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TCSS 558: 
APPLIED DISTRIBUTED COMPUTING

 Feedback from 10/12

 Assignment 0 – questions

 Ch. 2 – System architectures
 Centralized: Single client, multi-tier

 Decentralized peer-to-peer: structured, unstructured, 
hierarchical 

 Hybrid

 Ch. 3 – Processes and threads
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OBJECTIVES

 Why is the event-based architecture generally “more 
scalable”, as compared to a layered architecture?

 Event-based systems are considered “sessionless”

 Creating and destroying TCP sessions incurs overhead

 When a client “subscribes” to a feed, server(s) can simply 
publish content to the subscriber(s) (by sending msgs to 
their IP address) without establishing a TCP session

 Client(s) monitor a port for messages

 Clients and servers are referentially decoupled

 Client(s) are not bound by name (TCP connection) to any
particular server
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FEEDBACK – 10/12

 Server pool participating in publishing content to subscribers 
is inherently scalable because additional nodes can 
participate without client reconfiguration

 Because the server name is decoupled, in theory…
Every message could originate from a different server ! ! !

 Disadvantage: 

 Message delivery is not guaranteed with connectionless 
protocols 

 Play-it-again Sam…?

 No!

 Messages are not replayed.  Subscribers (clients) must be up-
and-running when messages are sent. (temporal coupling)
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EVENT-BASED PUBLISH & SUBSCRIBE - 2

 Managing the subscription system may be tedious when there 
are many subscriptions

 Agreed

 Advantage:
Due to referential decoupling and distribution transparency, 
the scale and scope of the implementation used can be 
entirely abstracted from clients

 While achieving large scale maybe complex and expensive, it 
is generally reasonable to achieve with access to sufficient 
resources  (e.g. cloud)
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EVENT-BASED PUBLISH & SUBSCRIBE - 3

 Consider design problem(s):

 How do we coordinate multiple servers to publish subscription 
content to clients?

 Do individual nodes provide specific types of content to 
subscribers? (content centric)

 Enables cache / memory advantages

 Do individual nodes service related clients (geospatially 
centric)?

 Network latency advantages

 How do we manage and update a shared subscription 
database?
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EVENT-BASED PUBLISH & SUBSCRIBE - 4
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 What does ‘notification only’ or  ‘notification plus data’ 
depend on?

 For the shared data-space architecture, notification only 
provides:

 Referential decoupling

 Temporal decoupling

 Subscribers receive notifications that new data is available,
not the data itself

 Subscribers explicitly fetch data if  interested after notification

 Temporal decoupling defers or eliminates network traffic 

 Temporally coupled shared data-space systems send 
“notification plus data” to clients immediately for “events”.
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FEEDBACK 10/12 - 5

 Can Windows OS update messages be related to “Notification 
only”, and when the system actually updates to “Notification + 
Data”?

 In a sense, it could be thought of this way, but …

 Imagine if all MS Windows clients elected for notification + 
data simultaneously.  

 What implications would result for the Internet?

 In reality, updates are rolling
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FEEDBACK 10/12 - 6

 Wrappers and interceptors are a bit  unclear

 These are similar !

 Wrapper:
A client callable inter face which provides functionality

 Functionality may be provided directly by the server code 
(same program as wrapper), or outsourced to legacy code (engine)

 “Wrappers” decouple client inter face from backend 
implementation

 Backend implementation may change without modifying the client

 Allows specifics of implementation ( i.e. business logic) to change

 For example: version upgrades (1.0 to 1.2 …)

 New backend relational database: SQL Server  PostgreSQL

 Key: c l ient  doesn’t need to know
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FEEDBACK 10/12 - 7

 Interceptor:
An interface which “routes” client requests somewhere 
else

 For example, interface stub(s) route calls to remote 
objects

 Conceptually similar to wrappers, as the implementation 
is decoupled

 Enables geospatial decoupling
 Location of the implementation may change
 Through routing (to different providers) the details of the 

implementation may change…
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FEEDBACK 10/12 - 8

SYSTEM 
ARCHITECTURES
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 Architectural styles (or patterns)

 General, reusable solutions to commonly occurring 
system design problems

 Expressed as a logical organization of components 
and connectors

 Deciding on the system components, their 
interactions, and placement is a realization of a 
system architecture

 System architectures represent designs used in 
practice

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.12

SYSTEM ARCHITECTURES
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 Centralized system architectures

 Client-server

Multitiered

 Decentralized peer-to-peer architectures

 Structured 

 Unstructured

 Hierarchically organized

 Hybrid architectures
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SYSTEM ARCHITECTURES - 2

 Clients request services
 Servers provide services
 Request-reply behavior

 Connectionless protocols (UDP)
 Assume stable network communication with no failures
 Best effort communication: No guarantee of message 

arrival without errors, duplication, delays, or in sequence. 
No acknowledgment of arrival or retransmission

 Problem: How to detect whether the client request 
message is lost, or the server reply transmission has failed

 Clients can resend the request when no reply is received
 But what is the server doing?
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CENTRALIZED: 
SIMPLE CLIENT-SERVER ARCHITECTURE

 Connectionless cont’d

 Is resending the client request a good idea?

