TCSS 558: Applied Distributed Computing [Fall 2017] October 10, 2017
Institute of Technology, UW-Tacoma

TCSS 558:
APPLIED DISTRIBUTED COMPUTING
| |

OBJECTIVES

= Feedback from 10/5

. . Hesh ® Ch. 2 - Architectural styles
Distributed Systems: ! : Y

. = Layered
Ch. 2 Architectures = Object-based

= Resource-centered
EEEeEe = Event-based
Wes J. Lloyd : Lie
= Next:
Middleware organization

Institute of Technology _
B

University of Washington - Tacoma
&

TCSS558: Applied Distributed Computing [Fall 2017]
(i, 20E) T e et e e et S L2

FEEDBACK - 10/5 CLOUD COMPUTING STACK

®|aaS vs. PaaS vs. FaaS
= “What are these really?”

Platform

Infrastructure

TCSS558: Applied Distributed Computing [Fall 2017]
(i 0 i) Inttute of Technoloay/Universitylof Washinstone Tacomal

FEEDBACK - 10/5 IAAS / PAAS / FAAS

= |aaS vs. PaaS vs. FaaS = Install AWS CLI (Page 15, assignment 0)
= “What are these really?” $sudo apt update

)) $sudo apt install awscli
mEach offers a particular type of computing

resource as-a-service = Configure the AWS CLI with access credentials (pg. 2 & 3)

. . # configure aws cli
mService means that resources are available to end

. . £i
users via a programmable interface S @eniEEiEe

= Not only can users create, view, update, delete = Let’s inspect these:
resources via a GUI, but also programmatically ® 1aaS: aws ec2 help

= Why do we want services to be accessible " PaaS: aws elasticbeanstalk help
programmatically ? = FaaS: aws lambda help

TCS5558: Applied Distributed Computing [Fall 2017]

TCSS558: Applied Distributed Computing [Fall 2017]
Institute of Technology/Universitylof Washingtons Tacomal (il i)

Institute of Technology, University of Washington - Tacoma

| October 10, 2017

Slides by Wes J. Lloyd L4 .1

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

October 10, 2017

FEEDBACK - 2

= Virtualization and Containerization
= What is the difference between virtual machines and

containers?
o T -
Runfime || Runfime || Runfime
system system system \pplicati \pplicati \ppli
Operafing | | Operating | | Operafing Runfime || Runtime || Runfime

syslem system system system system systom
Hypervisor Container manager
Operdfing Operating

system system
() (b)
GO TC55558: Applied Distributed Computing [Fall 2017] | . ‘

Institute of Technology, University of Washington - Tacoma

VMs vs. CONTAINERS

|__Featue | _Virtual Machines

Virtualization At what level?
Operating
System(s) Kernels, OSes
Image Size
sl KB, MB, GB
Isolation At what level?
Density How many per machine?
Boot Time ?
Memory Management, allocation, reservation...
Lifetime (churn) At what level?
Overhead ?
October 10, 2017 TCSS558: Applied Distributed Computing [Fall 2017] | s |

Institute of Technology, University of Washington - Tacoma

VMs vs. CONTAINERS

|__Featwre | _Virtual Machines | _Containers _|

Virtualization At the HW level At the OS level
Operating Mix different types (kernels): Shared kernel
System(s) e.g. Ubuntu, Redhat, Windows just one kernel (uname -a)
Image Size ~1to 30 GB 10x less:

1 KB to few hundred MB
Isolation Kernel level 0S Process-level
Density Dozens per machine Hundreds per machine
Boot Time ~ a minute A few seconds
Memory Reserved memory Memory unreserved
Lifetime (churn) Slow churn Faster churn
Overhead Higher due to HW abstraction Lower: little HW abstraction

TCS5558: Applied Distributed Computing [Fall 2017]

(i 0 i) Inttute of Technoloay/Universitylof Washinstone Tacomal

CHURN OF VMS & CONTAINERS

Average Lifetimes of Hosts and Containers

B conmmen

HosT
25088

o CONTAINERS CHURN

9X FASTER
THAN VMS

Average Lifetime (in Days)

Cumulative Percent of Companies

a0

Source:

TCSS558: Applied Distributed Computing [Fall 2017]
(i 20 [eete et Tachnclo U ety orWas hinsfoneacomel

