
TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.1

Distributed Systems:
Ch. 2 Architectures

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING

 Feedback from 10/5

 Ch. 2 - Architectural styles
 Layered

 Object-based

 Resource-centered

 Event-based

 Next:
Middleware organization

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.2

OBJECTIVES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.2

 IaaS vs. PaaS vs. FaaS

“What are these really?”

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.3

FEEDBACK – 10/5

CLOUD COMPUTING STACK

Infrastructure

Platform

Software

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.3

 IaaS vs. PaaS vs. FaaS
 “What are these really?”

Each offers a particular type of computing
resource as-a-service

Service means that resources are available to end
users via a programmable interface

Not only can users create, view, update, delete
resources via a GUI, but also programmatically

Why do we want services to be accessible
programmatically ?

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.5

FEEDBACK – 10/5

 Install AWS CLI (Page 15, assignment 0)
$sudo apt update

$sudo apt install awscli

 Configure the AWS CLI with access credentials (pg. 2 & 3)
configure aws cli

$aws configure

 Let’s inspect these:

 IaaS: aws ec2 help

 PaaS: aws elasticbeanstalk help

 FaaS: aws lambda help

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.6

IAAS / PAAS / FAAS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.4

 Virtualization and Containerization

What is the difference between virtual machines and
containers?

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.7

FEEDBACK - 2

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.8

VMs vs. CONTAINERS

Feature Virtual Machines Containers
Virtualization

Operating
System(s)

Image Size

Isolation

Density

Boot Time

Memory

Lifetime (churn)

Overhead

At what level?

Kernels, OSes

KB, MB, GB

At what level?

How many per machine?

Management, allocation, reservation…

At what level?

?

?

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.5

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.9

VMs vs. CONTAINERS

Feature Virtual Machines Containers
Virtualization At the HW level At the OS level

Operating
System(s)

Mix different types (kernels):
e.g. Ubuntu, Redhat, Windows

Shared kernel
just one kernel (uname –a)

Image Size ~1 to 30 GB 10x less:
1 KB to few hundred MB

Isolation Kernel level OS Process-level

Density Dozens per machine Hundreds per machine

Boot Time ~ a minute A few seconds

Memory Reserved memory Memory unreserved

Lifetime (churn) Slow churn Faster churn

Overhead Higher due to HW abstraction Lower: little HW abstraction

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.10

CHURN OF VMS & CONTAINERS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.6

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.11

CHURN OF VMS & CONTAINERS

Recent observations: AWS Lambda implementation (FaaS)
• Lambda leverages containers and VMs
• 100% container replacement after 40 minutes
• VMs replaced after 4 hours
• Up to 26 Containers per VM
• ? VMs per physical server

 Can the lecture slides be available right after class? So
far there’s a one day delay…

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.12

FEEDBACK - 3

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.7

CH. 2: DISTRIBUTED
SYSTEMS

ARCHITECTURES

L4.13

 Logical organization of a distributed system into software
components

 Logical: How system is perceived, modeled
 The OO/component abstractions

 Physical – how it really exists

 Middleware
 Helps separate application from platforms

 Helps organize distributed components

 How are the pieces assembled?

 How do they communicate?

 How are systems extended? replicated?

 Provides “realization” of the architecture

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.14

DISTRIBUTED SYSTEM ARCHITECTURES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.8

 Tradeoff space: degree of distribution of the system

Fully Centralized Decentralized

● Single point-of-failure ● Multiple failure points

● No nodes: ver tical scaling ● Nodes: horizontal scaling

● Always consistent ● Eventually consistent

● Less available (fewer 9s) ● More available (more 9s)

● Immediate updates ● Roll ing updates

● No data partitions ● Data partitioned or replicated

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.15

CENTRALIZED VS. DECENTRALIZED
DISTRIBUTED SYSTEM ARCHITECTURE

hybrid

 Component: modular unit with well -defined, required, and
provided interfaces that is replaceable within its environment

