
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Slides by Wes J. Lloyd L5.1

Distributed Systems:
Architectures and
Middleware

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Feedback from 10/10

 Ch. 2 - Architectural styles
 Event-based / publish & subscribe

 Class activity: architectural styles

 Middleware organization

 System architectures
 Centralized: Single client, multi-tier

 Decentralized peer-to-peer: structured, unstructured,
hierarchical

 Hybrid

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Slides by Wes J. Lloyd L5.2

 What is the difference between a centralized vs. decentralized
architectural style?

 Why is a centralized system less available? (fewer 9s)

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.3

FEEDBACK – 10/10

Company Q’s
Central Database

Server

Availability is measured in percentage uptime (e.g. 99.9%)

 Stil l confused about RMI…
Could you please give a detailed example to show why and
how an object should invoke the method of a remote object?

 The use cases for distributed objects will vary

 These are the same reasons we “distribute” the system

 Local CPU resources of a node may be insufficient to complete
work in a timely manner outsource the computation

 Data required to complete the computation may be
unavailable at local node move the computation to the data
 It may be too slow or expensive to move the data to the node

 Local node may be unauthorized to directly access data
required for computation delegate to authorized host

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.4

FEEDBACK - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Slides by Wes J. Lloyd L5.3

 For assignment 0:
After building the tomcat container, and using
“docker images –a”, my image has a name of <none>.

 Need to include the “-t” flag on docker build

 See “man docker-build” or “docker build - -help"

 Can also include a version number:

 docker build -t <name>:<version> <path to Dockerfi le>

 Example:
docker build –t tcss558test:version1 .

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.5

FEEDBACK - 3

CH. 2: DISTRIBUTED
SYSTEMS

ARCHITECTURES

L5.9

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Slides by Wes J. Lloyd L5.4

 Enables separation between processing and coordination

 Types of coordination:

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.10

PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled
(dependent on name)

Direct
Explicit synchronous
service call

Mailbox
Asynchronous by
name (address)

Referentially
decoupled
(name not required)

Event-based
Event notices
published to shared
bus, w/o addressing

Shared data space
Processes write tuples
to a shared data
space

Not publish and subscribe

 Event-based coordination

 Processes do not know
about each other explicitly

 Processes:

Publish: a notification
describing an event

Subscribe: to receive
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.11

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Slides by Wes J. Lloyd L5.5

 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples

(subscribe)

 When tuples are added,
subscribers are notified of
matches

 Key characteristic:
Processes have no explicit
reference to each other

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.12

PUBLISH SUBSCRIBE ARCHITECTURES - 3

 Subscriber describes events interested in
 Complex descriptions are intensive to evaluate and fulfil
 Middleware will:
 Publish matching notification and data to subscribers
 Common if middleware lacks storage

 Publish only matching notification
 Common if middleware provides storage facility
 Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish-and-
subscribe system?

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.13

PUBLISH SUBSCRIBE ARCHITECTURES - 4

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Slides by Wes J. Lloyd L5.6

IN-CLASS ACTIVITY:
DISTRIBUTED SYSTEMS

ARCHITECTURES

L5.14

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.15

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Slides by Wes J. Lloyd L5.7

MIDDLEWARE
ORGANIZATION

October 12, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L10.16

 Wrappers (adapters)
 Special “frontend” components that provide interfaces to client

 Interface wrappers transform client requests to “implementation” at
the component-level

 Provide modern services interfaces for legacy code/systems

 Enable meeting all preconditions for legacy code to operate

 Parameterization of functions, configuration of environment

 Contributes towards system openness

 Example: Amazon S3

 Client uses REST interface to GET/PUT/DELETE/POST data

 S3 adapts and hands of f REST requests to system for
fulfil lment

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.17

MIDDLEWARE: WRAPPERS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Slides by Wes J. Lloyd L5.8

 Inter-application communication
 Application provides unique interface for

every application

 Scalability suffers
 N applications O(N2) wrappers

 Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate
with the broker

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.18

MIDDLEWARE: WRAPPERS - 2

 Interceptor

 Software construct, breaks flow of control, allows other
application code to be executed

 Enables remote procedure calls (RPC), remote method
invocation (RMI)

 Object A can call a method belonging to object B on a
different machine than A.

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.19

MIDDLEWARE: INTERCEPTORS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Slides by Wes J. Lloyd L5.9

 Local interface matching Object B is provided to Object A

 Object A calls method in this interface

 A’s call is transformed into a “generic object invocation”
by the middleware

 The “generic object invocation” is transformed into a
message that is sent over Object A’s network to Object B.

 Request-level interceptor automatically routes all calls to
object replicas

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.20

MIDDLEWARE INTERCEPTION - METHOD

 It should be possible to modify middleware without loss of
availabil ity

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime
by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support
modifiabil ity at runtime ?

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.21

MODIFIABLE MIDDLEWARE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Slides by Wes J. Lloyd L5.10

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.22

MIDDLEWARE: INTERCEPTORS - 2

QUESTIONS

October 12, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L5.23

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Slides by Wes J. Lloyd L5.11

EXTRA SLIDES

24