CHURN OF VMS & CONTAINERS

Average Lifetimes of Hosts and Containers

Recent observations: AWS Lambda implementation (FaaS)
* Lambda leverages containers and VMs

* 100% container replacement after 40 minutes

* VMs replaced after 4 hours

* Up to 26 Containers per VM

* ?VMs per physical server

1 TTIrayey vwiTe

Anies

oo

o 20 w 0 w0

Average Lifetime (in Days)

Source: Datadog

TCSS558: Applied Distributed Computing [Fall 2017]
CstebeRUZIEY Institute of Technology, University of Washington - Tacoma

w1

FEEDBACK - 3

= Can the lecture slides be available right after class? So
far there’s a one day delay...

TCS$558: Applied Distributed Computing [Fall 2017] | a1 |

October 10, 2017 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L4.2

TCSS 558: Applied Distributed Computing [Fall 2017] October 10, 2017

Institute of Technology, UW-Tacoma

CH. 2: DISTRIBUTED
SYSTEMS
ARCHITECTURES

DISTRIBUTED SYSTEM ARCHITECTURES

= Logical organization of a distributed system into software
components

= Logical: How system is perceived, modeled
= The 00/component abstractions

= Physical - how it really exists

= Middleware
= Helps separate application from platforms
= Helps organize distributed components
= How are the pieces assembled?
= How do they communicate?
= How are systems extended? replicated?
= Provides “realization” of the architecture

October 10, 2017

TCS5558: Applied Distributed Computing [Fall 2017) e
Institute of Technology, University of Washington - Tacoma

CENTRALIZED VS. DECENTRALIZED
DISTRIBUTED SYSTEM ARCHITECTURE

= Tradeoff space: degree of distribution of the system

Fully Centrallzed n’"yb”d

< U >
Multiple failure points
Nodes: horizontal scaling
Eventually consistent
More available (more 9s)
Rolling updates

Single point-of-failure

No nodes: vertical scaling
Always consistent

Less available (fewer 9s)
Immediate updates

No data partitions

Decentrallzed

Data partitioned or replicated

TCSS558: Applied Distributed Computing [Fall 2017)
Institute of Technology, University of Washington - Tacoma

October 10, 2017

ARCHITECTURAL BUILDING BLOCKS

= Component: modular unit with well-defined, required, and
provided interfaces that is replaceable within its environment

= Components can be replaced while system is running
= Interfaces must remain the same
= Preserving interfaces enables interoperability

= Connector: enables flow of control and data between
components

= Distributed system architectures are conceived using
components and connectors

TCSS558: Applied Distributed Computing [Fall 2017)

Institute of Technology, University of Washington - Tacoma | e |

October 10, 2017

CH. 2 - ARCHITECTURAL STYLES

= Layered

= QObject-based
= Service oriented architecture (SOA)

= Resource-centered architectures
= Representational state transfer (REST)

= Event-based
= Publish and subscribe (Rich Site Summary RSS feeds)

TCSS558: Applied Distributed Computing [Fall 2017)

CEctelztd Institute of Technology/Universitylof Washingtons Tacomal

LAYERED ARCHITECTURES

= Components organized in layers

= Component at layer L; downcalls to lower-level
components at layer L; (where i < j)

= Calls go down

= Exceptional cases may produce upcalls

A P TCSS558: Applied Distributed Computing [Fall 2017] | s |

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L4.3

TCSS 558: Applied Distributed Computing [Fall 2017]

Institute of Technology, UW-Tacoma

LAYERED ARCHITECTURES - 2

Pure-layered
Organization

Mixed-layered
organization

networking specialized libraries
Request/Response —
downcall ¥
— *

Layer N-1

Layer N-1

Layer 2

Layer N-3

Layer N-1

Handle
l Hpeall

Layer N-2

Layered w/ upcalls
organization
OS signals/events

TCS5558: Applied Distributed Computing [Fall 2017]

| (i 0 i) R e T e e G T e e

19

October 10, 2017

COMMUNICATION-PROTOCOL STACKS

= Example: pure-layered organization

= Each layer offers an interface specifying functions of the layer
= Communication protocol: rules used for nodes to communicate
= Layer provides a service

