TCSS 558: Applied Distributed Computing [Fall 2017] October 12, 2017
Institute of Technology, UW-Tacoma

TCSS 558:

OBJECTIVES

APPLIED DISTRIBUTED COMPUTING
| |

s St

Distributed Systems: :
Architectures and St = Event-based / publish & subscribe
Middleware %

= Feedback from 10/10

= Ch. 2 - Architectural styles

bt = Class activity: architectural styles
Fully Comected

= Middleware organization
Wes J. Lloyd
Institute of Technology

BEEEe
University of Washington - Tacoma E ; E .
|

= System architectures
= Centralized: Single client, multi-tier

= Decentralized peer-to-peer: structured, unstructured,
hierarchical

= Hybrid

October 12, 2017

TCS5558: Applied Distributed Computing [Fall 2017) .
Institute of Technology, University of Washington - Tacoma

FEEDBACK - 10/10 FEEDBACK - 2
= What is the difference between a centralized vs. decentralized = Still confused about RMI...
architectural style? Could you please give a detailed example to show why and
= Why is a centralized system less available? (fewer 9s) how an object should invoke the method of a remote object?

= The use cases for distributed objects will vary

ch The load jye 1 - adistri »
Got to 'install that pat IU5!h|t1'000’000 req These are the same reasons we dlstrlhrute t.h(.e system
q sSec! = Local CPU resources of a node may be insufficient to complete
work in a timely manner > outsource the computation
OOPS"'idemauyjust rana % co\:ﬂ:gﬁdoe‘? Hard drive = Data required to complete the computation may be
Joe ace nats o’ Company Qs er failyrg mean unavailable at local node > move the computation to the data
DB quer‘/ Cenirc;le?vu;::buse o 7 = It may be too slow or expensive to move the data to the node

» — » » = Local node may be unauthorized to directly access data
Availability is measured In percentage uptime (e.g. 99.9%) required for computation > delegate to authorized host

TCSS558: Applied Distributed Computing [Fall 2017)
Institute of Technology, University of Washington - Tacoma

October 12, 2017

SR, P TCsS558: Applied Distributed Computing [Fall 2017] | s |

Institute of Technology, University of Washington - Tacoma

FEEDBACK - 3

= For assignment O:
After building the tomcat container, and using
“docker images -a”, my image has a name of <none>. Nid

= Need to include the “-t” flag on docker build CH_ 2: DISTRI BUTED

= See “man docker-build” or “docker build --help"

SYSTEMS
= docker build -t <name>:<version> <path to Dockerfile> ARCH ITECTU R ES

= Can also include a version number:

= Example:
docker build -t tcss558test:versionl

October 12, 2017

TCSS558: Applied Distributed Computing [Fall 2017) s
Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L5.1

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

PUBLISH-SUBSCRIBE ARCHITECTURES

= Enables separation between processing and coordination
= Types of coordination:

Temporally coupled | Temporally decoupled
(at the same time) (at different times)

. Direct Mailbox
Referentially coupled -
Explicit synchronous Asynchronous by
(dependent on name) .
service call name (address)
. Event-based Shared data space
Referentially N N
Event notices Processes write tuples

decoupled

. published to shared to a shared data
(name not required)

bus, w/o addressing space

Not publish and subscribe

TCSS558: Applied Distributed Computing [Fall 2017)

(i, 2 R e T e e G T e e

1510

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

= Event-based coordination | Gomponsnt | | Component ‘
]] Notification
delivery

= Processes do not know Subscribe | !
about each other explicitly

Publish

= Processes:

= Publish: a notification
describing an event

=Subscrlbe: to receive
notification of specific kinds of events

= Assumes subscriber is presently up (temporally coupled)

TCS5558: Applied Distributed Computing [Fall 2017)

(i, 20 T e et e e et S | 1

PUBLISH SUBSCRIBE ARCHITECTURES - 3

= Shared data space

= Full decoupling (name and time)

= Processes publish “tuples” to shared dataspace (publish)
= Processes provide search pattern to find tuples

(subscribe)

I Component I | Component |
= When tuples are added,
subscribers are notified of Publish Subscribe Data
matches y y | deliver
o

= Key characteristic:
Processes have no explicit
reference to each other

Shared (persistent) data space

TCSS558: Applied Distributed Computing [Fall 2017)

(i 2 Inttute of Technoloay/Universitylof Washinstone Tacomal

512

PUBLISH SUBSCRIBE ARCHITECTURES - 4

= Subscriber describes events interested in
= Complex descriptions are intensive to evaluate and fulfil
= Middleware will:
= Publish matching notification and data to subscribers
= Common if middleware lacks storage
= Publish only matching notification
= Common if middleware provides storage facility
= Client must explicitly fetch data on their own

= Publish and subscribe systems are generally scalable

= What would reduce the scalabllity of a publish-and-
subscribe system?

