time: 6.5% 5.5% ca0
Disk sector reads: 14.8% 819.6% =
& Disk sector writes: 21.8% 111.1% [%

Network bytes received: 144.9% 145% §§

Network bytes sent: 143.7% 143.9% per

CPUtime diskreads diskwrites networkreads networkwrites

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

15

m-bound 4GB VMs 20 diff ensembles (100 runs)
d-bound 4GB VMs 20 diff ensembles (100 runs) —3
_ 10
g
-
é 5
=) 3
=
Slowerdeployments = o ﬂ I] I]
H
) : I]
] -5
£
Fasterdeployments ¢
*
-10

scl sc2 sc3 scd sc5 sc6 sc7 scB sc9 scl0scllscl2sc13scldscls

Service Configurations

27

Sl

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

15 ¢

A Performance Change:
Min to max performance

M-bound: 14%
D-bound: 25.7%

[oo

-15

scl sc2 sc3 scd sc5 sc6 sc7 sc8 sc9 sc10scllsc12sc13scldscls

Service Configurations

28

MULTITIERED ARCHITECTURES - 2

=" M D FL architecture
= M - is the application server

= M - is also a client to the database (D),
fileserver (F), and logging server (L)

Server as a client

Client Application Databast
server server
Request
operation
Request
data
Wait for Wait for
reply data
Return
data
Return

reply

TCS5558: Applied Distributed Computing [Fall 2017]

L) Institute of Technology/Universitylof Washingtons Tacomal

1629

Slides by Wes J. Lloyd

MULTITIERED RESOURCE SCALING

= Vertical distribution
= The distribution of “M D F L”
= Application is scaled by placing “tiers” on separate servers
= M - The application server
= D - The database server
= Vertical distribution impacts “network footprint” of application
= Service isolation: each component is isolated on its own HW
= Horizontal distribution E
= Scaling an individual tier
= Add multiple machines and distribute load
= Load balancing

TCsS558: Applied Distributed Computing [Fall 2017]

Cstebe Rz Institute of Technology, University of Washington - Tacoma

1630

L6.5

TCSS 558: Applied Distributed Computing [Fall 2017] October 17, 2017
Institute of Technology, UW-Tacoma

MULTITIERED RESOURCE SCALING - 2 DECENTRALIZED PEER-TO-PEER

ARCHITECTURES
= Horlzontal distribution cont’'d = Client/server:
= Sharding: portions of a database map” to a specific server = Nodes have specific roles
= Distributed hash table
= Or replica servers = Peer-to-peer:

=Nodes are seen as all equal...

= How should nodes be organized for communication?

TC55558: Applied Distributed Computing [Fall 2017)
Institute of Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Fall 2017)

October 17, 2017 Institute of Technology, University of Washington - Tacoma

631 ‘ October 17, 2017 | 1632

STRUCTURED PEER-TO-PEER DISTRIBUTED HASH TABLE (DHT)
= Nodes organized using specific topology = Distributed hash table (DHT) (ch. 5)
(e.g. ring, binary-tree, grid, etc.) = Hash function
= Organization assists in data lookups key(data item) = hash(data item’s value)

= Hash function “generates” a unique key based on the data
= No two data elements will have the same key (hash)

= System supports data lookup via key

= Any node can receive and resolve the request

= Lookup function determines which node stores the key

= Data indexed using “semantic-free” indexing
= Key / value storage systems
= Key used to look-up data

" Nodes store data associated with a subset of keys existing node = lookup (key)

= Node forwards request to node with the data

TC55558: Applied Distributed Computing [Fall 2017)
Institute of Technology, University of Washington - Tacoma

TCSS558: Applied Distributed Computing [Fall 2017)

October 17, 2017 Institute of Technology, University of Washington - Tacoma

1633 ‘ October 17, 2017 | 1634

FIXED HYPERCUBE EXAMPLE FIXED HYPERCUBE EXAMPLE - 2
= Example where topology helps route data lookup request = Example: fixed hypercube
= Statically sized 4-D hypercube, every node has 4 connectors node 0111 (7) retrieves data from node 1110 (14)

= 2 x 3-D cubes, 8 vertices, 12 edges
= Node IDs are 4-bit code (0000 to 1111)
= Hash data items to 4-bit key (1 of 16 slots) = Which connector leads to the shortest path?