= Interface makes service available

= Protocol implements communication for a layer

= New services can be built atop of existing layers to reuse low
level implementation

= Abstractions make it easier reuse existing layers which
already implement communication basics

TCSS558: Applied Distributed Computing [Fall 2017)

October 10, 2017 Institute of Technology, University of Washington - Tacoma

HOW A NETWORK PACKET IS BUILT

User
Data

5:6.7 - Application

User Dota (issoges orSreoms) = =
oS b
- Transport Tcp,uop
Tansport Protcol Messages
| TransportProtcoiessages [rop Aoploaton ata
TGP Segment

3-Network 1P, ARP, ICMP.

P Datagram;
sagram | e e
2-Data Link Datagram
s [2| g | | [
o & 7 7

1-prysica [T r— | o 1500 bytes }

[|

I’ il

TCSS558: Applied Distributed Computing [Fall 2017)
wn

(i 0 i) Inttute of Technoloay/Universitylof Washinstone Tacomal

TCP HEADER

Transmission Control Protocol (TCP) Header
20-60 bytes

source port number destination port number
2 bytes 2 bytes

sequence number
4 bytes

acknowledgement number

ytes

window size
2bytes

reserved control flags
3 bits | ows |

data offset
4bits

| checksum urgent pointer
2bytes 2 bytes
optional data
0-40 bytes

TCSS558: Applied Distributed Computing [Fall 2017)

October 10, 2017 Institute of Technology, University of Washington - Tacoma

IP HEADER

= Source / Destination IP Addr
= |Pv4: 32bits / 4 bytes
= |Pv6: 128bits / 16 bytes

0 4 8 16 19 31
Version [|Service Type Total Length
Identification Flags | Fragment Offset
L Protocol Header Checksum

Source IP Addr
Destination IP Addr

Options Padding

TCS5558: Applied Distributed Computing [Fall 2017]

CEctelztd Institute of Technology/Universitylof Washingtons Tacomal

w23

TRANSMISSION CONTROL PROTOCOL (TCP)

= TCP provides easy to use API

= API| supports: setup, tear down of connection(s)
= API supports: sending and receiving of messages
= TCP preserves ordering of transferred data

= TCP detects and corrects lost data

= But TCP is “protocol” agnostic
= E.g. language agnostic

= What are we going to say?

TCS$558: Applied Distributed Computing [Fall 2017]

October 10, 2017 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L4.4

TCSS 558: Applied Distributed Computing [Fall 2017] October 10, 2017
Institute of Technology, UW-Tacoma

COMMON APPLICATION LAYER

PROTOCOLS APPLICATION LAYERING

=Telnet, FTP, TFTP, HTTP, DHCP, DNS, NTP, POP, < Distributed application example: Internet search engine
RTP, SMTP, Telnet, RPC, LDAP — -
User interface Iev:.lme face

TCP /IP model

HTML page
TCP /IP protocol suite <eyword expression containing list
Applgﬁzﬁmn HTML
generator Processing
- - generator - of page titles
| ransnr H TCP H upP || IGMP H 1cMP | Ranking
S Database queries algorithm

| ln‘:e;:ret ‘ ‘ P ‘ 1PSEC | Web page litles
77777 e —— Bl with mefa-information s
Network | | Ethernet | Taken Ring, TOMS L atm b pogee
Interface | I_ _ _ _ _ | e Relay b T ! with Web pages

layer

TCS5558: Applied Distributed Computing [Fall 2017]

(i 0 i) R e T e e G T e e

s ‘ October 10, 2017

TCS5558: Applied Distributed Computing [Fall 2017) e
Institute of Technology, University of Washington - Tacoma

APPLICATION LAYERING APPLICATION LAYERING
= Three logical layers of distributed applications = Three logical layers of distributed applications
=The data level =The data level (M)
= Application interface level = Application interface level (V)
=The processing level =The processing level (C)

= Model view controller architecture - distributed systems
= Model - database - handles data persistence
=View - user interface - also includes APls
= Controller - middleware / business logic

TCS5558: Applied Distributed Computing [Fall 2017]

