
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Slides by Wes J. Lloyd L5.1

Distributed Systems:
Architectures and
Middleware

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Feedback from 10/10

 Ch. 2 - Architectural styles
 Event-based / publish & subscribe

 Class activity: architectural styles

 Middleware organization

 System architectures
 Centralized: Single client, multi-tier

 Decentralized peer-to-peer: structured, unstructured,
hierarchical

 Hybrid

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.2

OBJECTIVES

 What is the difference between a centralized vs. decentralized
architectural style?

 Why is a centralized system less available? (fewer 9s)

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.3

FEEDBACK – 10/10

Company Q’s
Central Database

Server

Availability is measured in percentage uptime (e.g. 99.9%)

 Still confused about RMI…
Could you please give a detailed example to show why and
how an object should invoke the method of a remote object?

 The use cases for distributed objects will vary

 These are the same reasons we “distribute” the system

 Local CPU resources of a node may be insufficient to complete
work in a timely manner  outsource the computation

 Data required to complete the computation may be
unavailable at local node  move the computation to the data
 It may be too slow or expensive to move the data to the node

 Local node may be unauthorized to directly access data
required for computation  delegate to authorized host

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.4

FEEDBACK - 2

 For assignment 0:
After building the tomcat container, and using
“docker images –a”, my image has a name of <none>.

 Need to include the “-t” flag on docker build

 See “man docker-build” or “docker build --help"

 Can also include a version number:

 docker build -t <name>:<version> <path to Dockerfile>

 Example:
docker build –t tcss558test:version1 .

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.5

FEEDBACK - 3

CH. 2: DISTRIBUTED
SYSTEMS

ARCHITECTURES

L5.9

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Slides by Wes J. Lloyd L5.2

 Enables separation between processing and coordination

 Types of coordination:

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.10

PUBLISH-SUBSCRIBE ARCHITECTURES

Temporally coupled
(at the same time)

Temporally decoupled
(at different times)

Referentially coupled
(dependent on name)

Direct
Explicit synchronous
service call

Mailbox
Asynchronous by
name (address)

Referentially
decoupled
(name not required)

Event-based
Event notices
published to shared
bus, w/o addressing

Shared data space
Processes write tuples
to a shared data
space

Not publish and subscribe

 Event-based coordination

 Processes do not know
about each other explicitly

 Processes:

Publish: a notification
describing an event

Subscribe: to receive
notification of specific kinds of events

 Assumes subscriber is presently up (temporally coupled)

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.11

PUBLISH-SUBSCRIBE ARCHITECTURES - 2

 Shared data space
 Full decoupling (name and time)
 Processes publish “tuples” to shared dataspace (publish)
 Processes provide search pattern to find tuples

(subscribe)

 When tuples are added,
subscribers are notified of
matches

 Key characteristic:
Processes have no explicit
reference to each other

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.12

PUBLISH SUBSCRIBE ARCHITECTURES - 3

 Subscriber describes events interested in
 Complex descriptions are intensive to evaluate and fulfil
 Middleware will:
 Publish matching notification and data to subscribers
 Common if middleware lacks storage

 Publish only matching notification
 Common if middleware provides storage facility
 Client must explicitly fetch data on their own

 Publish and subscribe systems are generally scalable

 What would reduce the scalability of a publish-and-
subscribe system?

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.13

PUBLISH SUBSCRIBE ARCHITECTURES - 4

IN-CLASS ACTIVITY:
DISTRIBUTED SYSTEMS

ARCHITECTURES

L5.14

 Consider how the architectural change may impact:

Availability

Accessibility

Responsiveness

Scalability

Openness

Distribution transparency

Supporting resource sharing

Other factors…

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.15

DISTRIBUTED SYSTEM GOALS
TO CONSIDER

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Slides by Wes J. Lloyd L5.3

MIDDLEWARE
ORGANIZATION

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L10.16

 Wrappers (adapters)
 Special “frontend” components that provide interfaces to client

 Interface wrappers transform client requests to “implementation” at
the component-level

 Provide modern services interfaces for legacy code/systems

 Enable meeting all preconditions for legacy code to operate

 Parameterization of functions, configuration of environment

 Contributes towards system openness

 Example: Amazon S3

 Client uses REST interface to GET/PUT/DELETE/POST data

 S3 adapts and hands off REST requests to system for
fulfillment

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.17

MIDDLEWARE: WRAPPERS

 Inter-application communication
 Application provides unique interface for

every application

 Scalability suffers
 N applications  O(N2) wrappers

 Broker
 Provide a common intermediary

 Broker knows how to communicate with
every application

 Applications only know how to communicate
with the broker

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.18

MIDDLEWARE: WRAPPERS - 2

 Interceptor

 Software construct, breaks flow of control, allows other
application code to be executed

 Enables remote procedure calls (RPC), remote method
invocation (RMI)

 Object A can call a method belonging to object B on a
different machine than A.

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.19

MIDDLEWARE: INTERCEPTORS

 Local interface matching Object B is provided to Object A

 Object A calls method in this interface

 A’s call is transformed into a “generic object invocation”
by the middleware

 The “generic object invocation” is transformed into a
message that is sent over Object A’s network to Object B.

 Request-level interceptor automatically routes all calls to
object replicas

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.20

MIDDLEWARE INTERCEPTION - METHOD

 It should be possible to modify middleware without loss of
availability

 Software components can be replaced at runtime

 Component-based design
 Modifiability through composition

 Systems may have static or dynamic configuration of components

 Dynamic configuration requires late binding

 Components can be changed at runtime

 Component based software supports modifiability at runtime
by enabling components to be swapped out.

 Does a microservices architecture (e.g. AWS Lambda) support
modifiability at runtime ?

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.21

MODIFIABLE MIDDLEWARE

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 12, 2017

Slides by Wes J. Lloyd L5.4

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L5.22

MIDDLEWARE: INTERCEPTORS - 2 QUESTIONS

October 12, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L5.23

EXTRA SLIDES

24