= Distance (number of hops) determined by identifying number
of varying bits between neighboring nodes and destination

= Node 1110 is not a neighbor to 0111

TCSS558: Applied Distributed Computing [Fall 2017)
Institute of Technology, University of Washington - Tacoma

TCS$558: Applied Distributed Computing [Fall 2017]

October 17, 2017 Institute of Technology, University of Washington - Tacoma

1635 ‘ October 17, 2017

Slides by Wes J. Lloyd L6.6

TCSS 558: Applied Distributed Computing [Fall 2017] October 17, 2017
Institute of Technology, UW-Tacoma

WHICH CONNECTOR LEADS TO THE DYNAMIC TOPOLOGY

SHORTEST PATH?

= Example: node 0111 (7) retrieves data from node 1110 (14) = Fixed hypercube requires static topology
= Node 1110 is not a neighbor to 0111 = Nodes cannot join or leave

= Relies on symmetry of number of nodes
[0411] Neighbors: = Can force the DHT to a certain size
1111 (1 bit different than 1110) 0011 (3 bits different- bad path)
0110 (1 bit different than 1110) 0101 (3 bits different- bad path) = Chord system - DHT (again in ch.5)

= Dynamic topology

= Nodes organized in ring

= Every node has unique ID

= Each node connected with other nodes (shortcuts)

= Shortest path between any pair of nodes is ~ order O(log N)
= N is the total number of nodes

TC55558: Applied Distributed Computing [Fall 2017)
Institute of Technology, University of Washington - Tacoma

s ‘ S P TCs5558: Applied Distributed Computing [Fall 2017] | o8 |

October 17, 2017 Institute of Technology, University of Washington - Tacoma

CHORD SYSTEM

UNSTRUCTURED PEER-TO-PEER

Data items have m-bit key

Data item is stored at closest “successor” node with ID 2 key k
Each node maintains finger table of successor nodes

Client sends key/value
lookup to any node
Node forwards client
request to node with
m-bit ID closest to, but
not greater than key k
= Nodes must continually
refresh finger tables by
communicating with
adjacent nodes to
incorporate node

joins/departures
TCSS558: Applied Distributed Computing [Fall 2017)
(i, 205 Inttute of Technoloay/Universitylof Washinstone Tacomal

= No topology: How do nodes find out about each other?
= Each node maintains adhoc list of neighbors
= Facilitates nodes frequently joining, leaving, adhoc systems

= Neighbor: node reachable from another via a network path

= Neighbor lists constantly refreshed
= Nodes query each other, remove unresponsive neighbors
= Forms a “random graph”
i = Predetermining network routes not possible
= How would you calculate the route algorithmically?

= Routes must be discovered

1639 October 17, 2017

TCSS558: Applied Distributed Computing [Fall 2017) L0
Institute of Technology, University of Washington - Tacoma

SEARCHING FOR DATA:
UNSTRUCTURED PEER-TO-PEER SYSTEMS

SEARCHING FOR DATA - 2

" Flooding = Random walks

= [Node u] sends request for data item to all neighbors = [Node u] asks a randomly chosen neighbor [node v]

" [Node v] " |If [node v] does not have data, forwards request to a
random neighbor

= Searches locally, responds to u (or forwarder) if having data

= Forwards request to all neighbors
= Ignores repeated requests

= Features
= Low network traffic
= Akin to sequential search

= Features .
e — = Longer search time
= High network traffic
g = [node u] can perform parallel random walks to reduce
= Fast search results via saturated the network with requests search time
= Variable # of hops = As few as 16..64 random walks effective to reduce search time

= Max number of hops or time-to-live (TTL) often specified = Timeout required - need to coordinate stopping network-wide
= Requests can “retry” by gradually increasing TTL/max hops until walk when data is found...
data is found

TCS5558: Applied Distributed Computing [Fall 2017]

541
Institute of Technology, University of Washington - Tacoma

TCS$558: Applied Distributed Computing [Fall 2017] | L6.42 |

October 17, 2017 Institute of Technology, University of Washington - Tacoma

October 17, 2017

Slides by Wes J. Lloyd L6.7

TCSS 558: Applied Distributed Computing [Fall 2017]

Institute of Technology, UW-Tacoma

SEARCHING FOR DATA - 3

= Pollcy-based search methods

= Incorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of
queries

succeed at resolving queries

= Favor neighbors having highest number of neighbors
= Can help minimize hops

= Nodes maintain lists of preferred neighbors which often

October 17, 2017

TCSS558: Applied Distributed Computing [Fall 2017)

(i,) AT S T e A T e e

1643

QUESTIONS

TCSS558: Applied Distributed Computing [Fall 2017]

Coiobesgtz2017 Institute of Technology, University of Washington - Tacoma

EXTRA SLIDES

Slides by Wes J. Lloyd

L6.8