(i 0 i) Inttute of Technoloay/Universitylof Washinstone Tacomal

r ‘ A P TCs5558: Applied Distributed Computing [Fall 2017] | wazs |

Institute of Technology, University of Washington - Tacoma

Object Object

OBJECT-BASED
ARCHITECTURES - 2

Method call

OBJECT-BASED ARCHITECTURES

® Enables loose and flexible component organization = Distributed objects Java- Remote Method Invocation (RMI)
= Objects == components = Adds object orientation concepts to remote function calls

L = Clients bind to proxy objects
= Enable distributed node interaction via function calls over the

network = Proxy provide an object interface which transfers method

invocation over the network to the remote host
= Began with C - Remote Procedure Calls (RPC)

= Straightforward: package up function inputs, send over = How do we replicate objects?
network, transfer results back

. = Object marshalling - serialize data, stream it over network
= Language independent i i
= In contrast to web services, RPC calls originally were more = Unmarshalling- create an object from the stream
intimate in nature = Unmarshall local object copies on the remote host

= Procedures more “coupled”, not as independent = JSON, XML are some possible data formats
= The goal was not to decouple and widgetize everything

TCSS558: Applied Distributed Computing [Fall 2017)
Institute of Technology, University of Washington - Tacoma

October 10, 2017

TCSS558: Applied Distributed Computing [Fall 2017]
- ‘ CEEErEY Institute of Technology, University of Washington - Tacoma 1430

Slides by Wes J. Lloyd L4.5

TCSS 558: Applied Distributed Computing [Fall 2017]

Institute of Technology, UW-Tacoma

October 10, 2017

DISTRIBUTED OBJECTS

Client machine Server machine

Client Server
Same e ‘
Client interface D D D
Frckes as object

thod ¢
e . Skeleton ~ ||
invokes — 1T T
m same method
at object

Client OS Server OS

Marshalled invocation
is passed across network

Network

Object

State

Method

Interface

TCS5558: Applied Distributed Computing [Fall 2017]

(i 0 i) R e T e e G T e e

DISTRIBUTED OBJECTS - 2

= A counterintuitive features is that state is not
distributed

= Each “remote object” maintains its own state

= Remote objects may not be replicated

= Objects may be “mobile” and move around from node
to node
= Common for data objects

= For distributed (remote) objects consider
= Pass by value
= Pass by reference

TCSS558: Applied Distributed Computing [Fall 2017)

(i, 20E) T e et e e et S | L3z

the internet/web

= Services may:

systems
= Include (wrap) legacy code

implementation

SERVICE ORIENTED ARCHITECTURE

= Services provide always-on encapsulated functions over

= Leverage redundant cloud computing infrastructure

= Aggregate multiple languages, libraries, operating

= Many software components may be involved in the

= Application server(s), relational database(s), key-value
stores, in memory-cache, queue/messaging services

TCS5558: Applied Distributed Computing [Fall 2017]

(i 0 i) Inttute of Technoloay/Universitylof Washinstone Tacomal

SERVICE ORIENTED ARCHITECTURE - 2

= Are more easily developed independent and shared vs.
systems with distributed object architectures

= Less coupling

= An error while invoking a distributed object may crash the
system

= An error calling a service (e.g. mismatching the interface)
generally does not result in a system crash

TCSS558: Applied Distributed Computing [Fall 2017)

L34
Institute of Technology, University of Washington - Tacoma |

October 10, 2017

= Motivation:
= Increasing number of services available online

= Connecting services w/ different protocols
- integration nightmare

= Need for standardization of interfaces
= Make services/components more pluggable
= Easier to adopt and
integrate
=Common
architecture

RESOURCE BASED ARCHITECTURES

= Each with specific protocol(s), methods of interfacing

ec00

TCS5558: Applied Distributed Computing [Fall 2017]

CEctelztd Institute of Technology/Universitylof Washingtons Tacomal

REST SERVICES

= Representational State Transfer (REST)
= Built on HTTP

= Four key characteristics:
1. Resources identified through single naming scheme

2. Services offer the same interface
Four operations: GET PUT POST DELETE

Messages to/from a service are fully described

4. After execution server forgets about client
Stateless execution

TCS$558: Applied Distributed Computing [Fall 2017]

1436
Institute of Technology, University of Washington - Tacoma |

October 10, 2017

Slides by Wes J. Lloyd

L4.6

TCSS 558: Applied Distributed Computing [Fall 2017] October 10, 2017
Institute of Technology, UW-Tacoma

