

FEEDBACK - 10/5

- laaS vs. PaaS vs. FaaS
- "What are these really?"
- Each offers a particular type of computing resource as-a-service
- Service means that resources are available to end users via a programmable interface
- Not only can users create, view, update, delete resources via a GUI, but also programmatically
- Why do we want services to be accessible programmatically?

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

L4.5

IAAS / PAAS / FAAS

■ Install AWS CLI (Page 15, assignment 0)

\$sudo apt update

\$sudo apt install awscli

Configure the AWS CLI with access credentials (pg. 2 & 3)

configure aws cli

\$aws configure

- Let's inspect these:
- laaS: aws ec2 help
- PaaS: aws elasticbeanstalk help
- FaaS: aws lambda help

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

L4.6

VMs vs. CONTAINERS				
<u>Feature</u>	<u>Virtual Machines</u>	<u>Containers</u>		
Virtualization	At wha	At what level?		
Operating System(s)	Kernel	Kernels, OSes		
Image Size	KB, M	KB, MB, GB		
Isolation	At wha	At what level?		
Density	How many p	How many per machine?		
Boot Time	•	?		
Memory	Management, alloc	Management, allocation, reservation		
Lifetime (churn)	At wha	At what level?		
Overhead		?		

VMs vs. CONTAINERS				
<u>Feature</u>	<u>Virtual Machines</u>	<u>Containers</u>		
Virtualization	At the HW level	At the OS level		
Operating System(s)	Mix different types (kernels): e.g. Ubuntu, Redhat, Windows	Shared kernel just one kernel (uname -a)		
Image Size	~1 to 30 GB	10x less: 1 KB to few hundred MB		
Isolation	Kernel level	OS Process-level		
Density	Dozens per machine	Hundreds per machine		
Boot Time	~ a minute	A few seconds		
Memory	Reserved memory	Memory unreserved		
Lifetime (churn)	Slow churn	Faster churn		
Overhead	Higher due to HW abstraction	Lower: little HW abstraction		
October 10, 2017	TCSS558: Applied Distributed Computing [Fall 20 Institute of Technology, University of Washington			

DISTRIBUTED SYSTEM ARCHITECTURES

- Logical organization of a distributed system into software components
- Logical: How system is perceived, modeled
 - The OO/component abstractions
- Physical how it really exists
- Middleware
 - Helps separate application from platforms
 - Helps organize distributed components
 - How are the pieces assembled?
 - How do they communicate?
 - How are systems extended? replicated?
 - Provides "realization" of the architecture

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

L4.14

ARCHITECTURAL BUILDING BLOCKS

- Component: modular unit with well-defined, required, and provided interfaces that is replaceable within its environment
- Components can be replaced while system is running
- Interfaces must remain the same
- Preserving interfaces enables interoperability
- Connector: enables flow of control and data between components
- Distributed system architectures are conceived using components and connectors

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

L4.16

CH. 2 - ARCHITECTURAL STYLES

- Layered
- Object-based
 - Service oriented architecture (SOA)
- Resource-centered architectures
 - Representational state transfer (REST)
- Event-based
 - Publish and subscribe (Rich Site Summary RSS feeds)

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

L4.17

LAYERED ARCHITECTURES

- Components organized in layers
- Component at layer L_j downcalls to lower-level components at layer L_i (where i < j)</p>
- Calls go down
- Exceptional cases may produce upcalls

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

L4.18

COMMUNICATION-PROTOCOL STACKS

- Example: pure-layered organization
- Each layer offers an interface specifying functions of the layer
- Communication protocol: rules used for nodes to communicate
- Layer provides a service
- Interface makes service available
- Protocol implements communication for a layer
- New services can be built atop of existing layers to reuse low level implementation
- Abstractions make it easier reuse existing layers which already implement communication basics

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

L4.20

APPLICATION LAYERING

- Three logical layers of distributed applications
 - The data level
 - Application interface level
 - The processing level

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

L4.27

APPLICATION LAYERING

- Three logical layers of distributed applications
 - The data level

(M)

Application interface level

(V)

The processing level

- (C)
- Model view controller architecture distributed systems
 - Model database handles data persistence
 - View user interface also includes APIs
 - Controller middleware / business logic