TCSS558: Applied Distributed Computing [Fall 2017)

(i, 20 [eete et Tachnclo U ety orWas hinsfoneacomel | 13

IN-CLASS ACTIVITY:

DISTRIBUTED SYSTEMS
ARCHITECTURES

DISTRIBUTED SYSTEM GOALS

TO CONSIDER

= Consider how the architectural change may impact:
= Availability

= Accessibility

= Responsiveness

mScalability

= QOpenness

m Distribution transparency

ESupporting resource sharing
= Other factors...

TCS5558: Applied Distributed Computing [Fall 2017)

Institute of Technology, University of Washington - Tacoma | e

October 10, 2017

Slides by Wes J. Lloyd

L5.2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Clont spplcation
Intrceptod cal a

\ [,
—

Aopicaton st
v
L

S—

MIDDLEWARE

ORGANIZATION

TCSS558: Applied Distributed Computing [Fall 2017

October 12, 2017 Institute of Technology, University of Washington - Tacoma

MIDDLEWARE: WRAPPERS

= Wrappers (adapters)

= Special “frontend” components that provide interfaces to client
= Interface wrappers transform client requests to “implementation” at
the component-level
= Provide modern services interfaces for legacy code/systems
= Enable meeting all preconditions for legacy code to operate
= Parameterization of functions, configuration of environment
= Contributes towards system openness
= Example: Amazon $3
= Client uses REST interface to GET/PUT/DELETE/POST data
= S3 adapts and hands off REST requests to system for
fulfillment

October 12, 2017 TCS5558: Applied Distributed Computing [Fall 2017) | oy

Institute of Technology, University of Washington - Tacoma

MIDDLEWARE: WRAPPERS - 2

Wrapper

= |nter-application communication

= Application provides unique interface for
every application

= Scalability suffers Application
= N applications > O(N2) wrappers -

= Broker
= Provide a common intermediary Q
= Broker knows how to communicate with Q‘
every application P VIS
= Applications only know how to communicate Broker A
with the broker O/ N

TCSS558: Applied Distributed Computing [Fall 2017)
Institute of Technology, University of Washington - Tacoma

October 12, 2017 1518

MIDDLEWARE: INTERCEPTORS

= |nterceptor
= Software construct, breaks flow of control, allows other
application code to be executed

= Enables remote procedure calls (RPC), remote method
invocation (RMI)

= Object A can call a method belonging to object B on a
different machine than A.

TCSS558: Applied Distributed Computing [Fall 2017) | 1519

October 12, 2017 Institute of Technology, University of Washington - Tacoma

MIDDLEWARE INTERCEPTION - METHOD

= Local interface matching Object B is provided to Object A
= Object A calls method in this interface

= A’s call is transformed into a “generic object invocation”
by the middleware

= The “generic object invocation” is transformed into a
message that is sent over Object A’s network to Object B.

= Request-level interceptor automatically routes all calls to
object replicas

TCSS558: Applied Distributed Computing [Fall 2017)
Institute of Technology, University of Washington - Tacoma

October 12, 2017 1520 ‘

MODIFIABLE MIDDLEWARE

= |t should be possible to modify middleware without loss of
availability
= Software components can be replaced at runtime
= Component-based design
= Modifiability through composition
= Systems may have static or dynamic configuration of components
= Dynamic configuration requires late binding
= Components can be changed at runtime

= Component based software supports modifiability at runtime
by enabling components to be swapped out.

= Does a microservices archltecture (e.g. AWS Lambda) support

modifiability at runtime ?

October 12, 2017 TCS5558: Applied Distributed Computing [Fall 2017) | ot

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L5.3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

MIDDLEWARE: INTERCEPTORS - 2

October 12, 2017

Intercepted call SR
Requestlevel i — Noni cal
invoke (B, &doit, val
v Object middleware
Message-level interceptor
J send (B, “doit”, val)
Local OS
¥ ToobjectB
Oetober 12,017 | oy Uty of weshinton-Tscoma | =

QUESTIONS

hi acoma

TCSS558: Applied Distributed Computing [Fall 2017)
Coobesgizi20y Institute of Technology, University of Washington - T:

EXTRA SLIDES

Slides by Wes J. Lloyd

L5.4