HYPERTEXT TRANSPORT PROTOCOL (HTTP) REST-FUL OPERATIONS
* An ASCIl-based request/reply protocol for transferring Operation| _________Description_______| _|
information on the web PUT Create a new resource (C)reate
= HTTP request includes: GET Retrieve state of a resource in some format (R)ead
= request method (GET, POST, etc.) POST Modify a resource by transferring a new state (U)pdate
= Uniform Resource Identifier (URI) DELETE Delete a resource (D)elete
= HTTP protocol version understood by the client
= headers—extra info regarding transfer request = Resources often implemented as objects in 00 languages
= HTTP response from server HTTP status codes: = REST |.s weak for tracking state - .
- Freimeal) verelen & SEls aaile = %% — all is well = Generic REST interfaces enable ubiquitous “so many” clients
3xx — resource moved
= Response headers
4xx — access problem
= Response body 5xx — server error
Otober 10,2017 | ey Uner f Washingion Tocoma wr | Ontober 0. 2017 | logy ety o Weshngion Tacorna =X

EXAMPLE: AMAZON S3 REST - 2

= Amazon S3 offers a REST-based interface
= Requires signing HTTP authorization header or passing

= Defacto web services protocol

authentication parameters in the URL query string = Requests made to a URI - uniform resource identifier
BRLAWS SORs A Exploters = Supersedes SOAP - Simple Object Access Protocol

= REST: GET/PUT/POST/DELETE 00 Set Up the AWS CLI

= SOAP: 16 operations, moving toward I Usingthe AWs sDK for Java = Access and manipulate web resources with a predefined
deprecation [set of stateless operations (known as web services)

R PPN 5O =450 CRErEIEn: Dusmmhiamsanicioranp = Responses most often in JSON, also HTML, ASCII text,
(SDK f Pyth) and Running PHP Examples T

or Fython = o XML, no real limits as long as text-based
= SDKs for other languages S ke e

= curl - generic command-line REST client:
Y] Using the AWS SDK for Python .
(Boto) https://curl.haxx.se

TCSS558: Applied Distributed Computing [Fall 2017)
(i 0 i) Inttute of Technoloay/Universitylof Washinstone Tacomal

Institute of Technology, University of Washington - Tacoma

s ‘ A P TCs5558: Applied Distributed Computing [Fall 2017] | so |

// WSDL Service Definition
<?xml version="1.0" encoding="UTF-8"2>
<definitions name ="DayOfWleek"
tp:// air

p:
ttp: //schemas .xmlsoap.org/wsdl/soap/"
p: / /wew w3 001 "

e e e v b
hossage name- DayOfNeeKInpUL'S // REST/JSON
Tt name="date" type="xsd:date"/> . .
Pt // Request climate data for Washington
Cnamsage mame="DayOfWeekResponse”>
<part name="dayOfWeek" type="xsd:string"/>
</message>
portiyee name="DayOfWeekPortType”> {
<operation name="GetDayOfWeek">
<input message="tns:DayOfWeekInput"/>
Coutput messagent tns :DAyOSMeakResponss”/>
</operation>

"name": "latitude",
<binding name= e
<soap:binding style="docunent"

. " ",

transport="http://schemas . xmlsoap.org/soap/http" /> value":47.2529
<operation name="GetDayOfWeek"> Y,

i />
<input> {
Suapbody use="encoded” .
e e T . , "name": "longitude",
® Wy St S
v "value":-122.4443
P aved

<soap body use="encoded” }
! .

"parameter": [

S 1 /> 1
</output> }
</operation>
</binding>
<service name="DayofWeekService" >
<documentation>
Returns the day-of-week name for a given date
</documentation>
<port

=
="http:/ />

</port>
</sexvice>
</definitions>

L4

1442

Slides by Wes J. Lloyd L4.7

TCSS 558: Applied Distributed Computing [Fall 2017]
Institute of Technology, UW-Tacoma

QUESTIONS

October 10, 2017

TCSS558: Applied Distribu
Institute of Technology, Uni

October 10, 2017

Slides by Wes J. Lloyd

EXTRA SLIDES

L4.8