 Examples: 
Client message: “transfer $10,000 from my bank account”

Client message: “tell me how much money I have left”

 Idempotent – repeating requests is safe

 Connection-oriented (TCP)

 Client/server communication over wide-area networks (WANs)

 When communication is inherently reliable

 Leverage “reliable” TCP/IP connections

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.15

CLIENT-SERVER PROTOCOLS

 Connection-oriented cont’d

 Set up and tear down of connections is relatively expensive

 Overhead can be amortized with longer lived connections
 Example: database connections often retained

 Ongoing debate:

 How do you differentiate between a client and server?

 Roles are blurred

 Example: Distributed databases

 Nodes must service client requests and initiate them to other 
database nodes for replication, synchronization, etc.
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CLIENT-SERVER PROTOCOLS - 2
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TCP/UDP

Connectionless (UDP) 
stateless

Connection-oriented (TCP)
stateful

Advantages

Disadvantages
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CONNECTIONLESS VS 
CONNECTION ORIENTED
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Connectionless (UDP) 
stateless

Connection-oriented (TCP)
stateful

Advantages • Fast to communicate (no 
connection overhead)

• Broadcast to an audience
• Network bandwidth savings

• Message delivery confirmation
• Idempotence not required
• Messages automatically resent 

- if client (or network) is 
temporarily unavailable

• Message sequences 
guaranteed

Disadvantages • Cannot tell difference of 
request vs. response failure

• Requires idempotence
• Clients must be online and 

ready to receive messages

• Connection setup is time-
consuming

• More bandwidth is required 
(protocol, retries, multinode-
communication)
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CONNECTIONLESS VS 
CONNECTION ORIENTED

 Where should functionality be distributed?
 At the client?
 At the server? 

 Why should we consider component composition?
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MULTITIERED ARCHITECTURES
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M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)
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Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM 
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)
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Component Composition Example

• An application with 4 components has 15 compositions
• One or more component(s) deployed to each VM 
• Each VM launched to separate physical machine

M: Tomcat ApplicationServer
D: Postgresql DB
F: nginx file server
L: Logging server (high O/H)

Bell’s Number:

k: number of ways 
n components can be 
distributed across containers

n k

4 15

5 52

6 203

7 877

8 4,140

9 21,14
7

n . . .
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CPU time        disk reads   disk writes  network reads     network writes
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Resource utilization profile changes 
from component composition

M-bound RUSLE2 – Soil Erosion Model Webservice
• Box size shows absolute deviation (+/-) from mean
• Shows relative magnitude of performance variance

Two application variants tested
• M-bound: Standard service, M is compute bound
• D-bound: Modified service, D is compute bound

SC15
SC14
SC13
SC12
SC11
SC10
SC9
SC8
SC7
SC6
SC5
SC4
SC3
SC2
SC1

CPU time        disk reads   disk writes  network reads     network writes

∆  Resource Utilization Change
Min to Max Utilization

m-bound d-bound       

CPU time: 6.5% 5.5%
Disk sector reads: 14.8% 819.6%
Disk sector writes: 21.8% 111.1%
Network bytes received: 144.9% 145%
Network bytes sent: 143.7% 143.9%

27

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

28

PERFORMANCE IMPLICATIONS OF
COMPONENT DEPLOYMENTS

Slower deployments

Faster deployments

∆  Performance Change:
Min to max performance

M-bound: 14%
D-bound: 25.7%

 M D F L architecture

 M – is the application server

 M – is also a client to the database (D), 
fileserver (F), and logging server (L)
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MULTITIERED ARCHITECTURES - 2

M

D F L

client Server as a client

 Ver tical distribution

 The distribution of “M D F L”

 Application is scaled by placing “tiers” on separate servers
 M – The application server

 D – The database server

 Vertical distribution impacts “network footprint” of application

 Service isolation: each component is isolated on its own HW

 Horizontal distribution

 Scaling an individual tier

 Add multiple machines and distribute load

 Load balancing
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MULTITIERED RESOURCE SCALING
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 Horizontal distribution cont’d

 Sharding: portions of a database map” to a specific server

 Distributed hash table

 Or replica servers

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.31

MULTITIERED RESOURCE SCALING - 2

 Client/server:

 Nodes have specific roles

 Peer-to-peer:

 Nodes are seen as all equal…

 How should nodes be organized for communication?
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DECENTRALIZED PEER-TO-PEER 
ARCHITECTURES

 Nodes organized using specific topology 
(e.g. ring, binary-tree, grid, etc.)