 Components can be replaced while system is running

 Interfaces must remain the same

 Preserving inter faces enables interoperability

 Connector: enables flow of control and data between
components

 Distributed system architectures are conceived using
components and connectors

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.16

ARCHITECTURAL BUILDING BLOCKS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.9

 Layered

Object-based
 Service oriented architecture (SOA)

Resource-centered architectures
 Representational state transfer (REST)

Event-based
 Publish and subscribe (Rich Site Summary RSS feeds)

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.17

CH. 2 - ARCHITECTURAL STYLES

 Components organized in layers

 Component at layer Lj downcalls to lower-level
components at layer Li (where i < j)

 Calls go down

 Exceptional cases may produce upcalls

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.18

LAYERED ARCHITECTURES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.10

Pure-layered Mixed-layered Layered w/ upcalls

Organization organization organization

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.19

LAYERED ARCHITECTURES - 2

networking specialized libraries OS signals/events

 Example: pure-layered organization

 Each layer of fers an interface specifying functions of the layer

 Communication protocol: rules used for nodes to communicate

 Layer provides a service

 Interface makes service available

 Protocol implements communication for a layer

 New services can be built atop of existing layers to reuse low
level implementation

 Abstractions make it easier reuse existing layers which
already implement communication basics

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.20

COMMUNICATION-PROTOCOL STACKS

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.11

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.21

HOW A NETWORK PACKET IS BUILT

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.22

TCP HEADER

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.12

 Source / Destination IP Addr

 IPv4: 32bits / 4 bytes

 IPv6: 128bits / 16 bytes

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.23

IP HEADER

 TCP provides easy to use API

 API supports: setup, tear down of connection(s)

 API supports: sending and receiving of messages

 TCP preserves ordering of transferred data

 TCP detects and corrects lost data

 But TCP is “protocol” agnostic

 E.g. language agnostic

 What are we going to say?

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.24

TRANSMISSION CONTROL PROTOCOL (TCP)

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.13

Telnet, FTP, TFTP, HTTP, DHCP, DNS, NTP, POP,
RTP, SMTP, Telnet, RPC, LDAP

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.25

COMMON APPLICATION LAYER
PROTOCOLS

 Distributed application example: Internet search engine

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.26

APPLICATION LAYERING

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.14

 Three logical layers of distributed applications

 The data level

 Application interface level

 The processing level

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.27

APPLICATION LAYERING

 Three logical layers of distributed applications

 The data level (M)

 Application interface level (V)

 The processing level (C)

 Model view controller architecture – distributed systems
Model – database - handles data persistence

 View – user interface - also includes APIs

 Controller – middleware / business logic

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.28

APPLICATION LAYERING

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.15

 Enables loose and flexible component organization

 Objects == components

 Enable distributed node interaction via function calls over the
network

 Began with C - Remote Procedure Calls (RPC)
 Straightforward: package up function inputs, send over

network, transfer results back
 Language independent
 In contrast to web services, RPC calls originally were more

intimate in nature
 Procedures more “coupled”, not as independent
 The goal was not to decouple and widgetize everything

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.29

OBJECT-BASED ARCHITECTURES

 Distributed objects Java- Remote Method Invocation (RMI)

 Adds object orientation concepts to remote function calls

 Clients bind to proxy objects

 Proxy provide an object interface which transfers method
invocation over the network to the remote host

 How do we replicate objects?

 Object marshalling – serialize data, stream it over network

 Unmarshalling- create an object from the stream

 Unmarshall local object copies on the remote host

 JSON, XML are some possible data formats

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.30

OBJECT-BASED
ARCHITECTURES - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.16

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.31

DISTRIBUTED OBJECTS

 A counterintuitive features is that state is not
distributed

 Each “remote object” maintains its own state

 Remote objects may not be replicated

 Objects may be “mobile” and move around from node
to node
 Common for data objects

 For distributed (remote) objects consider
 Pass by value

 Pass by reference

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.32

DISTRIBUTED OBJECTS - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.17

 Services provide always-on encapsulated functions over
the internet/web

 Leverage redundant cloud computing infrastructure

 Services may:

 Aggregate multiple languages, libraries, operating
systems

 Include (wrap) legacy code

 Many software components may be involved in the
implementation

 Application server(s), relational database(s), key-value
stores, in memory-cache, queue/messaging services

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.33

SERVICE ORIENTED ARCHITECTURE

 Are more easily developed independent and shared vs.
systems with distributed object architectures

 Less coupling

 An error while invoking a distributed object may crash the
system

 An error calling a service (e.g. mismatching the interface)
generally does not result in a system crash

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.34

SERVICE ORIENTED ARCHITECTURE - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.18

 Motivation:

 Increasing number of services available online

 Each with specific protocol(s), methods of interfacing

 Connecting services w/ different protocols
 integration nightmare

 Need for standardization of interfaces

Make services/components more pluggable

 Easier to adopt and
integrate

 Common
architecture

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.35

RESOURCE BASED ARCHITECTURES

Representational State Transfer (REST)

Built on HTTP

 Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
 Four operations: GET PUT POST DELETE

3. Messages to/from a service are fully described

4. After execution server forgets about client
 Stateless execution

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.36

REST SERVICES

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.19

 An ASCII-based request/reply protocol for transferring
information on the web

 HTTP request includes:

 request method (GET, POST, etc.)

 Uniform Resource Identifier (URI)

 HTTP protocol version understood by the client

 headers—extra info regarding transfer request

 HTTP response from server

 Protocol version & status code

 Response headers

 Response body

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.37

HYPERTEXT TRANSPORT PROTOCOL (HTTP)

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.38

REST-FUL OPERATIONS

 Resources often implemented as objects in OO languages

 REST is weak for tracking state

 Generic REST inter faces enable ubiquitous “so many” clients

Operation Description

PUT Create a new resource (C)reate

GET Retrieve state of a resource in some format (R)ead

POST Modify a resource by transferring a new state (U)pdate

DELETE Delete a resource (D)elete

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.20

 Amazon S3 offers a REST-based interface

 Requires signing HTTP authorization header or passing
authentication parameters in the URL query string

 REST: GET/PUT/POST/DELETE

 SOAP: 16 operations, moving towards
deprecation

 Python boto ~50 operations
(SDK for Python)

 SDKs for other languages

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.39

EXAMPLE: AMAZON S3

 Defacto web services protocol

 Requests made to a URI – uniform resource identifier

 Supersedes SOAP – Simple Object Access Protocol

 Access and manipulate web resources with a predefined
set of stateless operations (known as web services)

 Responses most often in JSON, also HTML, ASCII text,
XML, no real limits as long as text-based

 curl – generic command-line REST client:
https://curl.haxx.se/

October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma

L4.40

REST - 2

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.21

L4.41

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"?>
<definitions name ="DayOfWeek"
targetNamespace="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:tns="http://www.roguewave.com/soapworx/examples/DayOfWeek.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="DayOfWeekInput">
<part name="date" type="xsd:date"/>

</message>
<message name="DayOfWeekResponse">
<part name="dayOfWeek" type="xsd:string"/>

</message>
<portType name="DayOfWeekPortType">
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
<output message="tns:DayOfWeekResponse"/>

</operation>
</portType>
<binding name="DayOfWeekBinding" type="tns:DayOfWeekPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetDayOfWeek">
<soap:operation soapAction="getdayofweek"/>
<input>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>
<soap:body use="encoded"
namespace="http://www.roguewave.com/soapworx/examples"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="DayOfWeekService" >
<documentation>
Returns the day-of-week name for a given date

</documentation>
<port name="DayOfWeekPort" binding="tns:DayOfWeekBinding">
<soap:address location="http://localhost:8090/dayofweek/DayOfWeek"/>

</port>
</service>

</definitions>

L4.42

// REST/JSON
// Request climate data for Washington

{
"parameter": [
{

"name": "latitude",
"value":47.2529

},
{

"name": "longitude",
"value":-122.4443

}
]

}

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

Slides by Wes J. Lloyd L4.22

QUESTIONS

October 10, 2017
TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology, University of Washington - Tacoma L4.43

EXTRA SLIDES

44