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

L4.28

OBJECT-BASED ARCHITECTURES

- Enables loose and flexible component organization
- Objects == components
- Enable distributed node interaction via function calls over the network
- Began with C Remote Procedure Calls (RPC)
 - Straightforward: package up function inputs, send over network, transfer results back
 - Language independent
 - In contrast to web services, RPC calls originally were more intimate in nature
 - Procedures more "coupled", not as independent
 - The goal was not to decouple and widgetize everything

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.29

OBJECT-BASED ARCHITECTURES - 2

- Distributed objects Java- Remote Method Invocation (RMI)
 - Adds object orientation concepts to remote function calls
 - Clients bind to proxy objects
 - Proxy provide an object interface which transfers method invocation over the network to the remote host
- How do we replicate objects?
 - Object marshalling serialize data, stream it over network
 - Unmarshalling- create an object from the stream
 - Unmarshall local object copies on the remote host
 - JSON, XML are some possible data formats

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

L4.30

DISTRIBUTED OBJECTS - 2

- A counterintuitive features is that state is not distributed
- Each "remote object" maintains its own state
- Remote objects may not be replicated
- Objects may be "mobile" and move around from node to node
 - Common for data objects
- For distributed (remote) objects consider
 - Pass by value
 - Pass by reference

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

0, 2017 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L4.16

L4.32

SERVICE ORIENTED ARCHITECTURE

- Services provide always-on encapsulated functions over the internet/web
- Leverage redundant cloud computing infrastructure
- Services may:
 - Aggregate multiple languages, libraries, operating systems
 - Include (wrap) legacy code
- Many software components may be involved in the implementation
 - Application server(s), relational database(s), key-value stores, in memory-cache, queue/messaging services

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

L4.33

SERVICE ORIENTED ARCHITECTURE - 2

- Are more easily developed independent and shared vs. systems with distributed object architectures
- Less coupling
- An error while invoking a distributed object may crash the system
- An error calling a service (e.g. mismatching the interface) generally does not result in a system crash

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

L4.34

RESOURCE BASED ARCHITECTURES

- Motivation:
 - Increasing number of services available online
 - Each with specific protocol(s), methods of interfacing
 - Connecting services w/ different protocols
 - → integration nightmare
- Need for standardization of interfaces
 - Make services/components more pluggable
 - Easier to adopt and integrate
 - Common architecture

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

L4.35

REST SERVICES

- Representational State Transfer (REST)
- Built on HTTP
- Four key characteristics:
 - 1. Resources identified through single naming scheme
 - 2. Services offer the same interface
 - Four operations: GET PUT POST DELETE
 - 3. Messages to/from a service are fully described
 - 4. After execution server forgets about client
 - Stateless execution

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

L4.36

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

- An ASCII-based request/reply protocol for transferring information on the web
- HTTP request includes:
 - request method (GET, POST, etc.)
 - Uniform Resource Identifier (URI)
 - HTTP protocol version understood by the client
 - headers—extra info regarding transfer request
- HTTP response from server
 - Protocol version & status code →
 - Response headers
 - Response body

HTTP status codes:

2xx - all is well

3xx — resource moved

4xx — access problem

5xx — server error

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

L4.37

REST-FUL OPERATIONS

Operation	Description	
PUT	Create a new resource	(C)reate
GET	Retrieve state of a resource in some format	(R)ead
POST	Modify a resource by transferring a new state	(U)pdate
DELETE	Delete a resource	(D)elete

- Resources often implemented as objects in 00 languages
- REST is weak for tracking state
- Generic REST interfaces enable ubiquitous "so many" clients

Institute of Technology, University of Washington - Tacoma

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]

L4.38

REST - 2 Defacto web services protocol Requests made to a URI – uniform resource identifier Supersedes SOAP – Simple Object Access Protocol Access and manipulate web resources with a predefined set of stateless operations (known as web services) Responses most often in JSON, also HTML, ASCII text, XML, no real limits as long as text-based curl – generic command-line REST client: https://curl.haxx.se/ October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017] Institute of Technology, University of Washington - Tacoma