 Organization assists in data lookups

 Data indexed using “semantic-free” indexing

 Key / value storage systems

 Key used to look-up data

 Nodes store data associated with a subset of keys
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STRUCTURED PEER-TO-PEER

 Distributed hash table (DHT) (ch. 5)

 Hash function

key(data item) = hash(data item’s value)

 Hash function “generates” a unique key based on the data

 No two data elements will have the same key (hash)

 System supports data lookup via key

 Any node can receive and resolve the request

 Lookup function determines which node stores the key

existing node = lookup(key)

 Node forwards request to node with the data
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DISTRIBUTED HASH TABLE (DHT)

 Example where topology helps route data lookup request

 Statically sized 4-D hypercube, every node has 4 connectors

 2 x 3-D cubes, 8 vertices, 12 edges

 Node IDs are 4-bit code (0000 to 1111)

 Hash data items to 4-bit key (1 of 16 slots)

 Distance (number of hops) determined by identifying number 
of varying bits between neighboring nodes and destination

October 17, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L6.35

FIXED HYPERCUBE EXAMPLE

 Example: fixed hypercube
node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111

 Which connector leads to the shortest path?
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FIXED HYPERCUBE EXAMPLE - 2
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 Example: node 0111 (7) retrieves data from node 1110 (14)

 Node 1110 is not a neighbor to 0111
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WHICH CONNECTOR LEADS TO THE 
SHORTEST PATH?

[0111] Neighbors:

1111 (1 bit different than 1110)

0110 (1 bit different than 1110)

0011 (3 bits different– bad path)

0101 (3 bits different– bad path)

 Fixed hypercube requires static topology

 Nodes cannot join or leave

 Relies on symmetry of number of nodes

 Can force the DHT to a certain size

 Chord system – DHT (again in ch.5)

 Dynamic topology

 Nodes organized in ring

 Every node has unique ID

 Each node connected with other nodes (shortcuts)

 Shortest path between any pair of nodes is ~ order O(log N)

 N is the total number of nodes
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DYNAMIC TOPOLOGY

 Data items have m-bit key

 Data item is stored at closest “successor” node with ID ≥ key k

 Each node maintains finger table of successor nodes

 Client sends key/value 
lookup to any node

 Node forwards client 
request to node with 
m-bit ID closest to, but 
not greater than key k 

 Nodes must continually 
refresh finger tables by 
communicating with 
adjacent nodes to 
incorporate node 
joins/departures
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CHORD SYSTEM

 No topology: How do nodes f ind out about each other?

 Each node maintains adhoc list of neighbors

 Facilitates nodes frequently joining, leaving, adhoc systems

 Neighbor: node reachable from another via a network path

 Neighbor lists constantly refreshed
 Nodes query each other, remove unresponsive neighbors

 Forms a “random graph”

 Predetermining network routes not possible
 How would you calculate the route algorithmically?

 Routes must be discovered
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UNSTRUCTURED PEER-TO-PEER

 Flooding
 [Node u] sends request for data item to all neighbors
 [Node v]

 Searches locally, responds to u (or forwarder) if having data

 Forwards request to all neighbors

 Ignores repeated requests

 Features
 High network traffic

 Fast search results via saturated the network with requests

 Variable # of hops

 Max number of hops or time-to-live (TTL) often specified

 Requests can “retry” by gradually increasing TTL/max hops until 
data is found
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SEARCHING FOR DATA:
UNSTRUCTURED PEER-TO-PEER SYSTEMS

 Random walks
 [Node u] asks a randomly chosen neighbor [node v]
 If [node v] does not have data, forwards request to a 

random neighbor
 Features
 Low network traffic
 Akin to sequential search
 Longer search time
 [node u] can perform parallel random walks to reduce 

search time
 As few as 16..64 random walks effective to reduce search time
 Timeout required - need to coordinate stopping network-wide 

walk when data is found…
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SEARCHING FOR DATA - 2
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 Policy-based search methods

 Incorporate history and knowledge about the adhoc
network at the node-level to enhance effectiveness of 
queries



 Nodes maintain lists of preferred neighbors which often 
succeed at resolving queries

 Favor neighbors having highest number of neighbors

 Can help minimize hops
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SEARCHING FOR DATA - 3 QUESTIONS
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